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Abstract. The hyperbolic Pascal triangle HPT4,q (q ≥ 5) is a new
mathematical construction, which is a geometrical generalization of Pas-
cal’s arithmetical triangle. In the present study we show that a natural
pattern of rows of HPT4,5 is almost the same as the sequence consisting
of every second term of the well-known Fibonacci words. Further, we give
a generalization of the Fibonacci words using the hyperbolic Pascal tri-
angles. The geometrical properties of a HPT4,q imply a graph structure
between the finite Fibonacci words.

1 Introduction

The hyperbolic Pascal triangle HPT 4,q (q ≥ 5) is a new mathematical con-
struction, which is a geometrical generalization of Pascal’s arithmetical tri-
angle [1]. In the present article we discuss the properties of the patterns of
the rows of HPT 4,q, which patterns give a new kind of generalizations of the
well-known Fibonacci words. Our aim is to show the connection between the
Fibonacci words and the hyperbolic Pascal triangles.

After a short introduction of the hyperbolic Pascal triangles and the finite
Fibonacci words we define a new family of Fibonacci words and we present the
relations between the hyperbolic Pascal triangles and the newly generalized
Fibonacci words. Their connections will be illustrated by figures for better
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comprehension. As the hyperbolic Pascal triangles are based on the hyperbolic
regular lattices, their geometrical properties provide a graph structure between
the generalized finite Fibonacci words. The extension of this connection could
provide a new family of binary words.

1.1 Hyperbolic Pascal triangles

In the hyperbolic plane there are infinite types of regular mosaics (or regular
lattices), that are denoted by the Schläfli symbol {p, q}, where (p−2)(q−2) > 4.
Each regular mosaic induces a so-called hyperbolic Pascal triangle, following
and generalizing the connection between classical Pascal’s triangle and the
Euclidean regular square mosaic {4, 4} (for more details see [1, 5, 6]).

The hyperbolic Pascal triangle HPT 4,q based on the mosaic {p, q} can be
depicted as a digraph, where the vertices and the edges are the vertices and
the edges of a well-defined part of the lattice {p, q}, respectively. Further, the
vertices possess a value each giving the number of the different shortest paths
from the base vertex. Figure 1 illustrates the hyperbolic Pascal triangle when
{p, q} = {4, 6}. Generally, for a {4, q} configuration the base vertex has two
edges, the leftmost and the rightmost vertices have three, the others have q
edges. The square shaped cells surrounded by appropriate edges correspond
to the regular squares in the mosaic. Apart from the winger elements, certain
vertices (called “Type A” for convenience) have two ascendants and q− 2 de-
scendants, the others (“Type B”) have one ascendant and q− 1 descendants.
In the figures of the present study we denote the type A vertices by red cir-
cles and the type B vertices by cyan diamonds, while the wingers by white
diamonds. The vertices which are n-edge-long far from the base vertex are in
row n.

Figure 1: Hyperbolic Pascal triangle linked to {4, 6} up to row 5
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The general method of deriving the triangle is the following: going along
the vertices of the jth row, according to the type of the elements (winger, A,
B), we draw the appropriate number of edges downwards (2, q − 2, q − 1,
respectively). Neighbour edges of two neighbour vertices of the jth row meet
in the (j + 1)th row, constructing a type A vertex. The other descendants of
row j are type B in row j + 1. Figure 2 also shows a growing algorithm of
the different types except the leftmost items, that are always types B and A.
(Compare Figure 2 with Figures 1 and 3.)

In the sequel, )nk ( denotes the kth element in row n, whose value is either the
sum of the values of its two ascendants or the value of its unique ascendant. We
note, that the hyperbolic Pascal triangle has the property of vertical symmetry.

In the following we generalize the Fibonacci word in a new (but not brand
new) way and show that this generalization is the same as the patterns of
nodes types A and B in rows of HPT 4,q.

Figure 2: Growing method in Pascal triangles (except for the two leftmost
items)

1.2 Fibonacci words

The most familiar and the most studied binary word in mathematics is the
Fibonacci word. The finite Fibonacci words, fi, are defined by the elements of
the recurrence sequence {fi}

∞
i=0 over {0, 1} defined as follows

f0 = 1, f1 = 0, fi = fi−1fi−2, (i ≥ 2).

