
Acta Univ. Sapientiae, Informatica, 1, 2 (2009) 165–213

Extended structural recursion and XSLT

Balázs Kósa
Eötvös Loránd University

Faculty of Informatics
Department of Information Systems

email: balhal@inf.elte.hu

András Benczúr
Eötvös Loránd University

Faculty of Informatics
Department of Information Systems

email: abenczur@inf.elte.hu

Attila Kiss
Eötvös Loránd University, Faculty of Informatics

Department of Information Systems
email: kiss@inf.elte.hu

Abstract. In this paper we describe a simulation of a practically im-
portant fragment of XPath 1.0 [16] and XSLT 1.0 [17] with extended
structural recursions, which in turn immediately offers us a top-down
implementation strategy working in time O(|D|2|Q|). Here, |D|, |Q| re-
spectively denote the size of the data and the query. However, if the size
of the variables is restricted with a constant, then the evaluation works in
O(|D||Q|) time. Structural recursions are insensitive to the order of the
edges (in our XML model instead of nodes, edges represent elements);
hence, in this respect, they are of a weaker expressive power than the
more usual models of XML query languages [14]. Still, a large fragment
of the most frequent scenarios appearing in practice can be captured with
them, which underlines their importance.

1 Introduction

Structural recursion is a graph traversing and restructuring operation applied
in many fields of computer science including syntax analysis, code generation

AMS 2000 subject classifications: 68U99
CR Categories and Descriptors: H.2.3 [Database Management]: Languages – XPath,
XSLT; D.3.3 [Programming Languages]: Language Constructs and Features – Recursion
Key words and phrases: XML, XPath, XSLT, structural recursion

165

http://www.elte.hu/en
http://www.inf.elte.hu/english/Lapok/default.aspx
http://ablinux.inf.elte.hu/
mailto:balhal@inf.elte.hu
http://www.elte.hu/en
http://www.inf.elte.hu/english/Lapok/default.aspx
http://ablinux.inf.elte.hu/
mailto:abenczur@inf.elte.hu
http://people.inf.elte.hu/kiss/
http://www.elte.hu/en
http://ablinux.inf.elte.hu/
mailto:kiss@inf.elte.hu

166 B. Kósa, A. Benczúr, A. Kiss

and program transformation. In the context of databases it was already recom-
mended as a query language alternative in the early 90’s to be able to overstep
the limitations of the relational data model [6]. The rising of semistructured
databases and XML [15] put structural recursions again in the limelight. It
formed the basis of UnQL [7] and the core of XSLT [17], where in each step
the children of the current node are selected to be processed in the next step.
In [11] structural recursions were examined in the context of the typechecking
problem. However, in all of these works only a simpler version of the operation
was considered.

In [2] we offered a new way of defining the semantics using a special kind of
intersection similar to its counterpart in automata theory. We also showed how
this new approach intertwines with simple “typing systems” of semistructured
data, where simulations are used to prescribe the structure of the data. In
[3] we introduced not-isempty conditions in if. . . then. . . else. . . statements to
be able to define different behaviours depending on the underlying subtree
of the processed edge. We analyzed the complexity of the satisfiability and
containment problem of such structural recursions.

In this paper going further we extend our model with registers, with which
the results of different structural functions called on the same data fragment
are connected (structural recursions consist of structural functions). To un-
derpin the usefulness of this extension, we simulate a fragment of XPath 1.0
[16] (XPath0) and XSLT 1.0 (XSLT0 [5]).

In XPath0 only the use of location paths with predicates is supported (i.e.
there are no arithmetical or string operations). In the predicates the non-
emptiness of such paths, the equality of their results with a constant using
existential semantics can be checked and the Boolean combinations of such
conditions can be taken. The simulation immediately offers us an implemen-
tation strategy in worst case working in time O(|D|2|Q|). However, if the size
of variables, i.e., the size of the list of edges which the variable is equal to, is
restricted with a constant, then the implementation works in time O(|D||Q|)

both for XPath0 and XSLT0. This means that our approach has the same
efficiency as the method developed by Gottlob et al. in [8]. Here, |D|, |Q|

respectively denote the size of the data and query.
In this paper, we only consider axes child, parent, ancestor, descendant,

but it is not difficult to extend the model to be able to handle the rest of the
axes. We process XML trees in a top-down manner and we argue that our
approach only processes those elements that are inevitably processed by such
an evaluation strategy.

Structural recursions are insensitive to the order of the edges (in our XML

Extended Structural Recursion and XSLT 167

model instead of nodes, edges represent elements), hence in this respect they
are of a weaker expressive power than the more usual models of XML query
languages [14]. Still, a large fragment of the most frequent scenarios appearing
in practice can be captured with them, which underlines their importance. For
example in [5] three important features of XSLT0 are highlighted, which are
very useful in practical applications. Firstly, one can use variables to “look
forward” in the document. Secondly, variables can be passed as parameters
between templates. Thirdly, using modes one can process the same data frag-
ment with different templates.

In Section 2 we introduce our data model, XPath0 and XSLT0. In the
latter two descriptions we heavily rely on the results of [5, 9]. In Section 3 the
syntax and semantics of structural recursions are given. The rewriting method
of XPath0 is presented in Section 4, while in Section 5 XSLT0 is modelled.

2 Preliminaries

Data model

We consider XML documents as rooted, ordered, directed, unranked trees.
However, in our setting, since it is more natural to define structural recursions
in edge-labelled trees, we assume that instead of nodes, edges with labels
represent tags. It is very easy to rewrite a node-labelled tree into an edge-
labelled one and vice versa [1]. In the sequel we refer to these trees as document
trees. In accordance with [15], we also assume that each document tree has a
distinguished document edge, the only outgoing edge of the root, with label
/. Furthermore, the document edge is followed by the root edge representing
the first element of the corresponding document. The document tree of XML
document

<a>xy<c>wz</c>

can be found in Fig. 2(a).
Formally, we introduce three constructors: the empty tree {} consisting of a

node only, the singleton set {l : t}, which is a directed l edge with subtree t in
its end node, and the append operation @. In t1@t2 the roots of t1 and t2 are
pulled together. It is not difficult to see that by using these constructors every
document tree can be built up [7]. For example {a : {c : {}}@{d : {}}}@{b : {e : {}}}

stands for the tree of Fig. 2(b). Furthermore, this construction also gives us
a notation to represent document trees. These representations are said to
be ssd-expressions [1] (ssd: semistructured data). An edge e1 precedes e2 if

168 B. Kósa, A. Benczúr, A. Kiss

/

a

b c

xy wz

a

u

v

ε

w

a b

a

u

w

a b

e

ϑ = (e, m, ρ)

e

T (e)

(a)

(b)
(c) (d)

a b

c d
e

Figure 1: (a) The document tree of the XML document on Page 167. (b) The
tree represented by the ssd-expression on Page 167. (c) Elimination of an ε
edge. (d) Substitution of a local configuration with the appropriate subtree.

in the corresponding ssd-expression e1 is written first. Note that this order
corresponds to the document order of an XML document [15].

Now, let Σ be a finite alphabet. In what follows, we denote T Σ the set
of document trees with edge-labels from Σ. A finite sequence of such trees:
t1, . . . , tm constitutes a forest, their set is denoted FΣ. With T Σ(B),FΣ(B)

we denote that the leaves are labelled with labels from set B. In the following,
for graph G we denote with V.G, E.G its node and edge set respectively. For
a document tree t lab(u) we will give the label of node u, lab : E.t → Σ.
On the other hand T : Σ ∪ {∗} → E (E ⊆ E.t) is defined s.t. T(σ) = {e | e ∈

E.t∧ lab(e) = σ} and T(∗) = E.t.
We are to concentrate mainly on the graph traversing nature of XPath and

XSLT, hence, except for the document edge, we suppose that all edges are
of the same type. This means that we do not deal with attribute, processing
instruction edges, etc. [16]. Our methods can be extended in a straightforward
manner to handle edges with types. Furthermore, we assume that every edge
has an associated value. Again, we suppose that these values are of the same
type, and in contrast to [15] we do not specify how they are obtained. We
denote their recursively enumerable set with D. For a given edge in t, function
val : E.t → D gives its associated value. In accordance with [18], we assume
that in a document tree every edge e has a unique identifier, id(e) in notation.

For intermediate results of the constructions we shall consider forests from
F∆∪ε. Here, ∆ denotes the set of output symbols. The role of an ε edge will be
similar to the role of silent transitions in automata, and they will be eliminated
similarly. Formally, for edges (u, a, v), (v, ε,w) in tree t, an (u, a,w) edge is
added to t, and the former two edges are deleted (cf. Fig. 2(c)).

Extended Structural Recursion and XSLT 169

e: Expression, p: Predicate, χ: Axis

e ::= χ :: τ[p1] . . . [pn] | e1/e2

χ ::= child | descendant | parent | ancestor | self

p ::= e | e = d | e = $X | (p1 ∧ p2) | (p1 ∨ p2) | ¬(p) | [p]

d ∈ D, X ∈ V, τ ∈ Σ ∪ {∗}

ε: Expression→ (E.t → 2E.t), εp :Predicate→ (E.t → {true, false}),
ρ : V → 2E.t, where ρ(x) is a finite set, V is the set of variables

εJχ :: τ[p1] . . . [pn]K(x) = {y | xχy∧ y ∈ T(τ) ∧ εpJp1K(y) = true∧ . . .∧

εpJpnK(y) = true}

εJe1/e2K(x) = ∪y∈εJe1K(x)εJe2K(y)

εpJeK(x) = true iff εJeK(x) is not empty

εpJe = dK(x) = true iff ∃y, y ∈ εJeK(x) ∧ val(y) = d

εpJe = XK(x) = true iff ∃y, z s.t. y ∈ εJeK(x) ∧ z ∈ ρ(X)∧

val(y) = val(z)

εpJ(p1θp2)K(x) = true iff εpJp1K(x)θ ε
pJp2K(x) is true θ ∈ {∧,∨}

εpJ¬(p)K(x) = true iff εpJpK(x) is false

εpJ[p]K(x) = true iff εpJpK(x) is true

x, y, z ∈ E.t, d ∈ D, X ∈ V

Figure 2: The syntax (first table) and semantics (second table) of XPath0.

XPath0

XPath has already grown to be a widely known and applied language, thus we
restrict ourselves to give only the syntax and semantics rules of the fragment
we are going to examine (Fig. 2) with a short explanation. For a more formal
and exhaustive presentation, consider [9].

We assume that axis names: child, descendant, parent, ancestor,

self are self-describing. The basic building blocks of XPath expression are
location steps: χ :: τ[p1] . . . [pn]. Here, χ is an axis, τ is called edge test (node
test in [16]), which is from Σ ∪ {∗}, while pi-s are predicates that are used to
filter the returned set of edges. As an example, consider location step

child::a[child::b=5],

which returns those a children of the actual edge that have a b child.
In [9, 16] the semantics are given in terms of contexts. A context consists

of a context-edge, a context-position and a context-size. However, here, owing
to the restricted use of functions, e.g. in XPath0 we do not use functions

170 B. Kósa, A. Benczúr, A. Kiss

position(), first() and last(), it is enough to consider the context-edge
or actual edge, as it is frequently called. First, we assume there is a given
edge on which the evaluation of the expression starts. This edge is usually
determined by the host language. Then each location step selects a set of
edges, which in turn serve as starting edges of the next location step. This
mechanism is explained formally in Fig. 2 (second table).

Note the use of a variable assignment in the semantics. Usually, this is also
given by the host environment. Here, V denotes the recursively enumerable
set of variables. In accordance with the syntax of XPath instead of X we refer
to a variable as $X. Finally, note also the use of brackets in predicates. These
may be omitted, when the precedence rules among Boolean operators give the
same evaluation order.

XSLT0

Again, we do not explain XSLT in detail, but rather give an informal overview
and a concise formal definition of the semantics. For a more detailed explana-
tion, consider [5]. There, three important features of XSLT0 are highlighted.
Firstly, by means of variables one can “look forward” in the document. Sec-
ondly, variables can be passed as parameters between templates. Thirdly,
using nodes one can process the same data fragment with different templates.
All of these properties appear in the XSLT program of Fig. 3, which is called
on XML documents of Fig. 4. The program firstly selects the id-s of those
groups whose top manager is John. Then it selects the id-s of the “subgroups”
of the former groups, in which an employee with name Ann works.

In T1 we store in variable X the id-s of those groups that have an employee
with name Ann. In T2 groups with John as top manager are selected. Finally,
in T3 using variable X subgroups having an employee named Ann are chosen.
Note that in the XPath expressions we have used the abbreviated syntax [16].
Rewriting the XPath0 expressions with the syntax of Fig. 2 is straightforward.

An XSLT program consists of templates, i.e., xsl:template elements. At
a given step, we assume that there is a list of edges, E, which has been chosen
at the former step. At the beginning of the evaluation this set consists of the
document edge of the document. We process the edges of E in document order.
Suppose that the actual edge is e. First, we select that template, which fits
e, i.e., e satisfies the condition given by the XPath expression of the match

attribute of the xsl:template element. According to the specification of [17],
this template should be unambiguous. Then e is processed by this template
(it serves as the actual edge for the XPath0 expressions), and another list of

Extended Structural Recursion and XSLT 171

<xsl:template match="/"> (T1)

<xsl:variable name="X" select="//group[emp/name=’Ann’]/id"/>

<result>

<xsl:apply-templates select="//group" mode="top">

<xsl:with-param name="X" select="$X"/>

</xsl:apply-templates>

</result>

</xsl:template>

<xsl:template match="group" mode="top"> (T2)

<xsl:param name="X"/>

<xsl:if test="topMgr/name=’John’">

<topGroup>

<id>

<xsl:value-of select="id"/>

</id>

</topGroup>

<xsl:apply-templates select="//group" mode="Ann">

<xsl:with-param name="X" select="$X"/>

</xsl:apply-templates>

</xsl:if>

</xsl:template>

<xsl:template match="group" mode="Ann"> (T3)

<xsl:param name="X"/>

<xsl:if test="id=$X">

<id>

<xsl:value-of select="id"/>

</id>

</xsl:if>

</xsl:template>

Figure 3: An XSLT program.

edges is selected by the xsl:apply-template element for further processing.
When these edges are all processed, then the edge after e in E is considered.
Note that in our example T2 and T3 may be called on the same elements.

