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Abstract. We determine the common fixed point of two maps satisfy-
ing Hardy-Roger type contraction in a complete partial b-metric space
without exploiting any variant of continuity or commutativity, which is
indispensable in analogous results. Towards the end, we give examples
and an application to solve a Cantilever beam problem employed in the
distortion of an elastic beam in equilibrium to substantiate the utility of
these improvements.

1 Introduction and preliminaries

Fixed point theory is a major tool in nonlinear analysis, having applications in
many real-world problems, which emerged in 1837 with the article of Liouville
[10] on solutions of differential equations. In 1890, Picard [13] developed it
further as a process of successive approximations which were conceptualized
and extracted by Banach [2] as a fixed point result in a complete normed space
in 1922. On the other hand, Shukla [16] familiarized partial b-metric blending
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partial metric (Matthews [11]) and b-metric (Bakhtin [1] and Czerwik [6]) to
establish a fixed point via Banach contraction [2] and Kannan contraction [9].

The aim of the current work is to demonstrate the survival of one and
only one common fixed point of two maps satisfying classical Hardy-Rogers
type contraction [7] in a complete partial b-metric space without exploiting
any variant of continuity [17] or commutativity [18], which is indispensable
in analogous results. We support our theoretical consequences by illustrative
examples and conclude the paper by giving an application to solve a Cantilever
beam problem employed in the distortion of an elastic beam in equilibrium to
substantiate the utility of these improvements.

It is worth mentioning here that in numerous cable-driven docile mecha-
nisms, like a fixed pulley or a cable routing channel in a segmented disk, the
need for controlled motion in the flexible frameworks often mandates the actua-
tion cables to pass through a fixed point to compel the force angle on the cable.
This situation may be modeled as the large deflection problem of a cantilever
beam with two parameters. Recently Zeng et al. [19] emphasized the numer-
ical analysis of the large deflection problem of the cantilever beam subjected
to a constraint force pointing at a fixed point which permitted widespread
analysis of the impact of diverse factors, including the fixed point position,
the force magnitude, and the beam length, on the behaviour of the cantilever
beam put to a constraint force pointing at a fixed point. This work permitted
mathematical model-based design optimization of docile frameworks in areas
such as soft robotics and smart materials.

Definition 1 [16] A function pb : X ×X → [0,∞) on a nonempty set X is a
partial b-metric if ∀u, v,w ∈ X ,

1. u = v iff pb(u, v) = pb(u, u) = pb(v, v);

2. pb(u, u) ≤ pb(u, v);

3. pb(u, v) = pb(v, u);

4. pb(u, v) ≤ s[pb(u,w) + pb(w, v)] − pb(w,w).

The pair (X , pb) is a partial b-metric space and s ≥ 1 is the coefficient of
(X , pb).

Example 1 Let X = [0, 10] and pb : X × X −→ [0,∞) be defined as:
pb(u, v) = |u − w|2 + 2. By routine calculation, one may verify that (X , pb)
is a partial b-metric space for s = 2. However, (X , pb) is not a partial metric
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space. Since for u = 0, v = 10 and w = 5, we obtain
pb(0, 10) = |0− 10|2 + 2 = 102,
pb(0, 5) + pb(5, 10) − pb(5, 5) = |0− 5|2 + 2+ |5− 10|2 + 2− 2

= 25+ 2+ 25
= 52.

Therefore, pb(0, 10) > pb(0, 5) + pb(5, 10) − pb(5, 5). Noticeably, (X , pb) is
also not a b-metric space.

Definition 2 [12] A sequence {un} in a partial b-metric space (X , pb) is

1. convergent to u ∈ X if pb(u, u) = limn→∞ pb(u, un).
2. Cauchy sequence if limn→∞ pb(un, um) exists and is finite.

A partial b-metric space (X , pb) is complete [16] if each pb-Cauchy sequence
in X converges to u ∈ X , i.e., pb(u, u) = limn→∞ pb(u, un) = limn,m→∞ pb
(un, um).
One may notice that the limit of a convergent sequence is not essentially unique
in a partial b-metric space.