It is clear, that |fi| = Fi+1, where Fi is the i-th Fibonacci number defined by
the recurrence relation Fi = Fi−1 + Fi−2 (i ≥ 2), with initial values F0 = 0,
F1 = 1. The infinite Fibonacci word is f = limi→∞ fi. Table 1 shows the first
few Fibonacci words. It is also well-known that the Fibonacci morphism (σ:
{0, 1}→ {0, 1}∗, 0→ 01, 1→ 0) acts between two consecutive finite Fibonacci
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words. For some newest properties (and further references) of Fibonacci words
see [2, 3, 4, 7, 8].

f0 = 1
f1 = 0
f2 = 01
f3 = 010
f4 = 01001
f5 = 01001010
f6 = 0100101001001
f7 = 010010100100101001010

Table 1: The first Fibonacci words

2 {4, q}-Fibonacci words

There are some generalizations of Fibonacci words, one of them is the biperi-
odic Fibonacci word [2, 8]. For any two positive integers a and b, the biperiodic
finite Fibonacci words sequence, say {f̂i}

∞
i=0, is defined recursively by

f̂0 = 1, f̂1 = 0, f̂2 = 0
a−11 = 00 . . . 01,

and

f̂i =

{
f̂ai−1f̂i−2, if i is even;

f̂bi−1f̂i−2, if i is odd;
(i ≥ 3).

It has been proved [8], that if i ≥ 1 then |f̂i| = F
(a,b)
i , where for any two pos-

itive integers a and b, the biperiodic Fibonacci sequence {F
(a,b)
i }∞i=0 is defined

recursively by

F
(a,b)
0 = 0, F

(a,b)
1 = 1, F

(a,b)
i =

{
aF

(a,b)
i−1 + F

(a,b)
i−2 , if i is even;

bF
(a,b)
i−1 + F

(a,b)
i−2 , if i is odd;

(i ≥ 2). (1)

The first few terms are 0, 1, a, ab+1, a2b+2a, a2b2+3ab+1, a3b2+4a2b+3a,
a3b3 + 5a2b2 + 6ab + 1. When a = b = k, this generalization gives the
k-Fibonacci numbers and in the case a = b = 1, we recover the original
Fibonacci numbers [2, 8].
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Now let us define the finite {4, q}-Fibonacci words sequence {f
[4,q]
i }∞i=0, shortly

{f
[q]
i }∞i=0, where q ≥ 5, a new family of generalized Fibonacci words, and

f
[q]
0 = 1, f

[q]
1 = 0, f

[q]
i =


(
f
[q]
i−1

)q−4
f
[q]
i−2, if i is even;

f
[q]
i−1f

[q]
i−2, if i is odd;

(i ≥ 2). (2)

These new {4, q}-Fibonacci words are almost the same as the biperiodic Pascal
words, f̂i, if a = 1 and b = q− 4. As the definitions for the second items vary,
the odd and even situations are reversing. If q = 5, then {4, q}-Fibonacci
words coincide with the classical Fibonacci words. (In Table 2 we list the first
few {4, 6}-Fibonacci words.) The infinite {4, q}-Fibonacci word is defined as

f[q] = limi→∞ f[q]i and f = f[5] (see Table 3).

f
[6]
0 = 1

f
[6]
1 = 0

f
[6]
2 = 001

f
[6]
3 = 0010

f
[6]
4 = 00100010001

f
[6]
5 = 001000100010010

f
[6]
6 = 00100010001001000100010001001000100010001

Table 2: The first few {4, 6}-Fibonacci words

f[5] = 01001010010010100101001001010010010100101001001010010100 . . .

f[6] = 00100010001001000100010001001000100010001001000100010010 . . .

f[7] = 00010000100001000010001000010000100001000010001000010000 . . .

f[8] = 00001000001000001000001000001000010000010000010000010000 . . .

Table 3: Some infinite {4, q}-Fibonacci words

In case of the extension of definition (2) to q = 4, the f
[4]
2k = 1, f

[4]
2k+1 = 1 . . . 10

(the number of 1’s is k) for any k ≥ 1 and there is no limit of f
[4]
i if i → ∞.

Therefore, we investigate the {4, q}-Fibonacci words, when q ≥ 5.
Let σ[q] be the {4, q}-Fibonacci morphism defined by

{0, 1}→ {0, 1}∗, 0→ 0q−410, 1→ 0q−41, (3)
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where q ≥ 5.

