
 

 Acta Universitatis Sapientiae 

 Electrical and Mechanical Engineering, 4 (2012) 70-82 
 

  

70 

Finite Difference Modeling of Orthotropic Materials 
 

Katalin HARANGUS
1
, András KAKUCS

2 

 

1Faculty of Technical and Human Sciences, 

 ��������� ���	�
��� �����

��� �� �
��
�������� �	� ��
���  
2Department of Mechanical Engineering,  

Faculty of Technical and Human Sciences,  

��������� ���	�
��� �����

��� �� �
��
�������� �	� ��
���  

e-mail: {katalin; kakucs}@ms.sapientia.ro 

 

Manuscript received March 15, 2013; revised May 15, 2013 

Abstract: This paper presents a finite-difference computational method for the 

integration of differential equations with partial derivatives which describe the plane 

state of displacement or stress of the anisotropic, orthotropic and isotropic materials. 

The paper examines the anisotropic case, and the relations can be particularized for 

isotropic materials. 

We start from the classic idea of the Airy stress function. The second order partial 

derivatives of this describe the stress field, but with the help of the stresses, and with the 

equations of the material the specific strains can be determined. The disadvantage of 

using the Airy function is that all the boundary conditions must be given in stresses, 

because the displacement cannot be expressed in a direct way. 

We discovered through analogy, that a “potential function” of the displacement can 

be used, which makes the prescription of the mixed boundary conditions possible. The 

partial derivatives of this function give the displacement in the direction of the 

coordinate axes. The derivatives of the displacement, namely the derivatives of superior 

order of the function of the displacement give the specific strains, and through the 

application of the material equations, these derivatives of superior order will lead to the 

stress field. This, points to the fact that the description of the boundary conditions under 

the form of prescribed stresses (of the load distribution on the boundary) becomes 

possible, because there is a direct relation (differential equations) between the 

displacements and stresses. These relations are estimated with finite differences. The 

disadvantage of the method is that we can have body forces only in one direction. 
 

Keywords: finite-difference method, plane stress and strain, orthotropic materials 

 



 Finite Difference Modeling of Orthotropic Materials   71 

 

1. Introduction 
 

In the linear elasticity theory it is assumed that the relations between stress 

and strain are linear. Using matrix formulation, this can be described by the 

formula (Hooke’s law): 

 { } [ ] { }� �E� � , (1) 

where T{ } [ ]
x y z xy yz zx� � � � � ���  and T{ } [ ]

x y z xy yz zx� � � � � �	�  

contain each 6 components of the stress, respectively of the strain, and [ ]E   is 

the 6-by-6 elasticity matrix, which contains material constants [9]. 

For orthotropic materials in plane stress state, the matrix value [ ]E  has the 

following form [5], [6]: 
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and for plane strain state, as follows: 
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where 

 1
xy yx yz zy zx xz xy yz zx yx zy xz$ % % % % % % % % % % % %&' ( ' ( ' ( ' ( ( ' ( ( . (4.a) 

In these formulae 
i

E  are the Young’s moduli and 
ij)  are the Poisson’s 

ratios, each defined in the directions of the used coordinate system. The shear 

modulus can be expressed as 
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, (4.b) 

and there exists a compatibility equation 

 
yx x xy y

E E� �� � � , (4.c) 

so in the plane case we have only three independent material constants and both 

(2) and (3) are symmetric. 

The two elasticity matrices [ ]E  of above are valid only if the directions of 

orthotropy coincide with the directions of the coordinate axes. Otherwise, these 

must be rotated with the angle � , that is measured from the first direction of the 

orthotropy 1 to the used x  axis. This transformation leads to a full matrix [5]: 
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of which components are: 
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 (6) 

where 
ij

E  are the members of the [ ]E  elasticity matrix (eq. 2 or 3). 