2 Main results

Theorem 1 Let S, T : X → X be self maps of a complete partial b-metric
space (X , pb) so that T (X ) ⊆ S(X ) and

pb(Su, T v) ≤ apb(u,Su)+bpb(v, T v)+cpb(u, T v)+dpb(v,Su)+epb(u, v), (1)

∀ u, v ∈ X and a, b, c, d, e are positive reals satisfying a+b+c+e+d(2s−1) ≤ 1
and s > 1. Then S and T have a unique common fixed point in X .

Proof. Assume u0 ∈ X and since T (X ) ⊆ S(X ), so we may inductively define
a sequence {un}

∞
n=1 in X as

un = T un−1 and un+1 = Sun, (2)

for n = 0, 1, 2, . . . . If un = un+1, i.e., un = Sun, i.e., un is a fixed point of S.
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Since, un = un+1 =⇒ un+1 = Sun = Sun+1. So

pb(un+1, un+2) = pb(Sun+1, T un)
≤ apb(un+1,Sun+1) + bpb(un, T un) + cpb(un+1, T un)
+ dpb(un,Sun+1) + epb(un+1, un)

= apb(un+1, un+2) + bpb(un, un+1) + cpb(un+1, un+1)

+ dpb(un, un+2) + epb(un+1, un)

≤ apb(un+1, un+2) + bpb(un, un+1) + cpb(un+1, un+1)

+ ds[pb(un, un+1) + pb(un+1, un+2)] − dpb(un+1, un+1)

+ epb(un+1, un),

i.e., (1− a − ds)pb(un+1, un+2) + dpb(un+1, un+1) ≤ (b + ds+ e)pb(un, un+1)

+ cpb(un+1, un+1),

i.e., (1− a − ds)pb(un+1, un+2) + dpb(un+1, un+2) ≤ (b + ds+ e)pb(un, un+1)

+ cpb(un, un+1),

i.e., (1+ d − a − ds)pb(un+1, un+2) ≤ (b + ds+ e + c)pb(un, un+1),

i.e., (1+ d − a − ds)pb(un+1, un+2) ≤ (b + ds+ e + c)pb(un+1, un+2),

i.e., (1− a − b − c − e − d(2s− 1))pb(un+1, un+2) ≤ 0,
i.e., pb(un+1, un+2) ≤ 0 =⇒ pb(un+1, un+2) = 0,

i.e., T un = un+1 = un+2 and un = un+1 =⇒ T un = un, i.e., un is a fixed point
of T .
Also, un = un+1 = un+2 = . . . , i.e., un is a common fixed point of S and T .
So, presume that for even n, un 6= un+1. Then

pb(un+1, un) = pb(Sun, Tun−1)

≤ apb(un, Sun) + bpb(un−1, Tun−1) + cpb(un, Tun−1)

+ dpb(un−1, Sun) + epb(un, un−1)

≤ apb(un, un+1) + bpb(un−1, un) + cpb(un, un)

+ dpb(un−1, un+1) + epb(un, un−1)

≤ apb(un, un+1) + bpb(un−1, un) + cpb(un, un) + ds[pb(un−1, un)

+ pb(un, un+1)] − dpb(un, un) + epb(un, un−1)

≤ apb(un, un+1) + bpb(un−1, un) + cpb(un, un) + dspb(un−1, un)

+ dspb(un, un+1) − dpb(un, un) + epb(un, un−1),
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i.e., (1− a − ds)p(un, un+1) ≤ (b + ds+ e)pb(un−1, un) + (c − d)pb(un, un),

i.e., (1− a − ds)p(un, un+1) + dpb(un, un) ≤ (b + ds+ e)pb(un, un−1)

+ cpb(un, un),

i.e., (1− a − ds)p(un, un+1) + dpb(un, un+1) ≤ (b + ds+ e)pb(unun−1)

+ cpb(un, un−1)

(1+ d − a − ds)pbun, un+1) ≤ (b + c + e + ds)pb(un, un+1),

i.e., pb(un, un+1) ≤
b + c + e + ds

1+ d − a − ds
pb(un, un+1),

i.e., pb(un, un+1) ≤ kpb(un, un−1), where, k =
b + c + e + ds

1+ d − a − ds
≤ 1. (3)

