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Experimental results on probable primality
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Abstract. In this paper we present experimental results on probable
primality. More than four billion of randomly chosen integers having 256,
512 and 1024 bits were tested. We realized more experiments than Rivest
did in 1991, and can confirm his observation: Miller–Rabin test does not
ameliorate the small prime divisors test followed by Fermat test with the
only base 2.

1 Introduction

Prime integers play a fundamental role in mathematics. They have always
been a source of interest and fascination. Since the appearance of public key
cryptography at the end of 1970’s (see, for instance [1,9]), they have become
more and more useful. RSA, Rabin cryptosystem, elliptic curve method, dis-
crete logarithm problem and many digital signature protocols are completely
based on large prime integers. By large, we mean that the considered numbers
have at least 256 binary digits, or around 77 decimal digits.

It is well-known (see, for instance, [5]) that the running time of algorithms
for constructing cryptosystem keys is dominated by the running time for gen-
erating prime integers. Finding rapid procedures for this latter task has, there-
fore, great importance.
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It is also well known that there is no efficient and practical deterministic
algorithm for quickly producing prime integers. That is why we only look for
non deterministic algorithms which give us integers that are primes with a
strong probability. There is a new look at the primality concept: an integer is
taken as prime, not because it is really prime in an exact mathematical sense,
but instead of that, it is prime because one thinks that nobody can factorize
it. Recently, an integer is called industrial-grade prime (the term is due to
H. Cohen) if its primality has not been proven, but it has undergone probable
prime test(s).

The purpose of this work is to confirm what was concluded by Rivest in [10],
as we made more experiments than Rivest. By analyzing experimental results
on 4.13 billion randomly selected large integers, we show that a particular
probabilistic algorithm for generating large prime integers based on three tests
is likely equivalent to a similar algorithm, but based on only two tests. More
precisely, our experimental results tend to indicate that using only two tests,
division by small prime divisors followed by the Fermat test (see, for example
[3,12]) produces the same results as using three tests: division by small primes,
then the application of Fermat test, followed by Rabin-Miller test (see, for
example [7,8]) with eight random bases. The Miller–Rabin test seems to be a
waste of time when added as the third one to the first two aforesaid tests.

The paper is organized as follows. In section 2 we review the three tests
composing the main algorithm and specify their formal parameters. In section
3 we briefly recall Rivest experimental results, and then we describe our own
experiments, present and analyze the computing results. Section 4 contains
conclusion and suggestion on possible forthcoming work.

In the sequel, we will adopt classical notation. In particular, N is the set
of non-negative integers. Let a, b, c ∈ N. Then gcd(a, b) denotes the great
common divisor of a and b, while the remainder of a, when divided by b is
denoted by a mod b. We write a = b [c] if c divides the difference a − b.
As usual, let π(x) denote the number of primes less than or equal to the real
number x. Finally, the bit length lb of a positive integer n =

∑k−1
i=0 2i ai is

lb = k, where ak−1 = 1, and ai ∈ {0, 1} if i = 0, . . . k − 2.

2 Three known tests

In this section we review three known tests and specify their formal parame-
ters. Let n > 1 be an odd integer for which we want to test primality.
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2.1 Small division test T1

This test is the trial division by small divisors, namely by primes that are
less than a fixed bound B. We divide n by all primes less than B. If we
find one divisor, then n is composite, otherwise n is a candidate to be prime.
Eratostenes sieve is applied to generate all primes between 2 and the bound
B.

2.2 Fermat test T2

Here we use a test based on the little Fermat theorem (see, for example [3,12]).
If an integer a satisfies gcd(a, n) = 1, we calculate an−1 mod n and compare
it to 1. If an−1 6= 1 [n], then n is composite, otherwise n is a candidate to be
prime.

2.3 Miller–Rabin test T3

Miller–Rabin test (see, for example [7,8]) is more efficient than Solovay and
Strassen probabilistic test (see, for instance [11,6]). Since n is odd, we can
uniquely find two positive integers r and s such that n − 1 = 2rs. Let a be
any integer such that gcd(a, n) = 1. If as 6= 1 [n] and ∀ j ∈ {0, 1, . . . , r − 1} :

a2js 6= −1 [n], then n is composite.
If n passes all three tests, then it is probably a prime integer. In other

words, we believe in its primality.

3 Results of our experiments

In this section, first we recall Rivest experimental tests [10], and then describe
our own experiments providing the main results.