Theorem 1 The {4, q}-Fibonacci morphism, σ[q], acts between every second
words of {4, q}-Fibonacci words, so that

σ[q](f
[q]
i−2) = f

[q]
i , (i ≥ 2). (4)

Proof. We prove the assertion by induction on i. The statement is clearly true
for i = 2, 3. Now we assume, that the result holds for any j, when 4 ≤ j < i.
Let i be first even. Then

σ[q](f
[q]
i−2) = σ[q]

((
f
[q]
i−3

)q−4
f
[q]
i−4

)
=
(
σ[q](f

[q]
i−3)

)q−4
σ[q](f

[q]
i−4)

=
(
f
[q]
i−1

)q−4
f
[q]
i−2 = f

[q]
i

If i is odd the proof is similar, σ[q](f
[q]
i−2) = σ

[q]
(
f
[q]
i−3f

[q]
i−4

)
= · · · = f[q]i . �

Remark 1 σ[5] = σ2 and σ2(fi) = fi+2.

3 Connection between HPT 4,q and {4, q}-Fibonacci
words

We consider again the hyperbolic Pascal triangle HPT 4,q. Let us denote the
left and right nodes ’1’ by type B (compare Figures 1 and 4). Let an and bn
be the number of vertices of type A and B in row n, respectively. Further let

sn = an + bn, (5)

that gives the total number of the vertices in row n ≥ 0. Then the ternary
homogeneous recurrence relation

sn = (q− 1)sn−1 − (q− 1)sn−2 + sn−3 (n ≥ 4) (6)

holds with initial values s0 = 1, s1 = 2, s2 = 3, s3 = q (recall, that q ≥ 5). For
the explicit form see [1].

Lemma 1 If n ≥ 1, then
sn = un + 2, (7)

where u1 = 0, u2 = 1 and un = (q− 2)un−1 − un−2, if n ≥ 3.
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Proof. Let un = sn− 2, where n ≥ 1. Then u1 = 0, u2 = 1 and u3 = s3− 2 =
q− 2 = (q− 2)u2 − u1.

For general cases corresponding to n ≥ 4, firstly, we have

un = (q− 1)sn−1 − (q− 1)sn−2 + sn−3 − 2

= (q− 1)(sn−1 − 2) − (q− 1)(sn−2 − 2) + (sn−3 − 2)

= (q− 1)un−1 − (q− 1)un−2 + un−3.

This also means, that {sn} and {un} have the same ternary recurrence relation
(with different initial values).

Secondly, we show, that {un} can be described by a binary recurrence relation
too. (In contrast {sn} cannot.) Adding the equations un = (q− 2)un−1−un−2
and −un−1 = −(q−2)un−2+un−3, we obtain un = (q−1)un−1−(q−1)un−2+
un−3. �

The first few terms of {ui} are 0, 1, q− 2, q2 − 4q+ 3, q3 − 6q2 + 10q− 4,
q4 − 8q3 + 21q2 − 20q+ 5.

Lemma 2 Both of the sub-sequences consisting of every second term of {F
(a,b)
i }

satisfy the relation

xi = (ab+ 2)xi−2 − xi−4, (i ≥ 4). (8)

Moreover, if n ≥ 2 then

un = F
(1,q−4)
2n−2 . (9)

Proof. For the first few terms of {F
(a,b)
i } the equation (8) is clearly true. We

assume that for i− 1 (i ≥ 6) equation (8) also holds. Then if i is even,

F
(a,b)
i = aF

(a,b)
i−1 + F

(a,b)
i−2

= a
(
(ab+ 2)F

(a,b)
i−3 − F

(a,b)
i−5

)
+
(
(ab+ 2)F

(a,b)
i−4 − F

(a,b)
i−6

)
= (ab+ 2)

(
aF

(a,b)
i−3 + F

(a,b)
i−4

)
−
(
aF

(a,b)
i−5 + F

(a,b)
i−6

)
= (ab+ 2)F

(a,b)
i−2 − F

(a,b)
i−4 .