If n is odd, the same inequality (3) can be obtained analogously.
Continuing this process, we attain
pb(un, un+1) ≤ knpb(u0, u1).
We assert that {un}is a Cauchy sequence in X . For m > n and m,n ∈ N,
consider

pb(un, um) ≤ s[pb(un, un+1) + pb(un+1, um)] − pb(un+1, un+1)
≤ s[pb(un, un+1) + pb(un+1, um)]
≤ spb(un, un+1) + s[s{pb(un+1, un+2)

+ pb(un+2, um)}− pb(un+2, un+2)]

≤ spb(un, un+1) + s[s{pb(un+1, un+2) + pb(un+2, um)}]
≤ sknpb(u0, u1) + s2kn+1pb(u0, u1) + ....
≤ sknpb(u0, u1)[1+ sk+ (sk)2 + ....]

≤ skn

1− sk
pb(u0, u1) −→ 0 as n −→∞,

i.e., {un} is a Cauchy sequence. Using completeness of X , {un} converges to u∗ ∈
X and we have limn,m−→∞ pb(un, um) = limn−→∞ pb(un, u∗) = pb(u∗, u∗) = 0.
Further, we assert that u∗ is a fixed point of S. Let {uni

}∞i=1 be a subsequence
of {un}.

So,

pb(u
∗,Su∗) ≤ s[pb(u∗, uni

) + pb(uni
,Su∗)] − pb(uni

, uni
)

≤ spb(u∗, uni
) + spb(T un−1i ,Su

∗)

≤ spb(u∗, uni
) + s[pb(Su∗, T un−1i)]

≤ spb(u∗, uni
) + s[apb(u

∗, Su∗) + bpb(un−1i , T un−1i)
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+ cpb(u
∗, T un−1i) + dpb(un−1i ,Su

∗) + epb(u
∗, un−1i)]

≤ spb(u∗, uni
) + s[apb(u

∗,Su∗) + bpb(un−1i , uni
)

+ cpb(u
∗, uni

) + dpb(un−1i ,Su
∗) + epb(u

∗, un−1i)].

(4)

As n→∞, pb(u
∗,Su∗) ≤ s(a+d)pb(u

∗, Su∗), which gives a contradiction. So,
u∗ = Su∗ ⇒ u∗ is fixed point of S.
Furthermore, we assert that u∗ is a fixed point of T . Let {un+1i}

∞
i=1 be a sub-

sequence of {un}.
So,

pb(u
∗, T u∗) ≤ s[pb(u∗, un+1i) + pb(un+1i , T u

∗)] − pb(un+1i , un+1i)

≤ spb(u∗, un+1i) + spb(Suni
, T u∗)

≤ spb(u∗, un+1i) + s[apb(uni
,Suni

) + bpb(u
∗, T u∗)

+ cpb(uni
, T u∗) + dpb(u

∗,Suni
) + epb(uni

, u∗)]

≤ spb(u∗, un+1i) + s[apb(uni
, un+1i) + bpb(u

∗, T u∗)
+ cpb(uni

, T u∗) + dpb(u
∗, un+1i) + epb(uni

, u∗)].

As n→∞, pb(u
∗, T u∗) ≤ s(b + c)pb(u

∗, T u∗), which gives a contradiction.
Therefore, u∗ = T u∗ ⇒ u∗ is a fixed point of T .
If u and u∗ are two different common fixed points of S and T , then we have
Su = T u = u and Su∗ = T u∗ = u∗. Consider

pb(u, u
∗) = pb(Su, T u∗)
≤ apb(u,Su) + bpb(u

∗, T u∗) + cpb(u, T u∗) + dpb(u
∗,Su) + epb(u, u

∗)

≤ apb(u, u) + bpb(u
∗, u∗) + cpb(u, u

∗) + dpb(u
∗, u) + epb(u, u

∗)

≤ (c + d + e)pb(u, u
∗),

a contradiction, i.e., u = u∗ ⇒ S and T has a unique common fixed point in
X . �

Next, we provide a non-trivial illustration to exhibit the significance of Theo-
rem 1.