Syntax. For the formal definition of semantics we use a more abstract
representation of an XSLT0 program [5]. A template is formalized as an (m,σ)-
rule as follows:

172 B. Kósa, A. Benczúr, A. Kiss

<groups>

<group>

<id>G01</id>

<name>sales</name>

<topMgr>

<id>03</id>

<name>John</name>

</topMgr>

<emp>

<id>04</id>

<name>Tom</name>

</emp>...

<emp>...</emp>

<group>

<id>G02</id>

<name>PR</name>

<emp>

<id>05</id>

<name>Steven</name>

</emp>

</group>...

<group>...</group>

</group>

</groups>

Figure 4: A fragment of an XML document.

templatem(σ, x1, . . . , xn)

vardef

y1 := r1; . . . ;ys := rs;

return

if c1 then z1; . . . if ck then zk; else zk+1;

end.

Here, m is a mode, σ ∈ Σ, the latter element shows that the template is
called on σ elements (in our data model on σ edges). As it has been shown in
[5] we may suppose that only XPath expressions comprising a single element
name appear as values of match attributes of xsl:template elements. σ gives

Extended Structural Recursion and XSLT 173

<xs:schema>

<xs:element name="groups" type="groupsType"/>

<xs:element name="group" type="groupType"/>

<xs:element name="topMgr" type="empType"/>

<xs:element name="emp" type="empType"/>

<xs:element name="name" type="xs:string"/>

<xs:element name="id" type="xs:string"/>

<xs:complexType name="groupsType">

<xs:sequence>

<xs:element ref="group" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="groupType">

<xs:sequence>

<xs:element maxOccurs="1" minOccurs="1" ref="id"/>

<xs:element maxOccurs="1" minOccurs="1" ref="name"/>

<xs:element maxOccurs="1" minOccurs="0" ref="topMgr"/>

<xs:element maxOccurs="unbounded" minOccurs="1" ref="emp"/>

<xs:element maxOccurs="unbounded" minOccurs="0" ref="group"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="empType">

<xs:sequence>

<xs:element maxOccurs="1" minOccurs="1" ref="id"/>

<xs:element maxOccurs="1" minOccurs="1" ref="name"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

Figure 5: The XML Schema which the XML document fragment of Fig. 4
conforms to.

this element name. x1, . . . , xn are the parameters, while y1, . . . , ys are local
variables. ri is either a constant in D, or it is an XPath0 expression (1 ≤ i ≤ s).
Here, yj may appear in ri, if j < i. cj-s are conditions that are either constants
(true, false), or Boolean combinations of atomic conditions: x = d, e, e = d,
e = x (1 ≤ j ≤ k, x ∈ V, d ∈ D, e is an XPath0 expression). Note that all
of these tests may appear in XPath0 expressions (Fig. 2), and their meaning
is the same as there. For instance the single condition e becomes true iff e

174 B. Kósa, A. Benczúr, A. Kiss

results a non-empty edge set. Finally, zs-s are all forests in F∆(AT), i.e., their
edge-labels are from ∆ (the alphabet of output symbols), and the leaves may
be labelled with elements of AT , where AT denotes the set of apply-template-,
or shortly at-expressions.

An at-expression is of the form m(p, x̄, ρ), where m is mode, p is an XPath0

expression, with which the next list of edges is selected for processing; x̄ is
the set of variables that are passed as parameters to the next instantiated
template, and ρ : V → 2E.t is a variable assignment.

Example 1 Consider the rewriting of the XSLT0 program of Fig. 3.

template st(/, ǫ) (T1)

vardef

x :=//group[emp/name=’Ann’]/id;
return

if true then {result : {}}; at-expr: top(//group, x, ρ)
end.

template top(group, x) (T2)

return

if topMgr/name=’John’ then {topGroup : {id : {}}@{}};
at-expr1: val(id, ǫ, ǫ), at-expr2: Ann(//group, x, ρ)

end.

templateAnn(group, x) (T3)

return

if id= x then {id : {}}; at-expr1: val(id, ǫ, ǫ)
end.

template val(id, ǫ) (T4)

return

if true then {val(id) : {}};

end.

Here, T1 is called on the document edge /, in mode st with no parameters.
z1 consists of a single node, whose at-expression label is top(//group, x, ρ),
where ρ assigns to x the result of the XPath expression of the vardef part.
We return to the special role of the (st, /)-rule soon. In T2 the at-expressions
after at-expr1, at-expr2 respectively belong to the leaf of the id edge and the

Extended Structural Recursion and XSLT 175

leaf appended to this edge. Note the superficial nature of this construction.
Furthermore, the xsl:value-of element returning the value of id children
is represented here as a special template T4 also returning the value of id

elements. The at-expression of T3 invokes T4 on the id children of the actual
edge. It is easy to verify that with this rewriting we simulate correctly the
functioning of the former xsl:value-of element.

As we have already mentioned, according to [17], the conflict of templates
should be avoided, hence only one (m,σ)-rule is allowed to give for each (m,σ)-
pair. Furthermore, we assume that there is a distinguished start mode, st,
which is only used with the document edge. For sake of simplicity, we also
assume that (st, /) is the only rule, where variable definitions are allowed to
give. It has only one condition, where c1 is true, and z1 constructs a result
edge as the root edge of the output. (With this, we guarantee that the output
is always a tree.) In the XSLT program of Fig. 3 (T1) stands for this rule.
Note that according to [17] it is not allowed to be given a mode to a template
instantiated on the document edge. Nevertheless, this slight deviation carries
no importance.

Semantics. A run of a program on t is given in terms of trees in T ∆(LC(t)∗).
Here, LC(t) = E.t ×M × Ψ denotes the set of local configurations, where M
is the set of modes and Ψ is the set of partial variable assignments from V to
2E.t with a finite domain. (e,m, ρ) = ϑ ∈ LC(t) represents that case, when
(m,σ)-rule T is to be applied on e, where lab(e) = σ, and the parameters of
T are in the domain of ρ. Here, e is the edge whose endnode is labelled with
ϑ. For a tree in T ∆(LC(t)∗), a leaf may be labelled with a sequence of local
configurations.

Informally, suppose that a subtree of the result t̂ ∈ T ∆(LC(t)∗) has been
already constructed. For sake of transparency we consider a leaf labelled with
a single local configuration ϑ = (e,m, ρ). This defines an (m,σ)-rule T to be
applied. Here, e will be used as the actual edge of the XPath0 expressions
of T . When T(e) is evaluated, the result (in F∆(LC(t)∗)) should be added
to the leaf and ϑ should be deleted. If the leaf is labelled with a sequence
containing more local configurations, the former method should be applied to
each of them consecutively (cf. Fig. 2(d)).

The process starts with t0, where t0 consists of an edge with label /, and
with leaf label (/, st, ǫ) (this guarantees that the (st, /)-rule is called first), and
it stops, when there is no LC(t)∗ label in the constructed output to process
further. We shall assume that, if (m,σ)-rule T has been already applied to an
edge e, then T is not allowed to be applied on e again. Thus, we avoid infinite
loops. This feature is guaranteed when XSLT0 programs are simulated with

176 B. Kósa, A. Benczúr, A. Kiss

structural recursions.
Formally, an XSLT0 program is a tuple P = (Σ,∆,M, st, R), where Σ and ∆

are the labeling alphabets of the input and output respectively. M is the set
of modes disjunct from Σ and ∆. st is the start mode and R is a finite set of
(m,σ)-rules.

We define a rewrite relation induced by P on t, →P,t. Here

→P,t: T
∆(LC(t)∗) → T ∆(LC(t)∗).

For ξ, ζ ∈ T ∆(LC(t)∗), first we explain the simpler case, when a leaf labelled
with a single local configuration is considered. Then ξ →P,t ζ, if ξ has a
leaf edge e with leaf label (e,m, ρ), where lab(e) = σ, and the parameters of
(m,σ)-rule T are all included in the domain of ρ. ζ is constructed by substi-
tuting e with fo, the result of T instantiated on e with variable assignment
ρ.

To understand the construction of fo, remember the syntax of T . First we
evaluate ri-s taking e as the actual edge to get the possible values of yi-s
(1 ≤ i ≤ s). Denote Ei the result of ri. Then, assuming that cj is the first con-
dition becoming true, zj ∈ F

∆(AT) is transformed into fo, where we substitute
each at-expression leaf label with a sequence of local configurations. Namely, a
leaf label m ′(p, z̄, ρ ′) is substituted with sequence (e1,m

′, ρ ′), . . . , (el,m
′, ρ ′).

Here z̄ ⊆ {x1, . . . xn, y1, . . . ym}, ρ ′(xi) = ρ(xi) and ρ ′(yj) = Ej, p(e) =

{e1, . . . , el} (p is the XPath0 expression of the at-expression in question, while
e is the actual edge on which T is instantiated). Furthermore, er precedes eo

in document order, if r < o (1 ≤ i ≤ n, 1 ≤ j ≤ s, 1 ≤ r, o ≤ l).
If e is labelled with a sequence local configurations, then ζ should be ob-

tained by applying the former method to each local configuration one after
the other.

The initial local configuration is defined to be t0. With this the transfor-
mation realized by P, is the (partial) function τP : T Σ

→ T ∆, with τP(t) = s,
if t ∈ TΣ, s ∈ T∆, and t0 →

∗
P,t s.

3 Structural recursions

Syntax

A structural recursion f is constituted by structural functions, in notation
f = (f1, . . . , fn), which can call each other. In the definition of a structural
function we consider inputs given with ssd-expressions and specify what should
happen for the different constructors. For the syntax of a row of a structural

Extended Structural Recursion and XSLT 177

SR: structural recursion, Reg: registers, r(fi): a row of fi,
C: condition, Cd: condition for the default, Sf = {f1(t), . . . , fn(t)},

a ∈ Σ,α ∈ D, y ∈ V, t ∈ T Σ, n.i. stands for not isempty

SR ::= S, Reg

S ::= fi : r(fi), (1 ≤ i ≤ n)

r(fi) ::= (t1@t2) = fi(t1)@fi(t2) | ({}) = {} | ({a : t}) = R |

({∗ : t}) = Rd |

({a : t}) = if C1 then R1 else R2 |

({∗ : t}) = if Cd
1 then Rd

1; else Rd
2

R ::= fo, where fo ∈ F∆(Sf)

Rd ::= fo, where fo ∈ F∆∪{∗}(Sf)

C ::= n.i.(fj(t)) | val(a) = α | val(a) = y | (C1 ∧ C2) |

(C1 ∨ C2) | ¬(C)

Cd ::= n.i.(fj(t)) | val(∗) = α | val(∗) = y | (C1 ∧ C2) |

(C1 ∨ C2) | ¬(C)

Reg ::= Xb
fi

= Xb
fj

| (Reg1 ∧ Reg2) | (Reg1 ∨ Reg2) | ¬(Reg)

εC : condition → (E.t → {true, false}), θ ∈ {a, ∗}, ρ : V → 2D

εpJval(θ) = αK(e) = true iff lab(e) = θ, val(e) = α

εpJval(θ) = yK(e) = true iff lab(e) = θ, ∃e ′ ∈ ρ(y) s.t. val(e) = val(e ′)

Figure 6: The syntax rules of structural recursion f = (f1, . . . , fn) (first table).
The semantics of a subset of conditions (second table).

function, consider the r(fi) row of the first table of Fig. 6. Here, it turns
out that for constructors t1@t2, {} structural functions always work in the
same manner, hence they are not given in the definition. For t1@t2 they call
themselves both on t1 and t2, and at the end append the results. For {}, they
construct a single node.

Example 2 As an example, we give structural recursion f = (f1, f2, f3), which
copies a subtree {a : t} if the a edge has an Ann child.

f1 : ({a : t})= if n.i.(f2(t)) then {a : f3(t)} f2 : ({Ann : t})= {ψ : {}}

({l : t}) = f1(t) ({l : t}) = {}

f3 : ({∗ : t})= {∗ : f3(t)}

178 B. Kósa, A. Benczúr, A. Kiss

Example 3 As another example we give the rewriting of XPath0 expression:

q1 = self::a[par::c=5]/child::b/desc::d/par::a,

where desc, par are abbreviations of axes descendant, parent respectively.

fa1
: ({a : t})= fb(t) fb : ({b : t})= f1d(t)

({∗ : t})= fa1
(t) ({∗ : t})= fa1

(t)

f1d : ({d : t})= {ψ : {}}@ f1d(t)

({∗ : t})= f1d(t)

fa2
: ({a : t})= if n.i.(f2d(t)) then {ψ : {}}@ fa2

(t) f2d : ({d : t})= {ψ : {}}

else fa2
(t) ({∗ : t})= {}

({∗ : t})= fa2
(t)

f
pr1
c : ({c : t})= if val(c) = 5 then fpr1

a1
(t) f

pr1
a1

: ({a : t})= {ψ : {}}@ fpr1
c (t)

else fpr1
c (t) ({∗ : t})= f

pr1
c (t)

({∗ : t})= f
pr1
c (t)

Xd
fd1 = Xd

fd2 , X
a

f
pr1
a1

= Xa
fa1

Here, pr1 = self::a/par::c=5. fpr1
c checks whether the value of the actual c

edge is equal to 5, then calls fpr1
a1

, which constructs a ψ edge as a result of an
a edge, if it immediately follows the aforementioned c edge.

self::a/child::b/desc::d, desc::d/par::a

are simulated with fa1
, fb, f

1
d, fa1

, f2d, respectively. The connection is given
with the register restriction Xd

f1
d

= Xd
f2
d

, whose intended meaning is that the

d edges processed by f1d should also be processed by f2d and vice versa. Thus
these d edges both have a b ancestor with an a parent, and an a parent. One
may consider Xd

fi
d

-s as registers containing the id-s of the d edges processed by

fid (i = 1, 2). Note the similar role of Xa

f
pr1
a1

= Xa
fa1

. In fa2
n.i. stands for the

not-isempty condition. The {∗ : t} rows represent the default cases.
Note that only ψ (ψ ∈ ∆) edges are constructed here. This is understand-

able, since we simulate an XPath0 expression. In the output, only ψ edges
constructed by fa2

representing the last location step parent::a will be con-
sidered. Thus we get a star as a result, i.e., a single node with outgoing ψ

Extended Structural Recursion and XSLT 179

edges. If for document tree t and e0 as context edge q1 selects e1, . . . , es, then
the star consists of s ψ edges, the first constructed as a result of processing e1

according to the a row of fa2
, the second as processing e2, etc.