If i is odd, the proof is the same. For the case a = 1 and b = q− 4 we obtain
the equation (9). �

Let {h
[q]
n }∞0 be the sequence over {A,B}, where h

[q]
n equals to the concate-

nations of the type of the vertices of row n in HPT 4,q from left to the right.
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Further, we call the elements of this the {4, q}-hyperbolic Pascal words (shortly
q-hyperbolic Pascal words). For example in the case of q = 5 (see Figure 3),
we have

h
[5]
0 = B, h

[5]
1 = BB, h

[5]
2 = BAB, h

[5]
3 = BABAB, h

[5]
4 = BABABBABAB,

h
[5]
5 = BABABBABABBABBABABBABAB.

Figure 3: Pattern of HPT 4,5 up to row 5 and some Fibonacci words

Let us consider the bijection

φ : {0, 1}→ {A,B}, φ(1) = A, φ(0) = B. (10)

Let the words u and v be over {0, 1} and {A,B}, respectively. If φ(u) = v,
then we say that u is equivalent to v and we denote u ≡ v. For example from
Figure 3 we have

f1 = 0 ≡ B = h
[5]
0 , 0f1 = 00 ≡ BB = h

[5]
1 ,

f3 = 01f1 = 010 ≡ BAB = h
[5]
2 , 01f3 = 01010 ≡ BABAB = h

[5]
3 . (11)

Examining Figure 3 we can recognise that every second Fibonacci word
is almost equivalent to the patterns of the rows in HPT 4,5. (Compare the

patterns of rows in Figure 4 and f
[6]
2n−3, n = 2, 3, 4.) The following theorem

gives the exact relationship between HPT 4,q and {4, q}-Fibonacci words.
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Figure 4: Pattern of HPT 4,6 up to row 4 and some Fibonacci words

Theorem 2 If n ≥ 2, then

01f
[q]
2n−3 ≡ h

[q]
n (12)

and

|f
[q]
2n−3| = F

(1,q−4)
2n−2 ,

where 1 ≡ A, 0 ≡ B and |h
[q]
n | = sn.

Proof. If n = 2, then 01f
[q]
1 = 010 ≡ BAB = h

[q]
2 . For higher values of n,

examining the growing method of the hyperbolic Pascal triangles row by row
based on Figure 2, we can recognise that except for the first two elements it
can be described by the morphism

λ : {A,B}→ {A,B} ∗ λ(A) = (B)q−4A, λ(B) = (B)q−4AB. (13)

After comparing λ with the {4, q}-Fibonacci morphism σ[q] between every sec-

ond f
[q]
i according to Theorem 1, we can recognize that the growing methods

(see Figure 2, (3) and (13)) are the same. This proves the equation (12), be-
cause the first two elements of all rows (n ≥ 2) in HPT 4,q are B and A.

The second statement is a consequence of Lemma 2. �
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4 Some properties of {4, q}-Fibonacci words

Presumably, the connection between the {4, q}-Fibonacci words and the hy-
perbolic Pascal pyramids can open new opportunities for examining the Fi-
bonacci words. We show some properties of {4, q}-Fibonacci words in which
we use these connections.

Let a binary word u be the concatenation of the words v andw, thus u = vw.
If we delete w from the end of u, we get v. Let us denote it by v = u	w. In
words, the sign 	 acts so, that the word after the sign is deleted from the end of
the word before the sign (if it is possible). For example f4 = f5	f3 = 01001��HH010 ,

f6 = f5f5 	 f3 = 01001010 · 01001��HH010 or f
[6]
4 = (f

[6]
3 )3 	 f[6]5 = 0010 · 0010 · 001�A0.

Theorem 3 All {4, q}-Fibonacci words with (k ≥ 2) can be given in terms of
the previous two odd indexed ones, namely

f
[q]
2k =

(
f
[q]
2k−1

)q−3
	 f[q]2k−3,

f
[q]
2k+1 =

((
f
[q]
2k−1

)q−3
	 f[q]2k−3

)
f
[q]
2k−1.

Proof. Applying f
[q]
2k−1 = f

[q]
2k−2f

[q]
2k−3 we can easily see that f

[q]
2k−2 = f

[q]
2k−1	f

[q]
2k−3.

Furthermore, we can also see that f
[q]
2k =

(
f
[q]
2k−1

)q−4
f
[q]
2k−2 =

(
f
[q]
2k−1

)q−4
f
[q]
2k−1	

f
[q]
2k−3 =

(
f
[q]
2k−1

)q−3
	 f[q]2k−3. The second equation is the corollary of the first

one. �

If q tends to infinity, then the numbers of ’0’ in infinite {4, q}-Fibonacci
words are relatively fast growing (see Table 3). Now let us derive these ratios.