Example 2 Let X = [−10, 10] and pb : X × X −→ [0,∞) be defined as:
pb(u, v) = (|u| + |v| + 2)2. Then (X , pb) is a complete partial b-metric space
and s = 2. Define S, T : X −→ X as: Su = u

6 and T u = u
10 . Let u ≥ v. Then

pb(Su, T v) = pb
(
u

6
,
v

10

)
=

(
|u|

6
+

|v|

10
+ 2

)2
=

(
10|u|+ 6|v|+ 120

60

)2
and

(5)
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apb(u,Su) + bpb(v, T v) + cpb(u, T v) + dpb(v,Su) + epb(u, v)

= apb(u,
u

6
) + bpb(v,

v

10
) + cpb(u,

v

10
) + dpb(v,

u

6
) + epb(u, v)

= a
(
|u|+ |

u

6
|+ 2

)2
+ b
(
|v|+ |

v

10
|+ 2

)2
+ c
(
u +

v

10
+ 2
)2

+ d
(
v +

u

6
+ 2
)2

+ e
(
u + v + 2

)2
= a

(
7|u|+ 12

6

)2
+ b

(
11|v|+ 20

10

)2
+ c

(
10|u|+ |v|+ 20

10

)2
+ d

(
6|v|+ |u|+ 12

6

)2
+ e(|u|+ |v|+ 2)2.

(6)

From equations (5) and (6) it is clear that for a = b = e = 1
6 , c = 1

3 , and

d = 1
9 ,

pb(Su, T v) ≤ apb(u,Su) + bpb(v, T v) + cpb(u, T v) + dpb(v,Su) + epb(u, v).

Consequently, all postulates of Theorem 1 are verified, and 0 is the unique
common fixed point of S and T .

Corollary 1 Inference of Theorem 1 is valid if c = d = 0.

Proof. The proof follows the pattern of Theorem 1. �

Next, we present two examples to understand and support the result proved
herein. In one example involved maps are continuous and commutative and in
another maps are discontinuous and noncommutative. It is worth mentioning
that continuity is difficult to be fulfilled in some daily life applications and is
an ideal property.

Example 3 Let X = R+ and pb : X × X −→ [0,∞) be defined as: pb(u, v) =
max{u, v}2 + |u − v|2. Then (X , pb) is a complete partial b-metric space and
s = 4. Define S, T : X −→ X as: Su = u

4 and T u = u
5 . Let u ≥ v. Then

pb(Su, T v) = pb
(
u

4
,
v

5

)
= max

{
u

4
,
v

5

}2
+

∣∣∣∣u4 −
v

5

∣∣∣∣2
=

u2

16
+

∣∣∣∣5u − 4v25

∣∣∣∣2 and

(7)
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apb(u,Su) + bpb(v, T v) + cpb(u, v) = apb

(
u,

u

4

)
+ bpb

(
v,

v

5

)
+ cpb(u, v)

= a

[
max

{
u,

u

4

}2
+
∣∣∣u − u

4

∣∣∣2]+ b

[
max

{
v,

v

5

}2
+
∣∣∣v − v

5

∣∣∣2]
+ c
[

max{u, v}2 + |u − v|2
]

= a

[
u2 +

9

16
u2
]
+ b

[
v2 +

16

25
v2
]
+ c

[
u2 + |u − v|2

]
=
25

16
au2 +

41

25
bv2 + c[u2 + |u − v|2].

(8)

From Equations (7) and (8) it is clear that for a = 1
3 , b = c = 1

9 ,

pb(Su, T v) ≤ apb(u,Su) + bpb(v, T v) + epb(u, v).

Hence, all postulates of Corollary 1 are verified, and 0 is the unique common
fixed point of S and T .

Example 4 Let X = R+ and pb : X × X −→ [0,∞) be defined as: pb(u, v) =
max{u, v}+|u−v|2. Then (X , pb) is a complete partial b-metric space and s = 4.

Define S, T : X −→ X as: Su =

{
u
2 , u ∈ [0, 1]

0, otherwise
and T u =

{
u2−u
2 , u ∈ [0, 1]

0, otherwise
.

