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Abstract. In this paper, we consider the RSA variant based on the key
equation ed ≡ 1 (mod φ(N)) where N = prq, r ≥ 2. We show that if
the secret exponent d is close to any multiple of the prime factor p or its
powers, then it is possible to factor N in polynomial time in logN.

1 Introduction

Factoring large integers is a well established problem in number theory and
cryptography. The security of many cryptosystems such as RSA [15] is based
on its presumed difficulty. Fermat method is efficient to factor a product of
two numbers that are close one to another (see e.g. [4]). In 1931, the continued
fraction method was invented [5]. Pollard [11] described the p − 1 method in
1974. Some years later, he discovered the ρ algorithm [12]. The first is known
to be practical when the prime factors of p − 1 are small for some prime
divisor of N. The second applies a cycle detection technique. In [7], Lenstra
employed the elliptic curves properties to get prime factors of large numbers.
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The Quadratic Sieve was published in 1980s by Pomerance [13]. Nowadays, the
most efficient factoring algorithm is the Number Field Sieve (NFS) [6, p. 103]
that was elaborated by Pollard in 1988. Since then, the NFS has been further
ameliorated.

In order to speed up the decryption/encryption time, it was suggested to
use RSA with moduli N = prq (see e.g. [2]). Numerous previous papers stud-
ied the security of such protocols. Boneh, Durfee, and Howgrave-Graham [1]

established that only
1

1+ r
fraction of the bits of p suffice to recover the entire

p. May [9] generalizes many cryptanalysis methods to schemes with N = prq.
Some of the work in [9] was improved in [16] for r ≤ 5. It was proved in [8] that
leaking the bits of some blocks of the prime factors of a modulus N = prq en-
ables its factorization under certain circumstances. All the previous researches
pointed out that integers N = prq are more vulnerable than a standard RSA
modulus, in particular, when r becomes large.

In this paper, the RSA variant based on the key equation ed ≡ 1 (mod φ(N))
where N = prq is considered. We show that using a secret exponent d which
is close to any multiple of p or its powers can lead to the factorization of the
public modulus.

The article is organized as follows. In section 2, we state our main result
after recalling the Coppersmith’s theorem for finding small roots of univariate
modular polynomials. In section 3, we generalize the method to other RSA-
type systems. Finally, we conclude in section 4.

Throughout the sequel, for integers a, b and c, we write a ≡ b (mod c) if
c divides the difference a − b, and a = b mod c if a is the remainder in the
division of b by c. We denote by gcd(a, b) the greatest common divisor of a
and b. All the logarithms should be interpreted as logarithms to the base 2.

2 Our contribution

In this section, we describe our main result. However, we start by presenting
the Coppersmith [3] result for computing small roots of modular polynomials.
In particular, we use the slight generalized version as was depicted by May in
[9, 10]. One can find in [10] a thorough treatment about the method and its
implementation. This technique will be needed in establishing our Theorem 2.

Theorem 1 ([10]) Let N be an integer of unknown factorization, which has
a divisor b ≥ Nβ, 0 < β ≤ 1. Furthermore, let f(x) be a univariate monic
polynomial of degree δ and let c ≥ 1. Then, we can find all solutions x0 for
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the equation:

f(x0) ≡ 0 (mod b) with |x0| ≤ cN
β2

δ

in time T = O(cδ5 log9N).

Now, we state the main contribution:

Theorem 2 Let N = prq where r ≥ 2 is a given integer constant and p, q are
primes of the same bit-size. We denote by (e, d) the public-key/secret-key pair
satisfying ed ≡ 1 (mod φ(N)). Assume that there exist two integers i ≥ 1 and

j that verify |d−jpi| ≤ N
(

min(i,r−1)
r+1

)2
with (d−jpi) 6≡ e−1 (mod q). Parameters

i and j are not necessary known. Then, we can factor N in polynomial time
in logN.

Proof. The RSA equation is ed ≡ 1 (mod φ(N)). Hence, there exists an
integer k such that ed = 1+kpr−1(p− 1)(q− 1). Let d = jpi+∆ where ∆ ∈ Z
and put l = min(i, r − 1). Working modulo pl, it follows that e∆ − 1 ≡ 0

(mod pl). Setting the polynomial f(x) = x − (e−1 mod N), it is clear that
∆ is a root of f(x) modulo pl. We assume that the inverse of e modulo N
is well defined. Otherwise, we have already a non trivial divisor of N. When

q < p, N
l
r+1 < pl. By hypothesis, |∆| ≤ N( l

r+1)
2

. So, we can determine ∆ by

using Theorem 1 with b = pl, β =
l

r+ 1
, δ = 1 and c = 1. Since ∆ 6≡ e−1

(mod q), it is readily seen that gcd(|e∆− 1|, N) splits N as e∆− 1 and N are
both multiples of pl. If p < q, then q < 2p as p and q are of the same bit-

size. Thus,
N

l
r+1

2
< pl. Let β =

l

r+ 1
−

1

logN
. We have |∆| ≤ N

β2

δ whenever

|∆| ≤ N( l
r+1)