Let d
[q]
i , d

[q]
i,0 and d

[q]
i,1 denote the numbers of all, ’0’ and ’1’ digits in the finite

{4, q}-Fibonacci words, respectively. Then, let the limit r
[q]
0 = limi→∞(d

[q]
i /d

[q]
i,0)

be the inverse density of ’0’ digits in the infinite {4, q}-Fibonacci word. Simi-

larly, we denote the same density by r
[q]
1 = limi→∞(d

[q]
i /d

[q]
i,1) in the case of ’1’

digits.

Theorem 4 The inverse density of ’0’ and ’1’ digits in the infinite {4, q}-
Fibonacci words are

r
[q]
0 =

q− 4+
√
q(q− 4)

2(q− 4)
,

r
[q]
1 =

q− 2+
√
q(q− 4)

2
,
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where q ≥ 5. Moreover

lim
q→∞ r[q]0 = 1 and lim

q→∞ r[q]1 =∞.
Proof. Firstly, let i be odd and large enough, so that i = 2n−3. As 01f

[q]
2n−3 ≡

h
[q]
n from Theorem 2, we consider the ratio sn/an from the hyperbolic Pas-

cal triangle instead of the corresponding ratio d
[q]
2n−3/d

[q]
2n−3,0. Not only the

sequence {sn} can be described by the ternary recurrence relation (6) but also
the sequences {an} and {bn} (more details in [1]). The solutions of the char-
acteristic equations of their recurrence relations are positive real numbers.
Moreover, it is well-known that the limit of sn/an is the density of the coeffi-
cients of the largest solutions (all solutions are positive), i.e. αs = −1/2+(q−
2)
√
q2 − 4q/(2q(q−4)), αa = (2−q)(1/2)+(q2−4q+2)

√
q2 − 4q/(2q(q−4))

and αb = (q− 3)(1/2) + (1− q)
√
q2 − 4q/(2q). Thus,

lim
n→∞

d
[q]
2n−3

d
[q]
2n−3,0

= lim
n→∞ sn

bn
= lim
n→∞ αs

αb
=

q− 4+
√
q2 − 4q

2(q− 4)
,

lim
n→∞

d
[q]
2n−3

d
[q]
2n−3,1

= lim
n→∞ sn

an
= lim
n→∞ αs

αa
=

q− 2+
√
q2 − 4q

2
.

Secondly, let i be even. According to Theorem 3 all the even indexed {4, q}-
Fibonacci words can be derived in terms of the previous two elements. We also

obtain, that d
[q]
2k = (q − 3)d

[q]
2k−1 − d

[q]
2k−3, d

[q]
2k,0 = (q − 3)d

[q]
2k−1,0 − d

[q]
2k−3,0 and

d
[q]
2k,1 = (q− 3)d

[q]
2k−1,1 − d

[q]
2k−3,1. From it we have

lim
n→∞ d

[q]
2k

d
[q]
2k,0

= lim
n→∞

(q− 3)d
[q]
2k−1 − d

[q]
2k−3

(q− 3)d
[q]
2k−1,0 − d

[q]
2k−3,0

= lim
n→∞

d
[q]
2k−1

d
[q]
2k−1,0

,

and the case for digits ’1’ is similar. For the limits of r
[q]
0 and r

[q]
1 , the statement

is obviously true. �

Naturally, if q = 5 the results of Theorem 4 give the known r
[5]
0 = ϕ and

r
[5]
1 = 1+ϕ values, where ϕ is the golden ratio.

Finally, here are some properties, which can directly be obtained from the
properties of HPT 4,q:

• The words 01f
[q]
2n−3 (n ≥ 2) are palindromes.
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• The subword 11 never occurs in {4, q}-Fibonacci words.

• The subword 00 . . . 0 (q− 2 digits 0) never occurs in words f
[q]
i .

• The last two digits of finite {4, q}-Fibonacci words are alternately 01 and
10.

• The infinite {4, q}-Fibonacci word has n+ 1 distinct subwords of length
n, where n ≤ q − 2. In case n = q − 2, they are 100 . . . 01 with q − 4
digits 0 and the others are with only one digit 1, in case n < q − 2 the
subwords have at most one digit 1.
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