3.1 Rivest experiences

In 1991, Rivest examined 718 million randomly chosen 256-bit integers. Firstly
he tested them by small divisors with the upper bound B = 104. 43, 741, 404

passed this first test. Of those, 4, 058, 000 passed Fermat test with the base 2.
Of those, no one was eliminated by Miller–Rabin test with 8 random bases.
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3.2 Our own experiments

Three kinds of experiments were realized with Maple software, versions 9.5

and 10, depending on the bit length: 256, 512 or 1024. We used ordinary
personal computers working with Pentium IV 3.4 GHz processor and 248 MB
of RAM. The main parameters were taken as in Rivest experiments:

• the upper limit of small primes is B = 104,
• the Fermat base is b = 2,
• the eight bases in the Miller–Rabin test are randomly chosen from the

set {3, 4, . . . , n − 2}.

In our case, we used blocks of integers and the number of randomly selected
integers in each block was mainly between 5 and 10 million. Sometimes we
used smaller or larger blocks as well.

We summarize the results in the next table where numbers N, N1, N2 and
N3 are defined as follows.

• N is the number of the randomly selected integers,
• N1 denotes the number of integers which passed the first test T1,
• N2 is the number of integers which passed both T1 and T2,
• N3 shows the number of integers which passed all the three tests.

Moreover, for i = 1, 2, and 3 let Ri = 100
Ni

N
.

We began to test more than one billion of integers whose bit lenght is 256,
more than what was tested by Rivest. We found that the time required by PCs
to run every range of 5 million of integers is around 40 minutes and around
80 minutes for every range of 10 million. For data see Table 1.

bit length N N1 N2 N3

256 1.13 × 109 68 781 054 6 381 145 6 381 145

512 109 60 875 654 2 820 804 2 820 804

512 109 60 893 522 2 822 109 2 822 109

1024 109 60 876 414 1 408 923 1 408 923

bit length N R1(%) R2(%) R3(%)

256 1.13 × 109 6.0868189 0.5647031 0.5647031

512 109 6.0875654 0.2820804 0.2820804

512 109 6.0893522 0.2822109 0.2822109

1024 109 6.0876414 0.1408923 0.1408923

Table 1.



Experimental results on probable primality 165

Then we tested two times one billion integers with bit lenght 512. And,
finally, we tested one billion of integers with lb = 1024. For comparison, see
again Table 1.

We emphasized that, in the three kinds of experiment, we found N3 = N2

implying R3 = R2.

4 Conclusions

I. In this work, we realized new experiments on large integers in order to
determine their primality. We tested more than four billion integers having
256, 512 and 1024 bits. They were all selected randomly. The main fact is
that, from those which passed the small divisor test and the Fermat test, no
one was blocked by the Miller–Rabin test. This result, based on more exper-
iments, confirms what was already observed by Rivest. With the parameters
mentioned above, the Miller–Rabin test does not improve the probabilistic
algorithm based on the two first tests. Hence it seems that the Miller–Rabin
test is unnecessary as the third stage of the three tests.

On the other hand, for future work, we suggest to replace the Miller–Rabin
test by an alternative one and to verify experimentally if this modification
brings any amelioration or not.
II. It seems that the upper bound on small primes is unnecessarily high. Both
Rivest and us first used B = 104, but now we suggest B = 300 or B = 3000

instead. Why? Because with B = 104 we filtered 93.91% of the attendants
independently from the bit length (supposing that lb is large enough). If we
have all the primes p1 = 2, p2 = 3, ..., pm ≤ B, then in the first step of the
3 tests they exclude expectedly

1 −

(

1 −
1

p1

) (

1 −
1

p2

)

· · ·

(

1 −
1

pm

)

(1)

part of the attendants. This formula gives 50% for B = 2, approximately
66.667% for B = 3, and so on, and provides 93, 911% for B = 104 (this was the
preferred case). But for B = 300 we already have 90, 245%, and going further,
for B = 3000 we obtain 93, 003%, which almost coincides with what we had
for B = 104 before.

The following table shows the comparison of running experiences of different
values B if lb = 256. One can observe, that if we decrease B, then the number
of random integers which failed the small prime divisor test also decreases,
but the final ratio of the integers survived all the three tests is approximately
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constant. Furthermore, the values in the third column of Table 2 coincide with
the values forecasted by (1).