Now, consider the syntax rules in the first table of Fig. 6. Note that one
may construct forests in F∆(Sf), i.e., the leaves of these forest may be labelled
with fi(t)-s. The intended meaning of such a label is that the result of fi called
on t is to be connected to the leaf in question. In the previous example with
fb(t) on the right hand side of a row we denoted a node labelled with fb(t).

Semantics

Operational graphs. As in [2], in order to define the semantics, we introduce
operational graphs, which will represent the “relationships” among structural
functions. For structural recursion f = (f1, . . . , fn), we denote its operational
graph with Uf.

In the construction, for each fi we assign a node with name fi (1 ≤ i ≤ n).
The edges of Uf are given with respect to the rows of fi-s. As a warm-up we
consider a simple row:

({a : t}) = {b : fj(t)}.

Here, we add an a(x) edge from fi to fj. The intended meaning is obvious, we
represent that as a result of singleton {a : t} fi calls fj. For

({a : t}) = if n.i.(fj(t)) then fk(t) else fl(t),

we add an a(x) edge with an additional pr (predicate) label to fj and two
other a(x) edges with labels th, el (then, else) to fk and fl respectively. If no
structural function is called, we use an additional node w. Formally, for row:

• ({θ : t}) = fo (fo ∈ F∆∪{∗}(Sf), θ ∈ {a, ∗}):

(fi, p, fj) ∈ E.Uf, if fj(t) is among the labels of leaves of fo, i.e., fj is
called by fi as a result of a θ edge. If fj(t) appears more than once
among the labels, still only one (fi, p, fj) edge is added. Here, if θ = a,
then p = a(x). Otherwise, if θ = ∗, p = ¬a1(x) ∧ . . . ∧ ¬al(x), where
a1, . . . , al are the symbols appearing in the singleton sets on the left side
before the default case in the definition of fi. If there are no such rows
in the definition, then p = ⊤(x). a(x) is a predicate symbol, which we
always interpret over Σ s.t. a(x) becomes true iff x = a, while ⊤(x) is
satisfied by all constants of Σ. As an example, consider the operational
graph of (fa1

, fb, f
1
d) of Example 3 in Fig. 7(b) (the leftmost graph).

Here and in the rest of the examples we abbreviate a(x) with a.

180 B. Kósa, A. Benczúr, A. Kiss

If fo has no leaf labels, i.e., no structural function is called, then an
(fi, p,w) edge is added instead of an (fi, p, fj) edge.

• ({θ : t}) = if C then fo1 else fo2:

(fi, p, fj) is in E.Uf with an additional label pr, if n.i.(fj(t)) appears in
C. Such an edge will be called premise. The meaning of θ and p is the
same as in the previous case.

Furthermore, (fi, p, fk) is in E.Uf with label th if fk(t) appears among
the labels of leaves of fo1. If fk(t) appears as a leaf label in fo2, an el
label is added. These edges are called then-, else-edges respectively. The
premise, then- and else-edges together will be called conditional edges.
If fk(t) appears more than once in fos, still only one (fi, p, fk) edge is
added (s = 1, 2). However, if it appears in fo1 and also in fo2, then this
edge is labelled with both th and el. Again, an (fi, p,w) edge is added
with the appropriate th, el label, if the leaves of fos are not labelled.
As an example, consider the outgoing a edges of fa2

and the outgoing c
edges of fpr1

c of Example 3 in Fig. 7(b).

An edge of Uf is called constructor edge, if it results a construction, i.e., the
forest on the right side of the corresponding row is not a single node.

The corresponding operational graph of fq1
in Example 3 can be found in

Fig. 7(b). Note that operational graphs are not necessarily connected.
Process of an input. Next, we show how a document tree is processed by

an operational graph. For this we introduce a new operation, which is very
similar to the intersection operation in automata theory.

Definition 1 Let Uf, t be an operational graph and a document tree (f =

f1, . . . , fn). Then the intersection of Uf and t, in notation Uf ⊓ t, is defined
as follows: V.Uf ⊓ t := {(ϕ,u) | ϕ ∈ V.Uf, u ∈ V.t}, (ϕ ∈ {f1, . . . , fn, w}).
E.Uf⊓t := {((fi, u), p(x)∧a(x), (ϕ, v)) | (fi, p(x), ϕ) ∈ E.Uf, (u, a, v) ∈ E.t, Σ �

p(a)}.

The intuition behind this definition is clear. For instance an ((fi, u), p ∧

a, (fj, v)) edge means that (u, a, v) is processed by fi, and then fj is called.
Note that we have slightly blurred the distinction between predicates and
constants. An edge-label a (a ∈ Σ) of a document tree is considered as
predicate a(x). Also note that if p(x) ∧ a(x) is satisfiable, then only a ∈ Σ

satisfies it, hence sometimes we shall write a instead of p(x) ∧ a(x) as edge
label.

Extended Structural Recursion and XSLT 181

fa1

fb

f1

d

¬d

d

a
¬b

¬a

b

fa2

a

¬a

a

pr1

th1,

d
¬d

w

f
pr1

c

f
pr1

a1

¬c

c a

¬a

th1

el1

f2

d

1

2

3

4

5

6

7

8

9

c

a c

a

d

b

a

d

(a)
(b)

(c)

(fa1
, 1)

(fa1
, 2)

(fb, 3)

(f1

d
, 4)

(f1

d
, 5)

(f1

d
, 6)

(fa1
, 7)

(fb, 8)

(fa1
, 9)

c

a c

a

d

b

a

d

(fa2
, 1)

(fa2
, 2)

(f2

d
, 3)

(f2

d
, 5)

(w, 6)

(f2

d
, 8)

(w, 9)

(w, 4)

(fa2
, 3)

(fa2
, 4)

(fa2
, 5)

(fa2
, 6)

(fa2
, 7)

(fa2
, 8)

(fa2
, 9)

c

th1, el1

pr1

a
a

c

th1,

bb

pr1
a a

a

a

d
d

el1

d d

pr1 th1,
el1

(fpr1

c , 1)

(fpr1

a1
, 2)

(fpr1

c , 3)

(fpr1

c , 4)

(fpr1

c , 5)

(fpr1

c , 6)

(fpr1

c , 8)

(fpr1

c , 9)

(fpr1

a1
, 7)

c

a

c

a

d

b

a

d

(d)

(fa2
, 1)

(fa2
, 2)

(f2

d
, 3)

(f2

d
, 5)

(w, 6)

(w, 4)

(fa2
, 3)

(fa2
, 4)

(fa2
, 5)

(fa2
, 6)

(fa2
, 7)

(fa2
, 8)

(fa2
, 9)

c

el1

a
c

th1

bb

a

a

d

d d

th1

(fpr1

c , 2)

(fpr1

c , 7)

c

c

el1
th1

a
a

th1
el1

(fpr1

c , 1)

(fpr1

a1
, 2)

(fpr1

c , 3)

(fpr1

c , 4)

(fpr1

c , 5)

(fpr1

c , 6)

(fpr1

c , 8)

(fpr1

c , 9)

(fpr1

a1
, 7)

a

c

a

d

b

a

d

(fpr1

c , 2)

(fpr1

c , 7)

c th1

a
a

el1

c el1

Figure 7: (a) Ufq1
. (b) An input tree t. (c) Ufq1

⊓ t. (d) A fragment of Gf,t.

182 B. Kósa, A. Benczúr, A. Kiss

In most cases only a subset of structural functions fi1 , . . . , fik is allowed to
be called on the document edge. In this case we only consider (fij , u0) as
elements of V.Uf ⊓ t, where u0 is the root of t (1 ≤ j ≤ k). Such structural
functions will be called upper structural functions. In fq1

of Example 3 the
upper structural functions are fa1

, fa2
and fpr1

c . An example for intersection
can be seen in Fig. 7(c)-(d).

In the sequel, sometimes (eUf
, et) will denote an edge in E.Uf ⊓ t. Here,

eUf
, et are called ancestor images. (eUf

, et) is a premise (constructor, then-,
else-edge), if its ancestor image in Uf is also a premise (constructor, then-,
else-edge).

Deletion of the unnecessary conditional edges. In the next step, in
Uf⊓ t we delete the premises and those then- and else-edges, whose condition
is not satisfied. First, we have to note that for

Cond = if C then fo1 else fo2

and for an edge et of t, if (eUf
, et) is in E.Uf⊓ t s.t. eUf

is a conditional edge
of Cond, then et form pairs with the rest of the conditional edges of Cond.
The set of these edges of Uf ⊓ t will be referred as Condet . In order to be
able to decide whether C is satisfied by et and the subtree under et, we take a
copy of C, which we denote Cet . The algorithm eliminating the unnecessary
conditional edges consists of three steps.

Equality conditions. First, the val(θ) = α conditions are considered (θ ∈

Σ ∪ {∗}). In Fig. 7(e) we have supposed that val((1, c, 2)) 6= 5, hence then-
edge ((f

pr1
c , 1), c, (f

pr1
a1
, 2)) is deleted. On the other hand, for (2, c, 7) we have

assumed that its value is 5, thus we delete else-edge ((f
pr1
c , 2), c, (f

pr1
c , 7)).

Formally, in this step, the val(θ) = α, val(θ) = x conditions of Cet are
considered. We assume that there is a given variable assignment ρ. With this
and the value of et we substitute the preceding equality conditions with their
truth values (cf. the second table of Fig. 6).

If Cet becomes true, then clearly, the then-branch should be executed, hence
except for the then-edges, we delete all other conditional edges belonging to
Condet . If an edge is a then- and else-edge at the same time, it is also
kept. These and the remaining then-edges are considered as normal (non-
conditional) edges in further steps of the algorithm. We refer to this method
in the sequel as deletion with respect to the then-branch.

On the other hand, if Cet becomes false, then, for obvious reasons, we delete
with respect to the else branch, i.e. edges with label el are kept, and considered
as normal edges further on. Note that owing to the presence of n.i. conditions,
we may not be able to determine the truth value of Cet .

Extended Structural Recursion and XSLT 183

The result of this step is denoted Ĝf,t.
Registers. Second, we consider the constraints given by the registers. For an

edge ((fi, u), b, (ϕ1, v)) ∈ Ĝf,t and a restriction of registers Reg, an atomic con-
dition, Xb

fi
= Xb

fj
, becomes true, if there exists another edge ((fj, u), b, (ϕ2, v)) ∈

Ĝf,t (ϕ1, ϕ2 ∈ {f1, . . . , fn, w}). In other words, the b rows of fi and fj should
be called on (u, b, v). Otherwise, Xb

fi
= Xb

fj
becomes false. If at the end,

Reg becomes false, then ((fi, u), b, (ϕi, v)) should be deleted from Ĝf,t. The
result after the evaluation of register restrictions is denoted Ǧf,t. Again, an
example can be found in Fig. 7.(e). Here, Xd

f1
d

= Xd
f2
d

is not satisfied by

((f2d, 8), d, (w, 9)), since (8, d, 9) has not got any b ancestor, f1d is not called on
it. On the other hand, ((f1d, 5), d, (f

1
d, 6)) and ((f2d, 5), d, (w, 6)) satisfies this

register restriction.
Not-isempty conditions. Third, the n.i. conditions are evaluated. (i) If from

a premise of Ǧf,t a constructor edge is reachable through a path not contain-
ing any conditional edges, then the n.i. condition in question, n.i.(fj(t)), is
satisfied, thus we substitute n.i.(fj(t)) in Cet with a true constant. If Cet

becomes true, then we delete with respect to the then-branch. In Fig. 7(e)
the n.i. condition of ((fa2

, 4), a, (f2d, 5)) is satisfied.
(ii) If there are neither constructor, nor conditional edges reachable from

the premise in question, then there is no further possibility to satisfy the
corresponding n.i.(fj(t)) condition, hence we substitute it with constant false.
If Cet becomes false, then we delete with respect to the else-branch. Again, in
Fig. 7(e) the n.i. condition represented by premise ((fa2

, 2), a, (f2d, 3)) is not
satisfied.

The algorithm stops, when there are no premises left. Suppose now that
there are still premises, nevertheless steps (i)-(ii) cannot be applied. This
means that each path from a premise to a constructor edge contains at least
one conditional edge e beside the premise in question. If e is a then-, or an
else-edge, since the equality conditions are all checked, we know that there is
also a premise belonging to e. Hence, at the end we conclude that some of the
premises form cycles, whereas, clearly, Uf ⊓ t is a tree. Thus, the algorithm
surely stops. Denote Gf,t the result.

Construction of the result.

Example 4 To describe the construction of the output we use another struc-
tural recursion f = (f1, f2, f3) as an example, where f1 is the upper structural
function. (The operational graph of f can be found in Fig. 8(a).)

f1 : ({a : t})= {b : {{a : f2(t)}@{c : f3(t)}}} f2 : ({∗ : t})= {∗ : f2(t)}

184 B. Kósa, A. Benczúr, A. Kiss

f1

f2

f3

w

¬a

a a

⊤

⊤

d a

a b

c

1

2

3

4

5

6

(f1, 1)

(f1, 2)

(f2, 3)
(f3, 3)

(f2, 4)

(f2, 5)

(f2, 6)

(f3, 4)

(w, 5)

d a a

a
a b

c

b

(f1, 1)
(f1, 2)

(f1, 2)

(f2, 3) (f3, 3)

b

a
c

(f1, 1)

(f2, 4) (f3, 4)

b

a c

(f2, 4)

(f3, 4)
(f2, 5)

(f2, 5)

(f2, 6)

b

c

c

ε
ε

ε

b
b

a c a c

c
b

c

(a)

(b)

(c)
(d)

(e)

ε

ε

Figure 8: (a) The operational graph of f = (f1, f2, f3). (b) An input. (c)
The intersection of the operational graph of (a) and the input of (b). (d)
Construction and connection of the basic forests. (e) The final result.