2

. This comes from observing that N( l
r+1)

2

= 4N( l
r+1)

2
− 2

logN <

4N
( l
r+1)

2
− 2l

(r+1) logN
+ 1

log2 N = 4N
β2

δ . Hence, we obtain ∆ by applying Theorem 1

with b = pl, β =
l

r+ 1
−

1

logN
, δ = 1 and c = 4. We then get the factorization

of N by computing gcd(|e∆− 1|, N).
The running time of our method is dominated by that of Theorem 1 which

is polynomial in logN. So, the result is proved.
�

Theorem 2 leads to the following algorithm:

Input: A public multi power RSA key (N, e) where N = prq for a given con-
stant r ≥ 2.
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Output: The prime decomposition of N or ”Failure”.

1. Set the modular polynomial f(x) = x− (e−1 mod N).
2. Apply Coppersmith method as presented in Theorem 1 to compute all the
integer roots of f(x) modulo pl where l ≤ r − 1 is a fixed integer. It is not
required to know the value of p.
3. Denote by xi, i = 1, 2, . . . , length, the solutions founded in step 2.
4. flag← 0, i← 0.
5. While flag = 0 and i ≤ length do:

5.1. i← i+ 1.
5.2. ∆← xi.
5.3. f← gcd(|e∆− 1|, N).
5.4. If 1 < f < N then:

5.4.1. flag← 1.

5.4.2. If f is not a prime power, then q← f, p← (
N

q

) 1
r

.

5.4.3. Else, determine the prime p that divides f, q← N

pr
.

5.4.4. Output (p, q).

6. If i > length, then output ”Failure”.

For a multi power RSA modulus N = prq, it is generally recommended to
choose a small value of r. Indeed, the more r is large, the less the cryptosystem
is secure, see e.g. [1, 9, 8, 16]. Setting r = 2, we obtain the next corollary:

Corollary 3 Let N = p2q where p and q are primes of the same bit-size. We
denote by (e, d) the public-key/secret-key pair satisfying ed ≡ 1 (mod φ(N)).

Assume that there are two integers i ≥ 1 and j such that |d − jpi| ≤ N
1
9 with

(d− jpi) 6≡ e−1 (mod q). Then, we can factor N in polynomial time in logN.

The bound N

(
min(i,r−1)

r+1

)2
in Theorem 2 is optimal for i ≥ r − 1. Under this

situation, it is roughly equal to N when r becomes larger.
In the next section, we investigate the threat of our method to other RSA

variants.
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3 Extension of our result

The straightforward multi power RSA is obtained by taking N = prq in the
standard RSA key equation ed ≡ 1 (mod φ(N)). The Takagi crypotsystem
[17] is based on edp ≡ 1 (mod p − 1) and edq ≡ 1 (mod q − 1). For this
protocol, we have:

Proposition 4 Let N = prq where r ≥ 2 is a given integer constant and p, q
are primes of the same bit-size. We denote by (e, dp) the public-key/secret-key
pair satisfying edp = 1 + kp(p − 1), i.e. edp ≡ 1 (mod p − 1). Assume that

|dp − p| ≤ N
1

(r+1)2 with (dp − p) 6≡ (1− kp)e
−1 (mod q). Then, we can factor

N in time eO(log9N).

Proof. By definition, edp = 1 + kp(p − 1) for some integer kp. Put dp =
p + ∆. Hence e∆ + kp − 1 ≡ 0 (mod p). The parameter kp lands in the set

{1, 2, . . . , e−1}. Indeed, kp =
edp − 1

p− 1
< e. Put f(x) = x+(kp−1)(e

−1 mod N).

For the true guess for kp, ∆ is a root of the polynomial f(x) modulo p.

If q < p, then N
1
1+r < p. By hypothesis, |∆| ≤ N

1

(1+r)2 . So, it is possible

to find ∆ by applying Theorem 1 to f(x) with β =
1

1+ r
, δ = 1 and c = 1.

Moreover, ∆ 6≡ (1 − kp)e
−1 (mod q). Thus, gcd(|e∆ + kp − 1|, N) is a prime

power that divides N, since both e∆ + kp − 1 and N are multiples of p. The
most time consuming part is Coppersmith method which has a running time
O(log9N). All the steps must be repeated for each trial kp. Therefore, the
whole complexity is eO(log9N).