B Size of sample Failed T1 Passed T1 ∧ T2 ∧ T3

10000 1.13 billion 93.913181 0.564703

3000 100 million 93.005612 0.564496

300 100 million 90.251749 0.564111

Table 2.
III. In the experiment we randomly chose a huge number of integers to clas-
sify them by three consecutive primality tests. Therefore, it is natural to
compare the number of integers passing through all three tests (the number
of industrial-grade primes) and the expected value of primes. Now we recall
the thesis of Dusart [2], providing good approximations of the function π(x).

Theorem 1 (Dusart, [2], p.36.) If x ≥ 1.332 · 1010, then

x

ln x

(

1 +
1

ln x
+

1.8

ln2 x

)

≤ π(x) ≤
x

ln x

(

1 +
1.0992

ln x

)

.

Let πn and dn =
πn

2n−1
denote the number of primes and the density of the

primes in the interval In = [2n−1; 2n − 1], respectively. By Theorem 1, we
obtain

0.0056 424 ≤ d256 =
π256

2255
≤ 0.0056 509 ,

0.0028 194 ≤ d512 =
π512

2511
≤ 0.0028 217 ,

0.001409 299 ≤ d1024 =
π1024

21023
≤ 0.001409 875 .

Note, that in the experiment we investigated 1.13 and 2 and 1 billion random
integers from the interval I256, I512 and I1024, respectively. Hence, with the
given cardinality of the samples, the expected values E256, E512 and E1024 of
primes, by Dusart’s theorem, satisfy the inequalities

6375919 ≤ E256 ≤ 6385530 ,

5638897 ≤ E512 ≤ 5643385 ,

1409299 ≤ E1024 ≤ 1409874 .
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The following table recalls the statistics about the candidates for primality
(the integers survived the three tests).

256 512 1024

cardinality of sample 1.13 billion 2 billion 1 billion

number of candidates 6381145 5642913 1408923

Table 3.

When the bit length is 256, then we gained 6381145 industrial-grade primes
and this number is in the interval [6375919 ; 6385530] bounding E256. Similarly
it is true when we choose random integers from I512. In the case of longest
bit length, 1408923 is not in the interval around E1024, but less then its lower
limit 1409299 (better case).

These data also reinforce the primality of integers passing through the three
tests.

Acknowledgement

The research is supported by János Bolyai Scholarship of HAS, by Hungarian
National Foundation for Scientific Research Grant No. T 61800 FT, and by
Mexican-Hungarian bilateral TeT.

References

[1] W. Diffie and M. E. Hellman, New directions in cryptography, IEEE
Transactions on Information Theory, 22 (1976), 644–654, (1976).

[2] P. Dusart, Autour de la fonction qui compte le nombre de nombres pre-
miers, Thesis, University of Limoges, France, 1998.

[3] N. Koblitz, A Course in Number Theory and Cryptography, Graduate
Texts in Mathematics, 2nd ed., Vol. 114, Springer-Verlag, 1994.

[4] A. K. Lenstra and E. R. Verheul, Selecting Cryptographic Key Sizes,
Journal of Cryptology, 14 (2001), 255–293.

[5] C. Lu, A. L. M. dos Santos, F. R. Pimentel, Implementation of Fast
RSA Key Generation on Smart Cards, Proceedings of the 2002 ACM
Symposium on Applied Computing, (2002), 214–220.



168 O. Khadir, L. Szalay

[6] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied
Cryptography, CRC Press, Boca Raton, Florida, 1997.

[7] G. L. Miller, Reimann’s Hypothesis and a Test for Primality, J. Comp.
and System Sci., 13 (1976), 300–317.

[8] M. O. Rabin, Probabilistic Algorithm for Testing Primality, J. Number
Theory, 12 (1980), 128–138.

[9] R. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signa-
tures and public key cryptosystems, Comm. ACM, 21 (1978), 120–126.

[10] R. L. Rivest, Finding four Million Large Random Primes, Proceeding of
the 10th Conference on Advanced Cryptology, LNCS, 537 (1991), 625–
626.

[11] R. Solovay and V. Strassen, A Fast Monte Carlo Test for Primality, SIAM,
Journal on Computation, 6 (1978), 84–85.

[12] D. R. Stinson, Cryptography, Theory and Practice, Third Edition, Chap-
man & Hall/CRC, 2006.

Received: February 14, 2009