({∗ : t})= f1(t) f3 : ({∗ : t})= {c : {}}

If an edge et = (u, a, v) of a document tree t is processed according to the
a row of f1, i.e., ((f1, u), a, (fj, v)) is in E.Uf⊓ t (j = 1, 2), then we take a tree
t̂ = {b : {{a : {}}@{c : {}}}}, and we label its root with (f1, u) and the leaves of
the b and c edges with (f2, v), (f3, v), respectively. The labels of the leaves
indicate that the results of f2 and f3 applied on the subtrees under et should be
“connected” to t̂. Similarly, the label of the root shows that which fragment of
the result t̂ should be connected to. The connection is accomplished through
ε edges. As an example, consider Fig. 8(a)-(e). Note that here, when f1 is
applied to (1, d, 2), only a node is constructed with two labels (cf. Fig. 8(d)).

Formally, denote E(fi, et) the set of neighbouring edges in Gf,t, whose labels
are the same, and whose ancestor image is et = (u, a, v) in t. Such a set may
consists of only one edge. The ancestor images in Uf are all of the form
(fi, p,ϕ), ϕ ∈ {f1, . . . , fn, w}, i.e., they belong to the same condition. In
accordance with the previous observation, the edges of E(fi, et) represent that
in the process of t, fi is called on et, as a consequence, forest fo should be
constructed, and the structural functions appearing as leaf labels should be
called. To represent this, for E(fi, et) we take a copy of fo, we substitute the
∗ labels with a (the label of et), we label the root with (fi, u), and if a leaf
has label fj(t), then we change it to (fj, v). These new labels will be used to
establish the connection between these forests. Denote fo(fi, et) the result,

Extended Structural Recursion and XSLT 185

f1

a

¬a

a

a

1

2

3

a

a

(f1, 1)

(f1, 2)

(f1, 3)

(f1, 1)

(f1, 2)
(f1, 2)

a

a a

(f1, 2)

(f1, 3)
(f1, 3)

a

a a

ε
ε

(a) (b) (c)

(d)

a

a
a

a

a
a

(e)

Figure 9: (a) The operational graph of f = (f1). (b) An input. (c) The inter-
section of the operational graph of (a) and the input of (b). (d) Construction
and connection of the basic forests. (e) The final result.

which we call basic forest in the sequel.
The output should be constructed from the basic forests. For this, first, add

ε edges from the (fj, v) leaves to the (fj, v) roots. Second, if there are more
than one (fj, v) roots, then choose one, and add ε edges to the rest of these
roots. At the last step the ε edges should be eliminated.

In most cases we get forests as results instead of trees. Hence, one may
choose a root structural function fk among the upper structural functions
(1 ≤ k ≤ n). This means that in the output only the tree reachable from the
root of fo(fk, /) (fk called on the document edge) should be considered.

Example 5 The next example in Fig. 9(a)-(e) with structural recursion f =

(f1) shows how our semantics avoids outputs of exponential size.

f1 : ({a : t})= {a : {{a : f1(t)}@{a : f1(t)}}}

({∗ : t})= f1(t)

Note that the result in Fig. 9(e) does not fit our data model, since it cannot
be constructed by using constructors: @, {l : t}, {}. However, it “encodes” all
necessary information, and it is easy to unfold it to a tree in our data model.

Order of the result. As a consequence of rule

fi : ({t1@t2}) = fi(t1)@fi(t2),

for a structural recursion f and document tree t, if e1 precedes e2 in doc-
ument order (e1, e2 ∈ E.t), then the edges of the fragment constructed by
calling f on e1 and the subtree under e1 precedes the edges of the fragment

186 B. Kósa, A. Benczúr, A. Kiss

resulted from the process of e2 and the subtree under e2. In the simulation of
XPath0 expressions the aforementioned fragments are single ψ edges, hence
the document order straightforwardly defines the order of the result.

When XSLT0 is considered, for each input, the simulated program will define
the order among the basic forests.

Number of steps. If we consider the size of f, |f|, as the number of
equality conditions, structural functions appearing on the right sides of rows
(each appearance of fj counts one) and atomic conditions of registers, and
the size of t as |V.t| + |E.t|, then the size of Uf ⊓ t is O(|f||t|). The equality
constraints can be checked in O(K|f||t|) steps, where K = max{|ρ(x)| | x is
used in f}. Clearly, K ≤ |t|. Note that if there are no variables, then the
equality conditions can be checked in O(|f||t|). For the register restrictions, we
suppose that for each edge (u, a, v) = e ∈ E.t, we have an array that stores
fi, if ((fi, u), a, (ϕ, v)) ∈ Ĝf,t (ϕ ∈ {f1, . . . fn, w}, 1 ≤ i ≤ n). With this, the
register restrictions, satisfied by e, can be found in O|f| steps. Hence register
restrictions can be checked in O(|t||f|) steps. Since a path from a premise
to a constructor edge contains at most |f| different conditional edges, Gf,t

can be constructed in O(|f|2|t|) steps. All in all, supposing that |f| < |t|, we
get that f(t) can be constructed in O(|t|2|f|) time. If variables are not used,
then f(t) can be constructed in O(|t||f|2) time. Furthermore, if the number
of embedded n.i. conditions is limited with a constant, as in the case of the
following simulations of XPath0 expressions and XSLT0 programs, then f(t)
can be computed in O(|t||f|) time.

4 Rewriting of XPath0

First of all, we have to define formally the equivalence of an XPath0 expression
and a structural recursion. For this, let

q = χ1 :: τ1[p11
] . . . [pm1

]/ . . . /χn :: τn[p1n] . . . [pmn]

be an XPath0 expression. Then for a document tree t, e0 ∈ E.t, a sequence
of edges e0, e1, . . . , en is called a result-chain (of q), if ei ∈ E.t, eiχi+1ei+1,
val(ei+1) = τi+1, and pji+1

(ei+1) is true (0 ≤ i ≤ n − 1, 1 ≤ j ≤ m). If we
denote

χ1 :: τ1[p11
] . . . [pm1

]/ . . . /χj :: τj[p1j
] . . . [pmj

]

with qτj
, then ej ∈ qτj

(e0), i.e., ej is selected by qτj
initialized on e0 (1 ≤

j ≤ n). Furthermore, we say that an edge e is touched, if there exists a j s.t.
e ∈ qj(e0), or e is touched in one of the prij -s. A touched edge e is uppermost,

Extended Structural Recursion and XSLT 187

if there is not any edge e ′ ∈ E.t s.t. e ′ is also touched, and e ′ is an ancestor
of e.

Lemma 1 Let q be an XPath0 expression without predicates, t a document
tree, e0 ∈ E.t. Then, there exists at most one uppermost node for t and e0.

Proof. Suppose that q(e0) is not empty, i.e., there exists at least one result
chain, and there are two uppermost nodes e and e ′. Then neither e is the
ancestor of e ′, nor e ′ is the ancestor of e. However, since t is a tree, they have
at most one common ancestor e ′′. As we only use axes self, child, desc,

par, anc, it is easy to see, that e ′′ is touched, thus we get a contradiction.
If q(e0) is empty, then let i be that maximal number, to which qτi

(e0) is
not empty. Then, the previous reasoning can be applied to qτi

. If qτi
(e0) is

empty for all i (1 ≤ i ≤ n), then e0 is defined to be the uppermost node. �

Now, denote te0
q the subtree of t containing all of the touched edges. From

the lemma straightforwardly follows that te0
q is rooted. Now, for simulating

XPath0 expressions we shall use special structural recursions constructing only
ψ edges.

Definition 2 Let f = f1, . . . , fn be a structural recursion constructing only ψ
edges and t a document tree. For an edge (u, a, v) ∈ E.t we say that f stops on
(u, a, v), if there is an edge (fi, p,ϕ) ∈ E.Uf, s.t. ((fi, u), p∧a, (ϕ, v)) ∈ Gf,t,
and as a result of this edge a ψ edge is constructed (ϕ ∈ {f1, . . . , fn, w}).

Definition 3 Let q be an XPath0 expression and f a structural recursion.
Then f is equivalent with q, in notation f ≃ q, if for all document tree t and
e0, e ∈ E.t, e ∈ q(e0) iff f called on te0

q stops on e.

Note that the definition still makes sense, when q(e0) is empty.

XPath0 without predicates

In this subsection, when we talk about an XPath0 expression q, we always
assume that it is without predicates. Consider the following expression

q2 := self::a/child::b/desc::d/anc::c,

where anc is an abbreviation of ancestor. Here we do not know whether a
or b is an ancestor or a descendant of c. Hence when we are to simulate q2,
we have to construct structural recursions checking only whether an a edge
has a b child, having a descendant d edge etc.

188 B. Kósa, A. Benczúr, A. Kiss

Furthermore, structural recursions run in a top-down manner, thus if a
structural recursion simulating q2 stops on appropriate c edges, it should
have already checked whether there are d edges below these c edges, not to
mention other relations among other edges.

Finally, we should keep in mind that if for x, y, z ∈ E.t, lab(y) = lab(z),
xχy, xχz both holds, where χ, again, denotes an axis, then the corresponding
simulation should both return y and z. That is, in the document

<a>...

there are two descendant b elements, and both should be returned in a simu-
lation of self::a/desc::b.

From now on, we assume that axis self only appears as the first axis of an
expression. Since subexpression a/self::b is unsatisfiable, while in subex-
pressions a/self::a, a/self::*, self::a, self::* can be omitted, our as-
sumption is justified.

XPgraphs. Let q be an XPath0 expression. An edge test a precedes edge
test b in q, if a is written first in left-to-right order. The last edge test is called
aim. If there are more than one a edge test in q, then the first occurrence
is indexed a1, the second a2 etc. Thus, in the rest of this section we shall
assume that all edge tests are different.

For representing the relations between edge tests we construct an auxiliary
graph, XPgraph. We denote the XPgraph of q with XPq. The nodes of XPq are
labelled with edge tests of q. There is an edge from a to b, if either a/desc::b,
or b/anc::a is a subexpression of q. In case of a/child::b, b/par::a this
edge is labelled with ch, par respectively. Clearly, XPq is without cycles. The
representation of the aim is called aim node. In XPq node a precedes node b,
if edge test a precedes edge test b. A node a in XPq is an upper node, if it
has no ingoing edges.

Example 6 For q3 = self::a/child::b/desc::d/par::a, XPq3
is given in

Fig. 10(a).

XPgraphs with one upper node. For the simulation of q we use XPq.
First we suppose that it has only one upper node. First we illustrate the
method with an example.

Example 7 The representation of q4 :=self::a/anc::b/child::d/child::c,
fq4

= (fa, fb, fc, fd), is the following (XPq4
can be found in Fig. 10(b)):

Extended Structural Recursion and XSLT 189

Figure 10: (a) XPq3
. (b) XPq4

. (c) The XPgraph of Example 8 (d) The doc-
ument tree of Example 8. (e) The XPgraph of Example 9. (f) The document
tree of Example 9. (g) A document tree.

fb : ({b : t})= if n.i.(fa(t)) then fd(t) fa : ({a : t})= {ψ : {}}

else fb(t) ({∗ : t})= fa(t)

({∗ : t})= fb(t)

fd : ({d : t})= fc(t)

fc : ({c : t})= {ψ : {}} ({∗ : t})= fb(t)

({∗ : t})= fb(t)

In the simulation to each a ∈ V.XPq we assign a structural function fa.
Each such function contains two rows: the default case and another row cor-
responding to its label. With the latter we specify what should happen, when
the “desired label” is reached. For instance, the function representing the aim
node, in accordance with the definition of the equivalence of XPath0 expres-
sions and structural recursions, should construct a ψ edge. In the default
case, we can control whether we are to simulate a desc, anc axis, or a child,
par. In our example, fc calls fb in the default case, since the b edge should
be followed by a c edge immediately. For similar reasons, fd also calls fb in
its default case. On the other hand, fa should call itself, since there may be
arbitrary number of edges between b and a.

The upper node of XPq4
is b, hence the process of an input should start

190 B. Kósa, A. Benczúr, A. Kiss

with fb, thus it is defined to be the upper structural function. With the
n.i.(fa(t)) condition we check whether the examined b edges have an a de-
scendant. Note that in functions representing a leaf different from the aim
node, in the non-default row we should also construct a ψ edge, since the
check of a n.i. condition ends there.

Formally, for edges (a, b) ∈ E.XPq in the default case fa calls itself. For
edges (a, par, b) ∈ E.XPq, in the default case the process should stop with
{}. On the other hand, in case of (b, ch, a) ∈ E.XPq, first we have to find the
maximal child-chain, u1, . . . , um s.t. ui ∈ V.XPq, (ui, ch, ui+1) ∈ E.XPq, um =

a, (um−1 = b). Then, in the default case fa should call fu1
.

In the a row (({a : t}) = . . .), (i) if a is a leaf, or the aim node, a ψ edge
should be constructed. If there is a condition (see below), then this ψ edge
should be constructed in the then-branch.

(ii) If (a, b) or (a, ch, b) or (a, par, b) is the only outgoing edge of a, then, if
a is the aim node, then n.i.(fb(t)) is called, and a ψ edge should be constructed
in the then-branch. In the else branch fa should call itself. In case of edge
(a, par, b) and for edge (a, b), if a is the ancestor of b, a is surely the aim
node. Otherwise, if a is not the aim node, fb should be called. Again, in case
of edge (a, ch, b) and for edge (a, b), if b is the descendant of a, a is surely
not the aim node.

(iii) If a has another outgoing edge beside (a, b), (a, par, b) or (a, ch, b),
then if the aim node is not reachable through b on a directed path, then fb
should be called in a n.i. condition. Otherwise, it should be called in the
then-branch. In the else-branch, again, fa should call itself. Note that in this
case a is an upper node.

Denote f̃q the result structural recursion. Here, the only upper structural
function is the structural function of the upper node. In order to describe the
connection between q and f̃q, we introduce two notions.

Definition 4 For an XPath0 expression q = χ1 :: τ1/ . . . /χn :: τn, document
tree t, e0 ∈ E.t, e ∈ E.t is an uppermost result element of qτi

(e0), if (i)
e ∈ qτi

(e0), e is in a result chain, (ii) there does not exist any e ′ ∈ E.t s.t. e ′

is an ancestor of e, e ′ ∈ qτi
(e0), and e ′ is also in a result chain.