Now, suppose that p < q. The primes p and q are of the same bit-size,

so q < 2p. It follows that
N

1
1+r

2
< p. We have N

1

(r+1)2 = 4N( 1
r+1)

2
− 2

logN <

4N
( 1
r+1)

2
− 2

(r+1) logN
+ 1

log2 N = 4N
β2

δ . Using Theorem 1 with f(x) = x + (kp −

1)(e−1 mod N), β =
1

1+ r
−

1

logN
, δ = 1 and c = 4 leads to recovering ∆.

Like in the previous case, gcd(|e∆+ kp − 1|, N) is a prime power divisor of N
which achieves the proof.

�

For an RSA-type modulus N = prq, the primes p and q are not symmetric.
We can establish:

Proposition 5 Let N = prq where r ≥ 2 is a given integer constant and p, q
are primes of the same bit-size. We denote by (e, dq) the public-key/secret-key
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pair satisfying edq = 1 + kq(q − 1), i.e. edq ≡ 1 (mod q − 1). Assume that

|dq − q| ≤ N
1

(r+1)2 with (dq − q) 6≡ (1− kq)e
−1 (mod pu) for all u ≤ r. Then,

we can factor N in time eO(log9N).

Proof. The RSA key equation satisfies edq = 1 + kq(q − 1) for some integer
kq. The following process will be repeated for each candidate for kq. If dq =
q + ∆ where ∆ ∈ Z, then e∆ + kq − 1 ≡ 0 (mod q). We define the function

f(x) = x+ (kq − 1)(e
−1 mod N). Let p < q. Thus, N

1
1+r < q. By hypothesis,

|∆| ≤ N
1

(r+1)2 . Setting β =
1

1+ r
, δ = 1 and c = 1, we efficiently determine ∆

by Theorem 1. If q < p,
N

1
1+r

2
< q since p and q are of the same bit-size. One

shows that it suffices that |∆| ≤ N
1

(r+1)2 in order to use Coppermsith’s result

with β =
1

1+ r
−

1

logN
, δ = 1 and c = 4.

As both e∆ + kq − 1 and N are divided by q, the condition (dq − q) 6≡
(1− kq)e

−1 (mod pu) for all u ≤ r guarantees that gcd(|e∆+ kq − 1|, N) = q.
All the steps are executed at most e times given that kq < e. Hence, the
running time of the method is eO(log9N) which demonstrates the result.

�

Suppose that a private exponent dp or dq satisfies the hypothesis of Propo-
sition 4 or 5 respectively. It is clear that if there exists an oracle that outputs
the values of kp or kq such that edp = 1 + kp(p − 1) or edq = 1 + kq(q − 1),
then N can be factored in polynomial time in logN.

In the following proposition, we apply the technique for RSA systems that
use Chinese remainder theorem in decrypting, CRT-RSA (see e.g. [14] for an
explicit description). We obtain:

Proposition 6 Let N = pq an RSA modulus where p and q are primes of
the same bit-size. We denote by (e, dp) the public-key/secret-key pair satisfying

edp = 1+kp(p−1), i.e. edp ≡ 1 (mod p−1). Assume that |dp−p| ≤ N
1
4 with

(dp − p) 6≡ (1− kp)e
−1 (mod q). Then, we can factor N in time eO(log9N).

Proof. By the RSA key equation, edp = 1+kp(p−1) where kp ∈ N. It follows
that edp+ kp− 1 ≡ 0 (mod p). We know that dp = p+∆, so e∆+ kp− 1 ≡ 0
(mod p). The modulus N = pq is balanced. Consider the polynomial f(x) =
x + (kp − 1)(e

−1 mod N) whose degree is δ = 1. The value of |∆| is upper

bounded by N
1
4 . It is possible to compute efficiently ∆ by Theorem 1 with
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β =
1

2
, c = 1 if q < p, and β =

1

2
−

1

logN
, c = 2 if not. By hypothesis,

∆ 6≡ (1− kp)e
−1 (mod q), so gcd(|e∆+ kp − 1|, N) = p. We must execute the

method for each candidate for kp. As kp =
edp − 1

p− 1
and dp < p − 1, kp < e.

So, the running time is eO(c log9N) where c = 1 if q < p and c = 2 otherwise.
�

Let dp a private exponent that fulfil the hypothesis of Proposition 6. If the
value of kp such that edp = 1 + kp(p − 1) is leaked, then we can efficiently
compute the prime decomposition of N.

4 Conclusion

In this paper, we proposed an attack against the RSA variant based on the
key equation ed ≡ 1 (mod φ(N)) where N = prq, r ≥ 2. We showed that if
d is close to any multiple of the prime factor p or its powers, then N can be
factored in polynomial time in logN, and thus the cryptosystem is completely
broken.
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