Therefore, when the directions of orthotrophy do not coincide with the use 

coordinate axes, the elasticity matrix contains nine nonzero elements (but only 

three independent ones) and it is symmetric (
ij ji

E E� ). In the general case of 

plane anisotropy, the elasticity matrix is also full and symmetric, but now it 

contains six independent elements. 
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2. Formulation for finite-difference solution 
 

Starting from the idea of Airy stress function, let us suppose that in the case 

of orthotropic materials there is a function ( , )x y�  
of which partial derivatives 

give the projections of the displacement as it follows [7]: 
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 (7) 

where u  is the projection on the x  axis, respectively v  on the y  axis, and the 

i�  are some coefficients to be determined. It can be shown that the (7) relations 

satisfy the compatibility equations of the strains 
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 (9) 

equilibrium equations using Hooke’s law in strains, considering that the f  

body force has only vertical component ( 0
x

f � ): 

 

11 12 13 31 32 33

21 22 23 31 32 33

( ) ( )
0,

( ) ( )
0.

x y xy x y xy

x y xy x y xy

y

E E E E E E

x y

E E E E E E
f

y x

� � � � � �

� � � � � �

� � � � � � � � � � � �
� �

� �

� � � � � � � � � � � �
� � �

� �

 (10) 

Then with the 
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geometrical equations, using the (7) expressions of the displacements, we obtain 

the followings: 
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We wish to determine the �  coefficients in such manner to get all 

multipliers of the partial derivatives of the first equation equal to zero. In this 

case any function 
  is a solution of the first equation (12): 
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Since six coefficients cannot be determined from these five equations, we 

must prescribe one of the values [1]. Therefore, we assign 
2

1� � , and the five 
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remaining coefficients are found by solving the system of equations (14). This 

can be resolved using numerical methods. With the obtained �  coefficients the 

second equilibrium equation (13) became: 

 
4 4 4 4 4

1 2 3 4 5 04 3 2 2 3 4 y
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, (15) 

of which solution is the potential function sought by us. The coefficients of this 

equation are: 
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When the orthotropy directions coincide with the x  and y  axes, the 

expressions of coefficients 
i


  are simpler: if the angle �  is an integer multiple of 

the right angle, the coefficients 
2�  and 

4�  are equal to zero. In case of isotropic 

materials the relations will be more simplified. For isotropic materials, 

when 0
y

f � , the equation (13) becomes biharmonic. 

The problem is ultimately reduced to solving the equation (15): we propose 

a method using finite differences. If the partial derivatives of the equation are 

replaced by centered finite differences, we achieve the molecule presented in 

Fig. 1. Therefore, in the ( , )i j  
node of the grid we can write the following 

equation: 

 

Figure 1: The approximation with finite-difference method of the equation (15). 
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At each node of the finite-difference grid, excepting those on the boundary, 

we write this equation. In these appear the values of the "  function taken in the 

neighbouring nodes, resulting in a system of equations to be solved in the 

( , )i j#  nodal values. 

For the boundary points we can’t apply the molecule from Fig. 1, because in 

(17) appear values of "  in some non-existing external nodes. These values also 

appear when we apply (17) for the nodes next to the boundary ones: these 

external nodes define a new virtual boundary beyond the physical one, 

increasing the number of the unknowns to be determined. It is to note, that the 

external grid points, situated in the diagonally opposite convex corners, do not 

belong to this virtual boundary (Fig. 2). 

The system of equations can be solved only by writing boundary conditions: 

we will give these conditions in all boundary nodes, as prescribed displacements 

and loading forces. 
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Figure 2: The virtual boundary that 

appears due to finite-difference 

approximation. 

Figure 3: Cells used in approximation of 

u  and v with centered differences. 

 

3. The boundary conditions as prescribed displacements 
 

For easier application of this method, let’s approximate the physical 

boundary with one which is made from horizontal and vertical lines adapted to 

the grid. In this case we define the boundary conditions as the projections of the 

displacement, as prescribed values of u  and v . According to the relations (7) 

these projections are obtained by deriving the function � . If we express u  
from the relation (7) with centered differences, we obtain the molecule from 

Fig. 4. and the following equation: 
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 �

� � � � � � � � � � � �
� � � �

 (18) 

 

Figure 4: The approximation of the displacements with centered differences. 
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For v  we obtain the same scheme and formula, the index of the � -s have to 

be increased by 3. 