Definition 5 Let q be an XPath0 expression without predicates, t a document
tree, (u, a, v) = e ∈ E.t. Then, we say that the a row of fa in f̃q is called
successfully on e, if (i) ((fa, u), a, (θ, v)) ∈ E.Uf⊓ t, (ii) if there is a condition
in the a row, it is satisfied (θ ∈ {fσ, w}, σ ∈ Σ).

With e ∈ Rt(a, fa), or shortly e ∈ R(a, fa), if the input is clear from the

Extended Structural Recursion and XSLT 191

context, we denote that the a row of fa is called successfully on e.

Lemma 2 Let q = χ1 :: τ1/ . . . /χn :: τn be an XPath0 expression s.t. XPq

has only one upper node. Let t be a document tree, e0 ∈ E.t. Consider τj, and
e ∈ E.t s.t. lab(e) = τj, and e does not have any ancestor e ′ s.t. e ′ is an
uppermost result element of qτj

(e0). Then e ∈ qτj
(e0) iff e ∈ R(τj, fτj

) (fτj
is

in f̃q, 1 ≤ j ≤ n).

Proof. Suppose that (u, τi, v) = e1 is the uppermost element of te0
q . From this

it follows that τi is the upper node of XPq, and ((fτi
, u), τi, (θ, v)) ∈ E.Uf ⊓ t

(θ ∈ {fσ, w}, σ ∈ Σ).
(a) If e1 ∈ qτi

(e0), then there exists a sequence of edges e0, . . . , ei s.t.
ei = e1, ejχj+1, ej+1 (0 ≤ j ≤ i− 1). Since τi is the upper node, fτi

calls fτi−1

on e in a n.i. condition. Now, suppose that χi−1 is anc. Then the τi−1 row
of fτi−1

is only instantiated when the first edge under e1 with label τi−1 is
reached. If τi−1 is a leaf in XPq, a ψ edge is constructed, and the n.i.condition
is satisfied, consequently, e1 is in R(τi, fτi

).
If χi−1 is par, the reasoning is similar. The proof can be continued in-

ductively on the rest of the edge tests before τi. At the end we get that
e1 ∈ R(τi, fτi

)

For the other direction, if e1 ∈ R(τi, fτi
), and there is no condition in the

τi row, then τi is not preceded by any edge test in q, hence i = 1. Obviously,
e1 ∈ qτi

(e0). Otherwise, the condition is satisfied. Again, if τi−1/anc::τi

(τi−1/par::τi) is a subexpression of q, then a trivial analysis of fτi−1
shows

that it is guaranteed that e1 has a descendant (child) with label τi−1. The
proof can be continued inductively. At the end we get that e1 ∈ qτi

(e0).
Hence, the statement of the lemma holds for e1.

Beside the supposition that e1 ∈ qτi
(e0), assume further that τi−1/anc::τi

is a subexpression of q. Let e2 be a descendant of e1 s.t. lab(e2) = τi−1, and
there is not any ancestor e3 of e2 s.t. e3 is a descendant of e1, lab(e3) = τi−1.
Such edges will be called first τi−1 descendants. The previous reasoning shows
that the τi−1 row of fτi−1

is called on e2. Furthermore, from the rewriting rules
we also know that this τi−1 row does not contain any condition. Consequently,
e2 ∈ R(τi−1, fτi−1

). Additionally, since e1 ∈ qτi
(e0), e

2 ∈ qτi−1
(e0). Hence,

the statement also holds for e2. The proof is similar, when τi−1/par::τi is a
subexpression of q. Thus, it can be shown inductively that the lemma holds
for all edge tests before τi in q.

If τi/desc::τi+1 is a subexpression, then fτi
calls fτi+1

, which again finds
the first τi+1 descendants of e1. Again in its τi+1 row fτi+1

, even if τi+1 is the

192 B. Kósa, A. Benczúr, A. Kiss

aim node, does not have any condition. Consequently, the lemma also holds
for these edges.

In case of τi/child::τi+1, if e2 is a child of e1 with label τi+1, then the
statement is true for e2. Otherwise, fτi+1

calls fτi
in its default case, and the

whole previous reasoning can be applied to the first τi descendants of e2.
(b) If e1 /∈ qτi

(e0), then the condition of the τi row of fτi
is not satisfied,

hence fτi
is called again in the else branch. Again, the reasoning is similar for

the first τi descendants.
Furthermore, if edge e is an uppermost result element of qτj

(e0), then it is
easy to show, that fτj

is not instantiated on any descendants of e. �

In other words the lemma says that f̃q, for an arbitrary input tree and a
fixed edge e0, finds all of those “uppermost” edges that may be touched, or
may be elements of a result chain of q called on e0.

Corollary 1 Keeping the assumptions of Lemma 2, for document tree t, edge
test τj, e ∈ E.t, where lab(e) = τj, and for an arbitrary edge ē of t, if e
does not have any ancestor e ′ s.t. e ′ is an uppermost result element of qτj

(ē).

Then e ∈ qτj
(ē) iff e ∈ R(τj, fτj

) (fτj
is in f̃q, 1 ≤ j ≤ n).

Note that the only difference between Lemma 2 and Corollary 1 is that in
the latter case we do not fix edge e0, where the evaluation of q should start.

A document tree t is called simple, if for an arbitrary edge e, where lab(e) =

σ, e does not have any σ ancestor in t.

Corollary 2 Keeping the above assumptions and notations, if t is simple,
then q is equivalent with f̃q.

Corollary 2 shows that f̃q simulates q correctly for a large and practically
the most important class of document trees.

To establish the equivalence for all document trees, we have to develop a
modified version of function fσ to be able to process σ edges that are in a
descendant-ancestor relationship. For this we introduce a method called the
repetition of σ. Informally, in the σ row we call fσ or the appropriate struc-
tural function again. As an example of repetition, consider f = (fa1

, fb, f
1
d)

of Example 3 that simulates self::a/child::b/desc::d. There, we have
repeated d in f1d.

Formally, in the repetition of τi, if neither the ingoing, nor the outgoing edge
of τi is labelled with ch or par, then in its τi row fτi

should also call itself.
This means that on the right side (in the then branch, if it exists) instead of
{ψ : {}} or fτi+1

(t), {ψ : {}}@fτi
(t) or fτi+1

(t)@fτi
(t) should be written.

Extended Structural Recursion and XSLT 193

If τi is in a path pa = u1 . . . um in XPq s.t. pa has either solely ch, or
solely par edges, then (suppose that pa is maximal in terms subsumption
with respect to this property), then in the repetition of τi fu1

should call itself
in its u1 row.

In order to describe why we have chosen this construction we show two
examples.

Example 8 First, consider the XPgraph of Fig. 10(c), and suppose that we
are to repeat b, but here fb calls itself in its b row. (According to our definition
fa should call itself in its a row.)

fa : ({a : t})= fb(t) fb : ({b : t})= fc(t)@fb(t)

({∗ : t})= fa(t) ({∗ : t})= fa(t)

fc : ({c : t})= fd(t) fd : ({d : t})= {ψ : {}}

({∗ : t})= fa(t) ({∗ : t})= fa(t)

It is not difficult to see that for the document tree of Fig. 10(d) this struc-
tural recursion constructs a ψ-edge, though it should not. Here the problem is
that it is not checked whether the second b edge has an a parent. This shows
that in the repetition the whole check should start from the beginning, hence
fu1

should be called.

Example 9 Secondly, for the XPgraph of Fig. 10(e) we repeat a2, but fa1
is

called in the a row of fa2
instead of the a row of fa1

.

fa1
: ({a : t})= fb1

(t) fb1
: ({b : t})= fa2

(t)

({∗ : t})= fa1
(t) ({∗ : t})= fa1

(t)

fa2
: ({a : t})= fb2

(t)@fa1
(t) fb2

: ({b : t})= {ψ : {}}

({∗ : t})= fa1
(t) ({∗ : t})= fa1

(t)

Again, for the document tree of Fig. 10(f) only one ψ edge is constructed
as a result of the second b edge, though as a result of the third b edge another
ψ edge should also be constructed. This is because fa1

is not called on the
second a edge. This shows that in the repetition fu1

should be called in its
own u1 row.

194 B. Kósa, A. Benczúr, A. Kiss

Suppose now that in Example 9 we call fa1
in its a row. Then for the

document tree of Fig. 10(g) after the c edge two “instances” of fa1
are called

on b, although only one should process this edge. Hence, we should slightly
change the rewriting rules, when a node of a child-chain is to be repeated. In
this case, in the default cases fu2

, . . . , fum instead of calling fu1
the empty

graph should be constructed. With this the XPgraph of Fig. 10(e) should be
rewritten as follows.

fa1
: ({a : t})= fb1

(t)@fa1
(t) fb1

: ({b : t})= fa2
(t)

({∗ : t})= fa1
(t) ({∗ : t})= {}

fa2
: ({a : t})= fb2

(t) fb2
: ({b : t})= {ψ : {}}

({∗ : t})= {} ({∗ : t})= {}

Finally, if we are to repeat τi = uk and τj = ur, (1 ≤ k, l ≤ m), then it is
enough to call fu1

in its u1 row once.

Lemma 3 For a given XPath0 expression q = χ1 :: τ1/ . . . /χn :: τn, where
XPq has only one upper node, document tree t and e0 ∈ E.t, e ∈ E.t is in
qτi

(e0) iff e ∈ R(τi, fτi
), where we have repeated τi in f̃q.

Proof. The statement straightforwardly follows from the proof of Lemma 2
and from the previous consideration. �

Now, repeat τn in f̃q. We denote the result with fq.

Corollary 3 Keeping the above notations, q ≃ fq.

Note that from Lemma 2 and Lemma 3 it also turns out that, when we sim-
ulate q with fq, and traverse t top-down, in most cases we only look for the
first elements that are in a result chain. When we find one, the correspond-
ing part of the process stops. It seems hard to find such an implementation
strategy that would not process these elements in a top-down traverse. Thus,
we can say that we only process those edges that are necessary to process.

XPgraphs with several upper nodes. Unfortunately, till now, we have
not found any rewriting technique with which we could simulate an XPath0

expression, whose XPgraph has several upper nodes, with a structural recur-
sion not using registers. However, with registers, the simulation is almost
straightforward.

Extended Structural Recursion and XSLT 195

Let u1, . . . um be the upper nodes of XPq. For ui denote XPui
q the subtree

reachable from ui in XPq (1 ≤ i ≤ m). Clearly, each XP
ui
q represents a

“subquery” of q. For

q3 = self::a/child::b/desc::d/par::a

these subqueries are self::a/child::b/desc::d and desc::d/par::a (cf.
XPq3

in Fig. 10(a)). With the results of the previous paragraphs, the corre-
sponding structural recursion, fui

q , can be given. Note that a leaf a of XPq may
appear in both XPui

q and XP
ui+1
q (1 ≤ i ≤ m−1). To differentiate between the

appropriate structural functions, we denote them fia, fi+1
a , respectively. With

this for such leaves we require Xa
fi
a

= Xa
fi+1
a

. The intuition is clear, simply, we

are to connect structural recursions fui
q and f

ui+1
q .

However, here, in the structural recursion we have to repeat the preceding
a leaves as well, otherwise it is not difficult to see, we may lose elements of the
result. We denote these new structural recursions fui

q and f
ui+1
q again. fq is

constituted by the structural functions of fui
q -s (1 ≤ i ≤ n). fu1

, . . . , fum are
the upper structural functions and, since the aim node is reachable from um,
we designate fum to be the root structural function of fq. It is important to
note that the size of fq is linear in the size of q.

As an example, consider fq3
= (fa1

, fb, f
1
d, fa2

, f2d) of Example 3 with register
restriction Xd

f1
d

= Xd
f2
d

. Here, the root structural function is fa2
.

Theorem 1 Let q be an XPath0 expression without predicates. Then fq ≃ q.

Proof. For e ∈ E.t with e ∈ Rt
reg(a, fa), or shortly e ∈ Rreg(a, fa), we are to

indicate that (i) e ∈ Rt(a, fa) (ii) e satisfies all register restrictions Xa
fa

= Xa
fσ

σ ∈ Σ. (For fia, register restrictions Xa
fi
a

= Xa
fi+1
a

should also be satisfied.)

Assume now that q = χ1 :: τ1/ . . . /χn :: τn, XPq has two upper nodes,
u1, u2, and the common leaf represents τi (1 ≤ i ≤ n − 1). q ′ := χi+1 ::

τi+1/ . . . /χn :: τn. Clearly, for an arbitrary document tree t, e0 ∈ E.t, e ∈

q(e0) iff there exists ē ∈ E.t, ē ∈ qτi
(e0) s.t. e ∈ q ′(ē). Hence, using the

results of Corollary 1 and Lemma 3 e ∈ q(e0) iff e ∈ Rt
reg(τn, fτn). Since the

root structural function is fu2
, fq may only stop on edges in Rt

reg(τn, fτn). (If
there was not any root structural function, since τi is the aim node of XPu1

q , fq
would also stop on edges in Rt

reg(τi, f
1
τi

), thus q and fq would not be equivalent
(see Definition 3)). All in all, we get that e ∈ q(e0) iff fq stops on e. The
proof can be continued inductively on the number of upper nodes of XPq in
the same way. �

196 B. Kósa, A. Benczúr, A. Kiss

Now, one may find too costly that for example in fq3
we traverse the whole

input with (fa2
, f1d), with which, remember, we seek for a edges with d chil-

dren. There may be too many of such a edges that are not included in the
result, and another implementation would not take care of them, since in the
previous steps it has already found the appropriate d edges with a b ancestor,
whose parent is a. On the reverse side of the coin, in most cases elements
do not have descendants with the same name, in these scenarios it is enough
to check the first a elements. This information can be obtained when the
structure of the input is given by an XML Schema or a DTD. In [4] we show
how DTDs and extended DTDs work together with our methods and handle,
among other things, the preceding problem.

XPath0 with predicates

In order to ease the notation, we shall assume that

q = χ1 :: τ1[p1]/ . . . /χn :: τn[pn].

Here, τi is called the base of pri-s (1 ≤ i ≤ n), while

qsk = χ1 :: τ1/ . . . /χn :: τn

is called the skeleton (of q). First, we suppose that each pi consists of a single
atomic condition, qpi = c or qpi = x. Furthermore, for a moment, we also
assume that all qpi -s are of the form self::* or self::τi.