Let u, v ∈ [0, 1] and u ≥ v. Therefore,

pb(Su, T v) = pb
(u
2
,
v2 − v

2

)
= max

{u
2
,
v2 − v

2

}
+
∣∣∣u
2
−

v2 − v

2

∣∣∣2
=

u

2
+
∣∣∣u + v − v2

2

∣∣∣2 and

(9)

apb(u,Su) + bpb(v, T v) + cpb(u, v) = apb

(
u,

u

2

)
+ bpb

(
v,

v2 − v

2

)
+ cpb(u, v)

= a

[
max

{
u,

u

2

}
+
∣∣∣u − u

2

∣∣∣2]+ b

[
max

{
v,

v2 − v

2

}
+
∣∣∣v − v2 − v

2

∣∣∣2]
c
[

max{u, v}+
∣∣u − v

∣∣2]
= a
[
u +

1

4
u2
]
+ b
[
v +

1

4
(3v − v2)] + c[u + |u − v|2

]
.

(10)
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Next, if u ≤ v and u, v ∈ [0, 1],

pb(Su, T v) =
u

2
+
∣∣∣u + v − v2

2

∣∣∣2 and (11)

apb(u,Su) + bpb(v, T v) + cpb(u, v) = a
[
u +

1

4
u2
]
+ b
[
v +

1

4
(3v − v2)

]
+ c[v + |u − v|2].

(12)

From Equations (9), (10), (11), and (12) it is clear that for a = 1
3 , b = 1

4 and

c = 1
7

pb(Su, T v) ≤ apb(u,Su) + bpb(v, T v) + epb(u, v), u, v ∈ [0, 1]. (13)

Hence, all postulates of Corollary 1 are verified, and 0 is the unique common
fixed point of S and T .

Remark 1

(i) Above results are also true if T (X ) is a complete subspace instead of
completeness of X .

(ii) Above results become more fascinating if we appraise a better natural
postulate of closures of range space, i.e., T (X ) ⊆ S(X ).

(iii) Suitably choosing the values of constants a, b, c, d, and e, we get the exten-
sions, improvements, generalizations of Bakhtin [1], Banach [2], Chat-
terjea [3], Kannan [9], Reich [14], and so on to a partial b-metric space
for a noncommutative discontinuous pair of maps.

(iv) In Theorem 1 and Corollary 1 (see, Example 4), a unique common fixed
point exists for a pair of discontinuous self maps which does not sat-
isfy even commutativity ([8], [15], [17]) and thereby extend, generalize
and improve the comparable theorems present in the literature (for in-
stance, Banach [2], Chatterjea [3], Ćirić [4], Czerwik [6], Hardy-Rogers
[7], Kannan [9], Reich [14], and references therein).

(v) Following arguments of Theorem 1, we may relax continuity, commuta-
tivity, and completeness of numerous celebrated and contemporary results
existing in different spaces.
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3 Solution of Cantilever beam problem

Motivated by the fact that the Cantilever structure permits overhanging con-
structions deprived of peripheral bracing, we solve a system of fourth-order
differential equations arising in the two-point boundary value problem of bend-
ing of an elastic beam as an application of Corollary 1. Suppose X = C[I,R]
denotes the set of all continuous functions on I = [0, 1]. Define a partial b-
metric pb : X × X −→ R+ as:

pb(u(t), v(t)) = maxt∈[0,1]

(
|u(t)|+|v(t)|

2

)2
with s = 3.

Theorem 2 The equations of deformations of an elastic beam, one of whose
end-point is free while the other is fixed, in its equilibrium state is:

d4u

dt4
= ψ(t, u(t), u ′(t), u ′′(t), u ′′′(t)),

u(0) = u ′(0) = u ′′(1) = u ′′′(1) = 0, t ∈ [0, 1],

(14)

and

d4v

dt4
= φ(t, v(t), v ′(t), v ′′(t), v ′′′(t)),

v(0) = v ′(0) = v ′′(1) = v ′′′(1) = 0, t ∈ [0, 1],

(15)

where, ψ, φ : [0, 1]× R3 −→ R are continuous functions satisfying:
maxt∈[0,1](|ψ(t, u(t), u

′(t), u ′′(t))|+|φ(t, v(t), v ′(t), v ′′(t))|)2 ≤ exp−α maxt∈[0,1] |

u(t) + v(t)|2 + exp−β maxt∈[0,1] |u(t)|
2 + exp−γ maxt∈[0,1] |v(t)|

2, u, v ∈ X , λ ∈
[1,∞), t ∈ [0, 1).
Then, the Cantilever beam problem (14-15) has a solution in X .