We can observe that applying the molecule for a grid node positioned on the 

boundary, it will be based on three points that are on the imaginary boundary. 

Straight edges and concave corners will not raise issues or difficulties, however 

in the convex corners this scheme would include a point that does not belong to 

the virtual boundary (Fig. 3). In this case instead of centered difference 

approximation, we apply the derivatives’ approximations with the help of 

forward or backward differences, depending on the corner position (Fig. 5. - in 

this figure X denotes the position of the node that does not belong to the virtual 

boundary). 

 

Figure 5: The approximation of displacements in the convex corners (upper left, upper 

right, lower left and lower right corners; the double line shows the boundary). 

 

4. The boundary conditions as loading 
 

Distributed stress, that loads the boundary is defined by its projections 

according to x and y directions, noted as 
x

p  and 
y

p . These projections generally 

are described by arbitrary functions. During the grid generation, these functions 

are replaced by step functions. Concentrated loads also will be replaced by 

constant distributed loads (Fig. 6). 

On the loaded sides, we can write some equilibrium equations, those give 

some relations between external loads and internal stresses (Fig. 7). 
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Using Hooke’s law, stresses can be expressed using strains (1), then using 

the (11) definitions of the strains and the (7) expressions of the displacements 

we obtain some equations giving stresses as functions of the derivatives of � , 

e.g. we can write: 
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 (19) 

These derivatives can be replaced by finite differences. We will exemplify 

such boundary conditions for the vertical edge on the left side, as follows: 
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Figure 6: Load replaced by step functions. 

 

 

Figure 7: Equilibrium conditions on the boundary. 
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where 

 

1 11 1 13 4

2 11 2 12 4 13 1 13 5

3 11 3 12 5 13 2 13 6

4 12 6 13 3

,

,

,

.
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� � � �

� � � � � � � �

� � � � � � � �

� � � �
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 (21) 

The corresponding molecule is shown in Fig. 8. 

 

Figure 8: The approximation with finite differences method of the equation (20). 

If we replace the elements of the matrix of elasticity in relations (21), we 

obtain the molecules of the stresses 
y

�  and 
xy

� , leading to the equations in finite 

differences of the boundary conditions. 

Corner nodes must be treated in different manner: because of the Cauchy-

duality of the tangential stresses (
xy yx

� �� ), external loads must be rearranged 

in such manner as this duality to be satisfied. 

5. Conclusions 

This paper presents a finite-difference computational method for the 

integration of differential equations with partial derivatives describing the plane 

state of displacement or stress of the anisotropic materials. As shown in the 

paper, the problem can be expressed in stress leading to Airy function, which 

describes the second order partial differential stress field. With stress and 

material equations we can determine the specific strains. This method has the 

disadvantage of the impossibility to express directly the displacements.  
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By analogy with the Airy function, we used a “potential function” of the 

displacement, which made it possible to write mixed boundary conditions. The 

partial derivatives of this function are equal with the displacements in the 

directions of coordinate axes. Displacement derivatives, as in the derivatives of 

superior order displacement function give specific strains and by using material 

equations these superior order derivatives will lead to the stress field. Therefore 

becomes possible to write outline conditions as distributed load shape, there is a 

direct relationship (differential equations) between displacements and stresses. 

These relationships are approximated by finite differences.  

In approximation with finite differences the real boundary was replaced by a 

boundary consisting of horizontal and vertical straight lines and the boundary 

conditions as prescribed loading led to some equivalence relations between 

loads and stresses. The denser the grid is, the more accurate the modeling of the 

load will be and the negative effects of the approximations made in the corner 

points will be more reduced. The disadvantage of this method is the fact that we 

can have body forces only in one direction.  
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