Then, when we construct fq, the τi row of fτi
should be completed with

val(τi) = c or val(τi) = x condition in accordance with the conditions of pi-s.
(If there is already a condition, then the conjunction of the conditions should
be taken.) In the else branch (if it has not given previously) fτi

should call
itself.

Lemma 4 Keeping the previous notation q ≃ fq.

Proof. The statement trivially follows from Theorem 1 and of the additional
rule of construction. �

XPath0 without embedded predicates. Loosening our restrictions, we
only assume now that the predicates consist of a single atomic condition,
whose XPath0 expression does not contain predicates. Using the indexing of
edge tests of the previous subsection, again, we shall assume that the edge
tests of q are all different from each other. Straightforwardly, the XPath0

Extended Structural Recursion and XSLT 197

expression of a predicate qp = χ1 :: τ1/ . . . /χk :: τk can be rewritten as
self::τ0/χ1 :: τ1/ . . . /χk :: τk, where τ0 is the base of qp. Similarly, condition
qp = θ means the same as

self::τ0/χ1 :: τ1/ . . . /χk :: τk[self::*=θ] (θ ∈ {c, x}),

consequently qp can be simulated using the technique of the previous para-
graph. In what follows, we shall always use this rewriting.

Next, by means of register restrictions, we are to “join” the structural re-
cursions of predicates with the structural recursion of the skeleton using bases
as connection points. Hence, when we rewrite qp, we should take the base as
the aim node, which was the starting point of qp originally. This means that
we move in the opposite direction. Consequently, if in qp χj is ch or par, then
in the XPgraph of qp we should change the ch labels to par labels and vice
versa (1 ≤ j ≤ k). With this fqpi , or shortly fpi

, can be constructed. The
structural function corresponding for the predicate of base τi will be denoted
f
pi
τi

.
In the structural recursion of the skeleton, fsk, we repeat each base (remem-

ber that in a child- or parent-chain u1 . . . um, if we are to repeat uk, us, then
fu1

is called in its u1 row only once (1 ≤ k, s ≤ m)). Again, if we did not do
so, we may lose elements of the result.

To use bases as connection points, we add the restrictions Xτi

fτi
= X

τi

f
pi
τi

. fq is

constituted by the structural functions of fpi
-s, fsk and the preceding register

restrictions. Its upper structural functions are the structural functions of
upper nodes. Moreover, suppose that XPu is the XPgraph containing the aim
node of the skeleton. Then fu is designated to be the root structural function.
As an example consider the rewriting of q1, f = (fa1

, fb, f
1
d, fa2

, f2d, f
pr1
c , f

pr1
a1

)

of Example 3.

Theorem 2 Let q be an XPath0 expression s.t. each edge test has at most
one predicate, and the XPath0 expressions of these predicates do not contain
predicates, then q ≃ fq.

Proof. The theorem straightforwardly follows from the previous considera-
tions. �

Corollary 4 Let q be an XPath0 expression without variables. Then for an
arbitrary document tree t, fq(t) can be constructed in O(|f||t|) time. If the size
of variables, i.e., the size of the list of edges which the variable is equal to, is
restricted with a constant, the evaluation of fq(t) still works in linear time. In
worst case scenarios the construction can be accomplished in O(|f||t|2) time.

198 B. Kósa, A. Benczúr, A. Kiss

General case. Firstly, we allow Boolean combinations of atomic conditions
in the predicates. Without loss of generality, we may suppose that base τr has
predicate (¬)(qp1 = b1)θ1 . . . θk(¬)(qpk = bk); with (¬) we indicate that there
may be a negation (θi ∈ {∧,∨}, 1 ≤ i ≤ k). Then the corresponding register
restriction is of the form: R̂eg1θ1 . . . θkR̂egk, where R̂egi ∈ {Regi,¬Regi}, and
Regi is Xτr

fτr
= Xτr

f
pri
τr

. In R̂egi Regi is negated if the corresponding qpi = bi

condition is negated.
Secondly, if we allow predicates in the XPath0 expressions of predicates,

then the rewriting algorithm can be continued recursively. Again, the size of
the result structural recursion is linear in the size of the simulated XPath0

expression.

5 Rewriting of XSLT0

As in the previous section, first we have to define the equivalence of an XSLT0

program and a structural recursion.

Definition 6 Let t, t ′ be document trees. Then t is equivalent with t ′, if
there is a one-to-one mapping φ : V.t → V.t ′ s.t. (i) φ(u0) = u ′

0, where
u0, u

′
0 denote the roots of t and t ′, respectively. (ii) For e = (u, a, v) ∈ E.t,

e ′ = (φ(u), a, φ(v)) is also in E.t ′, and val(e) = val(e ′). (iii) If for e1 =

(u1, a1, v1), e2 = (u2, a2, v2) ∈ E.t, e1 precedes e2, then (φ(u1), a1, φ(v1)) also
precedes (φ(u2), a2, φ(v2)).

Definition 7 For an arbitrary XSLT0 program P and structural recursion f,
P is equivalent with f, if for all document tree t, τP(t) is equivalent with f(t).

Rewriting of (m,σ)-rules

First, we are to simulate a single (m,σ)-rule, T , with a given variable assign-
ment. For this we assume that T does not construct anything just selects a
list of edges for further processing in mode r. An instantiated template then
simply constructs a ψ edge and stops. Furthermore, remember that each pro-
gram contains a special (st, /)-rule, which is called on the document edge and
constructs a result edge as the document edge of the output. Here, we also
suppose that this rule invokes the next template in σ descendants in mode
m, i.e., T is called. The corresponding program is denoted PT. With these
suppositions we get that PT constructs a star of ψ edges.

Extended Structural Recursion and XSLT 199

Example 10 Consider this rather artificial example, where T is called on a
edges, and if the edge in question has a c ancestor with value 5, the next
template is invoked on parent b, otherwise on children c.

template st(/, ǫ) (Tst)

return

if true then {result : {}} at-expr: m(desc::a, ǫ, ǫ);

end.

templatem(a, ǫ) (T)

return

if anc:c= 5 then {} at-expr: r(par::b, ǫ, ǫ);
if true then {} at-expr: r(child::c, ǫ, ǫ);

end.

template r(b, ǫ) (T1) template r(c, ǫ) (T2)

return return

if true then {ψ : {}} if true then {ψ : {}}

end. end.

Remember that an (m,σ)-rule contains conditions of the form: if ci then
zi; where zi ∈ F∆(AT) (forests with edge labels from ∆ and with possible
at-expression leaf labels) (1 ≤ i ≤ k). Since T constructs nothing, each zi is a
node with at-expression r(p, ǫ, ǫ), where, remember, p is an XPath0 expres-
sion, the first ǫ means T has no parameters, the second ǫ indicates that there
is not any variable assignment. In the sequel p will be referred as xp(zi).

It is easy to see now that such a condition works in the same way as qi :=

self::σ[ci]/xp(zi). Denote XPi the XPgraph of qi. Then we may speak
of the aim node of the ith condition. Clearly, the corresponding structural
recursion of qi, Tfqi

can be constructed (here T in the subindex implies that
the structural recursions simulates a condition in template T). Remember that

Tfqi
is divided into two structural recursions representing

self::σ/ci (predicate) and self::σ/xp(zi) (skeleton).

Denote them Tfci
and Tfzi

, respectively.
Owing to its distinguished role, the representation of σ will be called match-

ing node. Since we are to call structural recursion Tfqi
on every possible sub-

tree {σ : t} of the input, σ should also be repeated. If ci is a real condition,

200 B. Kósa, A. Benczúr, A. Kiss

then σ is also a base, and according to the rewriting rules of XPath0 expression
with predicates, every base should be repeated. However, if ci is constant true,
then we should repeat σ explicitly. In the rewriting of the program of Example
10, in order to be able to simulate PT, we introduce two new constructions.

Tst
f/ :({/ : t})= {result : {

z1

T fb(t),
z2

T fa(t)}}

c1

T fc : ({c : t})= if val(c) = 5 then c1

T fa(t)

else c1

T fc(t)

({∗ : t})= c1

T fc(t)

c1

T fa : ({a : t})= {ψ : {}}@c1

T fa(t)

({∗ : t})= c1

T fa(t)

z1

T fb : ({b : t})= if n.i.(z1

T fa)(t)) then {ψ : {}}@z1

T fb(t)

else z1

T fb(t)

({∗ : t})= z1

T fb(t)

z1

T fa : ({a : t})= {ψ : {}}

({∗ : t})= {}, Xa
c1
T

fa
= Xa

z1
T

fa

z2

T fa : ({a : t})= z2

T fc(t)@
z2

T fa(t)
z2

T fc : ({c : t})= {ψ : {}}

({∗ : t})= z2

T fa(t) ({∗ : t})= {}

if e ∈ X̃a
c1
T

fa
then delete z2

T fa(e)

else if true then delete z1

T fa(e)

The first of these new constructions is in the right side of the / row of

Tst
f/. Namely, the leaf of {result : {}} is labelled with a set of structural

functions z1

T fb(t),
z2

T fa(t) instead of a single structural function (cf. Fig. 6),
in notation {result : {

z1

T fb(t),
z2

T fa(t)}}. With this we indicate that both the
results of z1

T fb,
z2

T fa called on t should be appended to the result edge. Here,
z1

T fb,
z2

T fa(t) are the root structural functions of Tfz1
,T fz2

. Note that the root
structural function c1

T fc of Tfc1
is not called anywhere, however, in order to be

able to construct the result of Tfz1
, Tfc1

should also be evaluated, thus when
we call z1

T fb, implicitly we also call c1

T fc.
The second condition is introduced so as to be able to simulate conditions

if ci then zi;. The meaning of

Extended Structural Recursion and XSLT 201

if e ∈ X̃a
c1
T

fa
then delete z2

T fa(e)

else if true then delete z1

T fa(e),

is that if edge e = (u, a, v) of document tree t is processed by the a row of
c1

T fa (e ∈ Xa
c1
T

fa
) and this edge does not become unreachable in Uf ⊓ t after

the evaluation of n.i. conditions (this is denoted with (e ∈ X̃a
c1
T

fa
)), then

edge ((
z2

T fa, u), a, (
z2

T fc, v)) (z2

T fa called on e) should be deleted from Uf ⊓ t.
Otherwise edge ((

z1

T fa, u), a, (w, v)) (z1

T fa called on e) should be deleted. Since
c1

T fa represents the aim of the XPath0 expression of c1, if e is in Xa
c1
T

fa
, and the

corresponding edge is kept, then c1 is satisfied by the appropriate subgraph
of e, hence this branch of the condition is to be executed. (Note that as a
result of an {a : t} singleton z2

T fa calls z2

T fc, while z1

T fa calls no other structural
function, thus the corresponding node is linked to w in UfT

. Consequently,
edges ((

z2

T fa, u), a, (
z2

T fc, v)), ((
z1

T fa, u), a, (w, v)) are surely in Uf ⊓ t.)
As we have already indicated the matching nodes of XP1, XP2 should be

repeated, which is the a node in both XPgraphs. In the first case a is a child
of b, hence according to the rules of repetition z1

T fb should call itself in its b
row. Note that b is also the aim node of XP1, and the aim node should also
be repeated. However, according to the rules of repetition, it is enough to call
z1

T fb only once.
In the second case z2

T fa calls itself in the a row. Note that according to
the rewriting rules of XPath0 expressions, since it is the aim node, again, we
should also repeat c.

In the general case in its / row Tst
f calls all of the root structural functions

of Tfqi
-s, i.e., {result : {

z1

T fσ1
, . . . ,

zk

T fσk
}} should be constructed on the right

side of the / row, where zi

T fσi
denotes the root structural function of Tfqi

(1 ≤ i ≤ k). (Remember that Tfqi
represents condition if ci then zi of T .)

Furthermore, when we are to simulate conditions:

if c1 then z1; . . . if ck then zk;

then the following should be written:

if e ∈ X̃c1
T

fa
then delete z2

T fa(e), . . . ,
zk

T fa(e)

if e ∈ X̃c2
T

fa
then delete z1

T fa(e),
z3

T fa(e) . . . ,
zk

T fa(e)

...
...

if e ∈ X̃ck
T

fa
then delete z1

T fa(e),
z1

T fa(e) . . . ,
zk−1

T fa(e)

202 B. Kósa, A. Benczúr, A. Kiss

Here, the evaluation ci

T fa is independent from the evaluation z1

T fa, . . . ,
zk

T fa.
Thus, first ci

T fa-s should be evaluated and then only the remaining z1

T fa should
be called on e (1 ≤ i ≤ k).

Theorem 3 Keeping the above notation and suppositions, PT is equivalent
with fT.

Proof. Let t be a document tree. Suppose that T is called on edges ê1, . . . , êr,
for êi the sth condition is satisfied, and the (r, σs)-rule is called on edges
e1, . . . , ek. Remember that this rule constructs a single ψ edge. Hence as
a result of êi P constructs a node with k outgoing ψ edges. Denote ψei

the ψ edge constructed on ei (1 ≤ i ≤ k). From Theorem 2 we know that
when Tfzs starts on êi and it stops on e1, . . . , ek. Furthermore, for each ei

it constructs a ψ edge (1 ≤ i ≤ k). Hence, as a result êi Tfqs constructs
a node with k outgoing ψ edges. Additionally, in both cases ψei

precedes
ψej

, if ei precedes ej in document order. With this, the construction of the
corresponding mapping φ (Definition 6) is trivial. �

Rewriting of programs with several rules

Programs with a given variable assignment. Now, we consider an XSLT0

program P with rules T1, . . . , Tm. Again, we assume that there is a given
variable assignment ρ. We do not assume that zi-s are single at-expressions,
but for the sake of transparency, we suppose that they contain only one at-
expression as a leaf label. This leaf will be referred as at-leaf. This means that
in its ith condition Tj may call at most one Tk (1 ≤ j, k ≤ m). The XPath0

expression of this at-expression is still denoted xpj(zi) or xp(zi), if j is clear
from the context. We also assume that the edge tests of aim nodes of xp(zi)-s
are all different from ∗-s (except for (st, /)-rule). From this, it follows that in
all cases Tj in its ith condition calls the same Tk.