Proof. The Cantilever beam problem (14-15) is identical to solving the system
of integral equations

u(t) =

∫ 1
0

G(s, t)ψ(s, u(s), u ′(s), u ′′(s))ds (16)

and

v(t) =

∫ 1
0

G(s, t)φ(s, v(s), v ′(s), v ′′(s))ds, t ∈ [0, 1], u ∈ X . (17)

Here,

G(s, t) =

{
1
6s
2(3t− s) , 0 ≤ t ≤ s ≤ 1

1
6t
2(3s− t) , 0 ≤ s ≤ t ≤ 1

, (18)
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is a continuous Green function on [0, 1] . Define maps S : X −→ X and
T : X −→ X as:

Su(t) =
∫1
−0G(s, t)ψ(s, u(s), u

′(s), u ′′(s))ds

and

T u(t) =
∫1
0 G(s, t)φ(s, v(s), v

′(s), v ′′(s))ds.

Then u is a solution of (14-15) iff u is a single common fixed point of S and T
respectively.
Clearly, S, T : X −→ Xare well defined, so

pb(Su(t), T v(t)) =
( |Su(t)|+ |T v(t)|

2

)2
=


∣∣∣∫10 G(s, t)ψ(s, u(s), u ′(s), u ′′(s))ds∣∣∣+∣∣∣∫10 G(s, t)φ(s, v(s), v ′(s), v ′′(s))ds∣∣∣

2

2

≤

(∫1
0 G(s, t) |ψ(s, u(s), u

′(s), u ′′(s))|ds+
∫1
0 G(s, t) |φ(s, v(s), v

′(s), v ′′(s))|ds

2

)2

=
1

4

( ∫ 1
0

G(t, s)
( ∣∣ψ(s, u(s), u ′(s), u ′′(s))∣∣+ ∣∣φ(s, v(s), v ′(s), v ′′(s))∣∣ )ds)2

≤ 1
4

max(
∣∣ψ(s, u(s), u ′(s), u ′′(s))∣∣+ ∣∣φ(s, v(s), v ′(s), v ′′(s))∣∣)2(∫ 1

−1
G(t, s)ds

)2
≤ 1
4
[exp−α max

t∈[0,1]
|u(t) + v(t)|2 + exp−β max

t∈[0,1]
|u(t)|2 + exp−γ max

t∈[0,1]
|v(t)|2]( ∫ 1

−1
G(t, s)ds

)2
≤ 1
4

[
exp−α max

t∈[0,1]
|u(t) + v(t)|2 + exp−β max

t∈[0,1]
|u(t)|2 + exp−γ max

t∈[0,1]
|v(t)|2

] 5
12

≤ exp−α pb(u(t), v(t)) + exp−β pb(u(t),Su(t)) + exp−γ pb(v(t), T v(t)).
(19)

Hence all the postulates of Corolarry 1 are verified for a = exp−α, b =
exp−β, f = exp−γ and the Cantilever beam problem has one and only one
solution. �
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4 Conclusion

We have established a common fixed point of non-continuous maps exploit-
ing partial b-metric and without exploiting commutativity or its weaker form
([17]), which is indispensable for the survival of one and only one common fixed
point in analogous theorems present in the literature. Consequently, our theo-
rems are sharpened versions of the well-known results, wherein any variant of
continuity [18] or commutativity is not essentially required for the survival of
a single common fixed point. Examples and applications to solve a Cantilever
beam problem employed in the distortion of an elastic beam in equilibrium
substantiate the utility of these improvements and extensions.
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