To delineate the relationships among the templates, we define an auxiliary
graph, the precedence graph (of rules of P). Its nodes are labelled with Ti-s.
There is an edge from Ti to Tj labelled with k, if the kth condition of Ti calls
Tj (1 ≤ i, j ≤ m).

Example 11 As an example of simulation, consider the following program
P = (T1, T2, T3) and its rewriting. In P T2 is called on b descendants of the
document edge. It constructs a b edge and calls T3 on c parents. T3 constructs
a tree {a : {b : {}}@{c : {}}} and stops.

Extended Structural Recursion and XSLT 203

template st(/, ǫ) (T1)

return

if true then {result : {}} at-expr: m(desc::b, ǫ, ǫ);

end.

templatem(b, ǫ) (T2)

return

if true then {b : {}} at-expr: m(par::c, ǫ, ǫ);

end.

templatem(c, ǫ) (T3)

return

if true then {a : {b : {}}@{c : {}}}

end.

T1
f/ : ({/ : t}) = {result :

z1

T1
fb(t)}

({∗ : t}) = {}

z1

T1
fb : ({b : t}) = z1

T1
fb(t)

({∗ : t}) = z1

T1
fb(t)

z1

T2
fc : ({c : t}) = if n.i.(z1

T2
fb(t)) then {b : {}}@z1

T2
fc(t)

({∗ : t}) = z1

T2
fc(t)

z1

T2
fb : ({b : t}) = {ψ : {}}

({∗ : t}) = {}, Xb
z1
T1

fb
= Xb

z1
T2

fb

z1

T3
fc : ({c : t}) = {a : {b : {}}@{c : {}}}@z1

T3
fc(t)

({∗ : t}) = z1

T3
fc(t), Xc

z1
T2

fc
= Xc

z1
T3

fc

The rewriting works similarly as in the previous subsection. The main
difference is that here, instead of a star of ψ edges an arbitrary document tree
is constructed. In order to properly simulate this construction, first, we have
to note that constructions should be accomplished, when the matching node
is reached. In other words this means that in most cases the construction
should take place in the µi row of

zj

Ti
fµi

, where µi denotes the matching node

of template Ti (1 ≤ i ≤ m) (here, we have also assumed that the jth condition

204 B. Kósa, A. Benczúr, A. Kiss

is satisfied first). This is the case in T1 and T3 in our example, where the
matching nodes are b and c.

It may happen, however, that
zj

Ti
fµi

is called in the check of a not-isempty
condition, thus its construction does not appear in the result. This is the case
in T2. It is easy to see now that in this case the first axis in xp(zj) is either
par, or anc. (Remember that the jth condition, if cj then zj, is considered
as self::µi[cj]/xp(zj).) Denote u1 the upper node of the first XPgraph of
self::µi/xp(zj). (This means that there is a directed path w1 . . . ws in this
XPgraph, where w1 = u1, ws = µi and the edges are not labelled or they
are labelled with par.) Construction should take place in the u1 row of

zj

Ti
fu1

.

More accurately, in the then-branch of
zj

Ti
fu1

.

Now, suppose that the construction takes place in the ϕ row of
zj

Ti
fϕ and

let
zj

Ti
fσ(t) be the structural function to be called there. Then (in the then-

branch) we construct zj changing its at-expression label to
zj

Ti
fσ(t). In our

example in T1, this new forest is {result :
z1

T1
fb(t)}. (In T3 z1 does not have any

at-expression leaf label, hence it should be used without changes.)
Furthermore, in fP we have to connect the structural recursions of (m,σ)-

rules using the precedence graph. For edge (Ti, s, Tj) we add restriction, X
αi

s

f
αi

s

=

X
µj

fµj
(1 ≤ i, j ≤ m), here αi

s denotes the aim node of xpi(zs).

Note that fP does not specify how the basic forests constructed by struc-
tural recursions of templates should be connected. Consequently, it does not
guarantee any order among the basic forests. In what follows, we show how
the output should be constructed and how the order of the basic forests should
be defined. Meanwhile, we also establish the equivalence of P and fP.

Instantiation of an (m,σ)-rule by another. As a first step, recall the
semantics of XSLT0. Remember that if (e,m, ρ) is a local configuration, then
e ∈ E.t, m is a mode, ρ is a given variable assignment, and it shows that
(m,σ)-rule T is to be applied on e (here lab(e) = σ and the parameters of
T are in the domain of ρ). Now, let Tj, Tk be (mj, σj)-, (mk, σk)-rules and
e1, e2 ∈ E.t. We say that (Tj, e

1) instantiates (Tk, e
2) in its sth condition, if

there is a ξ ∈ T ∆(LC∗(t)) (LC∗(t) denotes sequences of local configurations)
s.t. in a former step, location configuration (e1,mj, ρ) was substituted with
the result of Tj called on e1, fo, where the sth condition of Tj was satisfied,
and as a result we get ξ. Furthermore, in fo there is a leaf label (e2,mk, ρ),
which is to be substituted with the result of Tk called on e2 (1 ≤ j, k ≤ m).
Here, lab(e1) = σj and lab(e2) = σk.

Belonging to the same calling of fTj
. To catch this notion with struc-

Extended Structural Recursion and XSLT 205

tural functions we introduce two notions. Suppose that GfP ,t has already been
constructed. For a moment, however, suppose that we rewrite the premises
that have already been deleted. For edges e1, e2 ∈ E.t, e1 ∈ Rreg(µj, fµj

),

e2 ∈ Rreg(α
j
s, fα

j
s), we are to define and check when e1, e2 belong to the same

call of fTj
. Here, remember that e1 ∈ Rreg(µj, fµj

), e2 ∈ Rreg(α
j
s, fα

j
s) mean

that structural functions respectively representing the matching node of Tj

and the aim node of its sth condition are called successfully on e1 and e2.
Intuitively, e1 and e2 belong to the same of fTj

, if there is a path from e1 to

e2 specified by xpj(zs) in GfP ,t with the rewritten premises, which shows that
Tj was instantiated on e1, and e2 was selected for further processing.

Formally, consider the XPgraph of the skeleton of the sth condition of Tj.
Suppose that u1, . . . , ur are the upper nodes. Suppose also that each XPu

i

has two leaves v2i−1, v2i (1 ≤ i ≤ r) (Fig. 10(d)). Denote evi
∈ E.UfP

the
edge corresponding to the then-branch of the vi row of fvi

(1 ≤ i ≤ 2r). e1

and e2 belong to the same call of fTj
, in notation (fTi

(e1, e2)), if there exist

edges in E.t e0, . . . , er s.t. e0 = e1, er = e2, (i) ei ∈ Rreg(v2i, f2i), and ei ∈

Rreg(v2i+1, f2i+1) (1 ≤ i ≤ r− 1). (ii) for (ev2j+1
, ej), (ev2j+2

, ej+1) ∈ E.UfP
⊓ t,

(ev2j+2
, ej+1) is reachable from (ev2j+1

, ej) through a path containing exactly
one neighbouring premise and then-edge pairs (the ancestor images of these
conditional edges correspond to the u2j+1 row of fu2j+1

) (0 ≤ j ≤ r). (Consider
Fig. 10(d) again.) Here, (i) means that ei satisfies the corresponding register
restriction Xv2i

fv2i
= X

v2i+1

fv2i+1
. On the other hand, condition (ii) says that ej, ej+1

“correspond” to the two leaves of XPuj+1.
Note that, an algorithm that takes Ti and edges e1 ∈ R(µi, fµi

) as input
and finds all those edges e2 to which (fTi

(e1, e2)) holds, uses only the edges of
paths from (ev2j+1

, ej) to (ev2j+2
, ej+1) of condition (ii). Thus, it is possible to

develop such an algorithm working in O(|t||f|) time.
Instantiation of structural functions. With Inst(fTi

, e1, s, fTj
, e2) we

denote that e1 ∈ Rreg(µi, fµi
), e2 ∈ R(αi

s, fα
i
s), e

2 ∈ Rreg(µj, fµj
), and

(fTi
(e1, e2)). Clearly, with this definition we are to simulate the instantiation

of Tj by Ti in the sth condition. Note that, here e2 also satisfies restriction

X
αi

s

f
αi

s

= X
µj

fµj
.

Note also that, when for e1 we have found an edge e2 s.t. fTi
(e1, e2), then

the appropriate Tj, to which Inst(fTi
, e1, s, fTj

, e2) holds, can be found using
the precedence graph.

In what follows, the template to be called on the document edge is denoted
Tst.

206 B. Kósa, A. Benczúr, A. Kiss

Definition 8 Keeping the above notations, we say that fTr is called on e via
the document edge (in the kth step), if there exists a sequence of edges of
E.t e1, . . . , ek, and fTi1

, . . . , fTik
, s.t. fTi1

, fTik
are respectively the same as

fTst
, fTr , and Inst(fTij

, ej, sj, fTij+1
, ej+1) (1 ≤ j ≤ k− 1).

Note that register restrictions connecting matching nodes and aim nodes
of different templates guarantee that if a subgraph of the input is processed
by fTi

, then the result is only included in the output, if fTi
is called via the

document edge.

Lemma 5 For given XSLT0 program P = (T1, . . . , Tm), document tree t,
e1, e2 ∈ E.t, (Ti, e

1) instantiates (Tj, e
2) in its sth condition iff fTi

is called
on e1 via the document edge, and Inst(fTi

, e1, s, fTj
, e2).

Proof. We use induction on the number of steps k in which fTi
has been

called on e1 via the document edge. First suppose that k = 0, i.e., fTi
is fTst

and e1 is the document edge.
⇒: Clearly, in this case fTi

is called on e1 via the document edge. Suppose
now that Ti, Tj are (mi, σi)-, (mj, σj)-rules. Then (Ti, e

1) instantiates (Tj, e
2)

in its sth condition, if there is a ξ ∈ T ∆(LC∗(t)) s.t. in a former step, location
configuration (e1,mi, ρ) was substituted with the result, fo, of the sth con-
dition of Ti called on e1. Furthermore, in fo there is a leaf label (e2,mj, ρ),
which is to be substituted with the result of Tj called on e2 (1 ≤ j, k ≤ m).

The fact that Ti has been called on e1 means that e1 ∈ R(µi, fµi
). Note

that, since this instantiation of Ti does not depend on any other instantiation
of Tj-s, here e1 should not satisfy any rule register restrictions (1 ≤ j ≤ m).
Hence e1 ∈ Rreg(µi, fµi

). Since the sth condition is of the form:

qs = self::σ[cs]/xpi(zs),

the fact that the sth condition of Ti has been satisfied guarantees that e2 ∈

qs(e
1) (Theorem 2), which means that e2 ∈ R(αi

s, fαi
s
). Since Tj is called on e2,

we know that e2 ∈ R(µj, fµj
). It is also obvious that (fTi

(e1, e2)). Consequently

Inst(fTi
, e1, s, fTj

, e2). Furthermore, it has also turned out that fτj
is called

on e2 via the root.
The general step of this direction is similar.
⇐: The proof is similar to the proof of the other direction. In this case, we

only have to change the “direction” of the reasoning. �

Connection of the basic forests. Finally, we should connect the basic
forests in an order corresponding to the order given by the simulated XSLT0

Extended Structural Recursion and XSLT 207

program. Here, the fact that Inst(fTi
, e1, s, fTj

, e2) holds means that a basic

forest fo belonging to the sth condition of Ti is constructed. Label its root
and at-leaf with (fTi

, e1), (fTj
, e2) respectively. (Remember that the at-leaf is

the leaf previously labelled by an at-expression.) The result forest is denoted
fo(fTi

, e1). Afterwards, we connect the basic forests with ε edges. Namely, we
add ε edges from leaf labels of (fTj

, e2) to root labels (fTj
, e2). At the end these

ε edges should be eliminated. Note that, with the connection of the at-leaf
(fTj

, e2) of fo(fTi
, e1) and the root of fo(fTj

, e2), we simulate that moment,
when in the instantiation of Tj by Ti, the leaf with location configuration label
(e2,mj, ρ) is substituted with the result of Tj called on e2.

Order of the result. In order to define an order in the result, we first give
an order among the basic forests. We construct an auxiliary graph, InstP,t,
whose nodes are labelled with (fTi

, e)-s. We add an edge from (fTi
, e1) to

(fTj
, e2) with label s, if Inst(fTi

, e1, s, fTj
, e2).

Now, fo(fTi
, e1) precedes fo(fTj

, e2), (i) if (fTi
, e1) and (fTj

, e2) have a com-

mon parent (fTs , e) in InstP,t, and e1 precedes e2 in the document order
(1 ≤ i, j ≤ m). Clearly, this case represents that, when Ts has been in-
stantiated on e and both e1 and e2 have been chosen for further processing.
Thus e1 and e2 have been selected by the same XPath0 expression and in the
same mode, consequently i = j holds.

(ii) Denote (fTs , e) the first common ancestor of (fTi
, e1) and (fTj

, e2) in

InstP,t. Suppose that (fTk
, e3), (fTk

, e4) are children of (fTs , e), and (fTi
, e1),

(fTj
, e2) are reachable through (fTk

, e3), (fTk
, e4) respectively. Then fo(fTi

, e1)

precedes fo(fTj
, e2), if fo(fTk

, e3) precedes fo(fTk
, e4).

Now, if fo(fTi
, e1) precedes fo(fTj

, e2), then the edges of fo(fTi
, e1) precedes

the edges of fo(fTj
, e2). The order of the edges in fo(fTi

, e1) is given by the
corresponding ssd-expression.

Theorem 4 Let P an XSLT0 program without variables, then fP is equivalent
with P.

Proof. Let t be a document tree. Clearly, the construction of τP(t) can
be described as a sequence of (m,σ)-rules Ti1 , . . . , Tik s.t. in the jth step Tij
instantiates Tij+1

(1 ≤ j ≤ k − 1). Here, Ti1 is the (st, /)-rule, and there may
exist several such sequences for the same construction of τP(t), but they are
all of the same length.

Now, we prove the theorem using induction on this length. If k = 2, the
statement follows from Lemma 5.

Next, suppose that the statement holds for all document trees, where the

208 B. Kósa, A. Benczúr, A. Kiss

aforementioned sequences have length ≤ k. Let t be such a document tree,
where this length is k + 1. Suppose that, in the last step Tik+1

is called on
location configuration (e,m, ρ). Trivially, if the corresponding leaf did not
have any location configuration label, i.e., the construction stopped before the
call of Tik+1

, then, according to our assumptions, the appropriate mapping φ1

(Definition 6) would exist between V.τP(t) and V.fP(t). We also know that
there is an edge e ′ and number s s.t. Inst(fTik

, e ′, s, fTik+1
, e). Furthermore,

using again Lemma 5, the result, tT, of Tik+1
called on e is equivalent with

the result, tf, of fTik+1
called also on e (e ∈ R(τ

ik+1
m , f

τ
ik+1
m

)). Hence, the

appropriate mapping φ2 can be given between V.tT and V.tf.
Now, we only have to extend φ1 with φ2. Denote φ this new mapping.

Obviously, condition (i)-(ii) of Definition 6 holds for φ. The truthfulness of
condition (iii) can be proven easily with the use of the rules of defining an
order among the connected basic forests. �

Infinite loops. It is not difficult to see that how our method avoids infinite
loops. Consider the following program P and its rewriting fP:

template st(/, ǫ) (T1)

return

if c1 = true then {c : {}}; at-expr: m(child::*, ǫ, ǫ)

end.

templatem(a, ǫ) (T2)

return

if c1 = true then {a : {}}; at-expr: m(desc::b, ǫ, ǫ)

end.

templatem(b, ǫ) (T3)

return

if c1 = true then {b : {}}; at-expr: m(anc::a, ǫ, ǫ)

end.

z1
T2
fa : ({a : t})= {a :z1

T2
fb(t)}@z1

T2
fa(t) z1

T2
fb : ({b : t})= z1

T2
fb(t)

({∗ : t})= z1
T2
fa(t) ({∗ : t})= z1

T2
fb(t)

z1
T3
fa : ({a : t})= if n.i.(z1

T3
fb(t)) then {b : {}}@z1

T3
fa

else z1
T3
fa(t)

({∗ : t})= z1
T3
fa(t)

Extended Structural Recursion and XSLT 209

z1
T3
fb : ({b : t})= {ψ : {}}

({∗ : t})= z1
T3
fb(t)

T2
fs : ({/ : t})= if true then z1

T2
fa(t) T3

fs : ({/ : t})= if true then z1
T3
fa(t)

Pfs : ({/ : t})= {/ : (T2
fs({/ : t}),T3

fs({/ : t}))},

Xa
z1
T2

fa
= Xa

z1
T3

fa
, Xb

z1
T2

fb
= Xb

z1
T3

fb

Clearly, for document trees t with root edge a having a b descendant, P
enters into an infinite loop. On the other hand, as fP traverses t top-down,
every edge is “considered” at most once. If an a edge has a b descendant,
then z1

T2
fa constructs an a edge, to which a b edge is connected constructed by

z1

T3
fa.
How variable assignment can be obtained. Till now, we have always

assumed the existence of a given variable assignment. In what follows, we
are to show, how this assignment, ρ, can be given. Remember that variable
definitions are only allowed to appear in the (st, /)-rule. Consider now variable
definition x = r. Here r is an XPath0 expression. Denote frox the root structural
function of the structural recursion fx representing r. Then, for an XSLT0

program P with templates T1, . . . , Tm, variables x1, . . . , xn, the {/ : t} row of

Pfs should extended with these root structural functions.

fs : ({/ : t}) = frox1
, . . . , froxn

, . . . , {/ : (T1
fs({/ : t}), . . . ,T1

fs({/ : t}))}

First, for a given document tree t, the results of fx1
should be constructed.

The edge-set on which fx1
stops gives ρ(x1). Next, ρ(x2) is calculated. Here,

we may have to use the result of ρ(x1). After the construction of ρ(xn) we
get ρ, and the construction of fP(t) should be continued with this variable
assignment. As an example, we give the rewriting of Example 1.

Tst
f/ : ({/ : t}) = x

Tst
fgr(t), {result :

z1

Tst
fgr(t)}

({∗ : t}) = {}

z1

Tst
fgr : ({group : t}) = z1

Tst
fgr(t)

({∗ : t}) = z1

Tst
fgr(t)

210 B. Kósa, A. Benczúr, A. Kiss

x
Tst
fgr : ({group : t}) = x

Tst
fid(t) x

Tst
fid(t) :({id : t})= x

Tst
fid(t)

({∗ : t}) = x
Tst
fgr(t) ({∗ : t}) = x

Tst
fgr(t)

x
Tst
f
pr
gr : ({group : t}) = if n.i.(x

Tst
f
pr
emp(t)) then xf

pr
gr(t)

else x
Tst
f
pr
gr(t)

({∗ : t}) = x
Tst
f
pr
gr(t)

x
Tst
f
pr
emp :({emp : t}) = x

Tst
f
pr
na(t)

({∗ : t}) = {}

x
Tst
f
pr
na : ({name : t}) = if val(name) = Ann then {ψ : {}}

({∗ : t}) = {}, X
gr

x
Tst

fgr
= X

gr
x

Tst
f
pr
gr

c1

T1
fgr : ({group : t}) = if n.i.(c1

T1
fto(t)) then c1

T1
fgr(t)

else c1

T1
fgr(t)

({∗ : t}) = c1

T1
fgr(t)

c1

T1
fto : ({topMgr : t})= c1

T1
fna(t)

({∗ : t}) = {}

c1

T1
fna : ({name : t}) = if val(name) = John then {ψ : {}}

({∗ : t}) = {}

z1

T1
fgr : ({group : t}) = {topGroup : {id :

z1

T1
fval
id (t)}}@z1

T1
fAnn
gr (t)@z1

T1
fgr(t)

({∗ : t}) = z1

T1
fgr(t), X

gr
c1
T1

fgr
= X

gr
z1
T1

fgr
, Xgr

z1
Tst

fgr
= X

gr
z1
T1

fgr

z1

T1
fval
id : ({id : t}) = {}

z1

T1
fAnn
gr :({group : t})= z1

T1
fAnn
gr (t)

({∗ : t}) = {} ({∗ : t}) = {}

c1

T2
fgr : ({group : t}) = if n.i.(c1

T2
fid(t)) then c1

T2
fgr(t)

else c1

T2
fgr(t)

({∗ : t}) = c1

T2
fgr(t)

c1

T2
fid : ({id : t}) = if val(id) = x then {ψ : {}}

({∗ : t}) = {}

Extended Structural Recursion and XSLT 211

z1

T2
fgr : ({group : t}) = {id :

z1

T2
fval
id (t)}}

({∗ : t}) = z1

T1
fgr(t), X

gr
c1
T2

fgr
= X

gr
z1
T2

fgr
, Xgr

z1
Tst

fgr
= X

gr
z1
T2

fgr

z1

T2
fval
id : ({id : t}) = {}

z1

T3
fid :({id : t})= {val(id) : {}}@z1

T3
fid(t)

({∗ : t}) = {} ({∗ : t}) = z1

T3
fid

6 Conclusions

In this paper we have introduced a new version of structural recursions, where
we have added registers to be able to connect the results of structural func-
tions called on the same XML document. To underpin the usefulness of this
extension, we have showed how a practically important fragment of XPath and
XSLT can be implemented with these structural recursions. As it has turned
out, our technique has the same efficiency as the fastest implementation algo-
rithm [8] known by the authors of this paper.

In the near future we shall work out how schema information given in the
form of extended DTD-s [12] can be incorporated into our model. Looking for
further optimization possibilities, we also plan to implement our techniques in
a software and compare its speed with the existing XPath and XSLT imple-
mentations.

References

[1] S. Abiteboul, P. Buneman, D. Suciu, Data on the Web: From Relations
to Semistructured Data and XML, Morgan Kaufmann Publishers, 2000. ⇒

167

[2] A. Benczúr, B. Kósa, Static Analysis of Structural Recursion in Semistruc-
tured Databases and Its Consequences. Advances in Databases and In-
formation Systems, 8th East European Conference Proceedings, 2004, pp.
189–203. ⇒ 166, 179

[3] A. Benczúr, B. Kósa, Satisfiability and Containment Problem of Structural
Recursions with Conditions with Respect to XML. To appear. ⇒ 166

[4] A. Benczúr, A. Kiss, B. Kósa, Implementation of XPath Using Structural
Recursions, Advances in Databases and Information Systems, 13th East
European Conference. To appear. ⇒ 196

http://www-rocq.inria.fr/~abitebou/
http://homepages.inf.ed.ac.uk/opb/
http://www.cs.washington.edu/homes/suciu/
mailto:abenczur@ullman.inf.elte.hu
mailto:balhal@inf.elte.hu
mailto:abenczur@inf.elte.hu
mailto:balhal@inf.elte.hu
mailto:abenczur@inf.elte.hu
http://people.inf.elte.hu/kiss/
mailto:balhal@inf.elte.hu

212 B. Kósa, A. Benczúr, A. Kiss

[5] G. J. Bex, S. Maneth, F. Neven, A Formal Model for an Expressive Frag-
ment of XSLT. 2000. Manuscript. ⇒ 166, 167, 170, 171, 172

[6] V. Breazu-Tannen, P. S. Buneman, Structural Recursion as a Query Lan-
guage, Proceedings of the 3rd International Workshop on Database Pro-
gramming Languages, 1991, pp. 9–19. ⇒ 166

[7] P. Buneman, M. Fernandez, D. Suciu, UnQL: a query language and algebra
for semistructured data based on structured recursion. The VLDB Journal,
(2000) 76–110. ⇒ 166, 167

[8] G. Gottlob, C. Koch, R. Pichler, Efficient Algorithms for Processing XPath
Queries, Proceedings of the 28th International Conference on Very Large
Data Bases, 2002. ⇒ 166, 211

[9] G. Gottlob, C. Koch, R. Pichler, XPath Processing in a Nutshell. ACM
SIGMOD Record, 32, 2 (2003) 21–27. ⇒ 167, 169

[10] G. Gottlob, C. Koch, R. Pichler, XPath Query Evaluation: Improving
Time and Space Efficiency, Proceedings of the 19th IEEE International
Conference on Data Engineering, 2003.

[11] W. Martens, F. Neven: On the complexity of typechecking top-down
XML transformations, Theoret. Comput. Science, 336, 1 (2005) 153–180.
⇒ 166

[12] W. Martens, F. Neven, T. Schwentick, G. J. Bex: Expressiveness and
complexity of XML Schema. ACM Transactions on Database Systems, 31,
3 (2006) 770–813. ⇒ 211

[13] T. Milo, D. Suciu, V. Vianu. Type checking for XML transformers, Pro-
ceedings of the Nineteenth ACM Symposium on Principles of Database
Systems, 2000, pp. 11–22.

[14] F. Neven. Automata, Logic and XML. Proceedings of the 16th Interna-
tional Workshop and 11th Annual Conference of the EACSL on Computer
Science Logic, 2002, pp. 2–26. ⇒ 165, 167

[15] Word Wide Web Consortium. Extensible Markup Language (XML) 1.1,
2004. http://www.w3.org/TR/2004/REC-xml11-20040204/ ⇒ 166, 167,
168

http://alpha.uhasselt.be/~gjb/
http://www.cse.unsw.edu.au/~smaneth/
http://alpha.uhasselt.be/~fneven/
http://www.cis.upenn.edu/~val/home.html
http://homepages.inf.ed.ac.uk/opb/
http://homepages.inf.ed.ac.uk/opb/
http://www.research.att.com/viewPage.cfm?PageID=128
http://www.cs.washington.edu/homes/suciu/
http://www.springerlink.com/content/100392/
http://www.dbai.tuwien.ac.at/staff/gottlob/
http://www.cs.cornell.edu/~koch/
http://www.dbai.tuwien.ac.at/staff/pichler/
http://www.dbai.tuwien.ac.at/staff/gottlob/
http://www.cs.cornell.edu/~koch/
http://www.dbai.tuwien.ac.at/staff/pichler/
http://www.dbai.tuwien.ac.at/staff/gottlob/
http://www.cs.cornell.edu/~koch/
http://www.dbai.tuwien.ac.at/staff/pichler/
http://lrb.cs.uni-dortmund.de/~martens/
http://alpha.uhasselt.be/~fneven/
http://www.sciencedirect.com/science/journal/03043975
http://lrb.cs.uni-dortmund.de/~martens/
http://alpha.uhasselt.be/~fneven/
http://ls1-www.cs.uni-dortmund.de/cms/schwentick.html
http://alpha.uhasselt.be/~gjb/
http://portal.acm.org/browse_dl.cfm?linked=1&part=transaction&idx=J777&coll=ACM&dl=ACM&CFID=42743088&CFTOKEN=39126472
http://www.cs.tau.ac.il/~milo/
http://www.cs.washington.edu/homes/suciu/
http://cseweb.ucsd.edu/~vianu/
http://lyle.smu.edu/sigmod2000/
http://alpha.uhasselt.be/~fneven/
http://www.w3.org/TR/2004/REC-xml11-20040204/

Extended Structural Recursion and XSLT 213

[16] Word Wide Web Consortium. XML Path Language (XPath) Version 1.0,
1999. http://www.w3.org/TR/1999/REC-xpath-19991116/ ⇒ 165, 166,
168, 169, 170

[17] Word Wide Web Consortium. XSL Transformations (XSLT) Version 1.0,
1999. http://www.w3.org/TR/1999/REC-xslt-19991116/ ⇒ 165, 166,
170, 175

[18] Word Wide Web Consortium. XML Path Language (XPath) 2.0, 2007.
http://www.w3.org/TR/2007/REC-xpath20-20070123/ ⇒ 168

[19] Word Wide Web Consortium. XSL Transformations (XSLT) Version 2.0,
2007. http://www.w3.org/TR/2007/REC-xslt20-20070123/

Received: April 26, 2009

http://www.w3.org/TR/1999/REC-xpath-19991116/
http://www.w3.org/TR/1999/REC-xslt-19991116/
http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://www.w3.org/TR/2007/REC-xslt20-20070123/

	1 Introduction
	2 Preliminaries
	3 Structural recursions
	4 Rewriting of XPath0
	5 Rewriting of XSLT0
	6 Conclusions

