

Existence and data dependence for multivalued weakly Ćirić-contractive operators

Liliana Guran

Babeş-Bolyai University, Department of Applied Mathematics, Kogălniceanu 1, 400084, Cluj-Napoca, Romania.

email: gliliana.math@gmail.com

Adrian Petruşel

Babeş-Bolyai University, Department of Applied Mathematics, Kogălniceanu 1, 400084, Cluj-Napoca, Romania.

email: petrusel@math.ubbcluj.ro

Abstract. In this paper we define the concept of weakly Ćirić-contractive operator and give a fixed point result for this type of operators. Then we study the data dependence for the fixed point set.

1 Introduction

Let (X,d) be a metric space. A singlevalued operator T from X into itself is called contractive if there exists a real number $r \in [0,1)$ such that $d(T(x),T(y)) \leq rd(x,y)$ for every $x,y \in X$. It is well known that if X is a complete metric space, then a contractive operator from x into itself has a unique fixed point in X.

In 1996, Japanese mathematicians O. Kada, T. Suzuki and W. Takahashi introduced the w-distance (see [4]) and discussed some properties of this new distance. Later, T. Suzuki and W. Takahashi, starting by the definition above, gave some fixed points result for a new class of operators, weakly contractive operators (see [8]).

The purpose of this paper is to give a fixed point theorem for a new class of operators, namely the so-called weakly Ćirić-contractive operators. Then, we present a data dependence result for the fixed point set.

AMS 2000 subject classifications: 47H10, 54H25

Key words and phrases: w-distance, weakly Čirić-contraction, fixed point, multivalued operator

2 Preliminaries

Let (X, d) be a complete metric space. We will use the following notations:

P(X) - the set of all nonempty subsets of X;

 $\mathcal{P}(X) = P(X) \bigcup \emptyset$

 $P_{cl}(X)$ - the set of all nonempty closed subsets of X;

 $P_b(X)$ - the set of all nonempty bounded subsets of X;

 $P_{b,cl}(X)$ - the set of all nonempty bounded and closed, subsets of X;

For two subsets $A, B \in P_b(X)$, we recall the following functionals:

 $D:\mathcal{P}(X)\times\mathcal{P}(X)\to\mathbb{R}_+, D(Z,Y)=inf\{d(x,y):x\in Z\ ,y\in Y\},\ Z\subset X-\mathit{the gap functional}.$

 $\delta: \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R}_+, \delta(A,B) := sup\{d(\mathfrak{a},b)|x \in A, b \in B\} - \mathit{the diameter functional};$

 $\rho: \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R}_+, \rho(A,B) := sup\{D(\alpha,B) | \alpha \in A\} - \mathit{the excess functional};$

 $\begin{array}{l} H: \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R}_+, H(A,B) := max \{ \sup_{\alpha \in A} \inf_{b \in B} d(\alpha,b), \sup_{b \in B} \inf_{\alpha \in A} d(\alpha,b) \} - \\ \textit{the Pompeiu-Hausdorff functional}; \end{array}$

Fix $F := \{x \in X \mid x \in F(x)\}$ – the set of the fixed points of F;

The concept of w-distance was introduced by O. Kada, T. Suzuki and W. Takahashi (see [4]) as follows:

Let (X,d) be a metric space, $w: X \times X \to [0,\infty)$ is called w-distance on X if the following axioms are satisfied :

- 1. w(x,z) < w(x,y) + w(y,z), for any $x,y,z \in X$;
- 2. for any $x \in X : w(x, \cdot) : X \to [0, \infty)$ is lower semicontinuous;
- 3. for any $\varepsilon > 0$, there exists $\delta > 0$ such that $w(z, x) \le \delta$ and $w(z, y) \le \delta$ implies $d(x, y) \le \varepsilon$.

Let us give some examples of w-distances (see [4]).

Example 1 Let (X, d) be a metric space. Then the metric "d" is a w-distance on X.

Example 2 Let X be a normed liniar space with norm $\|\cdot\|$. Then the function $w: X \times X \to [0, \infty)$ defined by $w(x,y) = \|x\| + \|y\|$ for every $x, y \in X$ is a w-distance.

Example 3 Let (X,d) be a metric space and let $g: X \to X$ a continuous mapping. Then the function $w: X \times Y \to [0,\infty)$ defined by:

$$w(x,y) = \max\{d(g(x),y), d(g(x),g(y))\}$$

for every $x, y \in X$ is a w-distance.

For the proof of the main results we need the following crucial result for w-distance (see [8]).

Lemma 1 Let (X, d) be a metric space, and let w be a w-distance on X. Let (x_n) and (y_n) be two sequences in X, let (α_n) , (β_n) be sequences in $[0, +\infty[$ converging to zero and let $x, y, z \in X$. Then the following holds:

- 1. If $w(x_n, y) \leq \alpha_n$ and $w(x_n, z) \leq \beta_n$ for any $n \in \mathbb{N}$, then y = z.
- 2. If $w(x_n, y_n) \le \alpha_n$ and $w(x_n, z) \le \beta_n$ for any $n \in \mathbb{N}$, then (y_n) converges to z.
- 3. If $w(x_n, x_m) \le \alpha_n$ for any $n, m \in \mathbb{N}$ with m > n, then (x_n) is a Cauchy sequence.
- 4. If $w(y, x_n) \leq \alpha_n$ for any $n \in \mathbb{N}$, then (x_n) is a Cauchy sequence.

3 Existence of fixed points for multivalued weakly Ćirić-contractive operators

At the beginning of this section let us define the notion of multivalued weakly Ćirić-contractive operators.

Definition 1 Let (X, d) be a metric space and $T: X \to P(X)$ a multivalued operator. Then T is called weakly Ćirić-contractive if there exists a w-distance on X such that for every $x,y \in X$ and $u \in T(x)$ there is $v \in T(y)$ with $w(u,v) \leq q \max\{w(x,y), D_w(x,T(x), D_w(y,T(y)), \frac{1}{2}D_w(x,T(y))\},$ for every $q \in [0,1)$.

Let (X,d) be a metric space, w be a w-distance on X $x_0 \in X$ and r>0. Let us define:

 $B_w(x_0;r) := \{x \in X | w(x_0,x) < r\}$ the open ball centered at x_0 with radius r with respect to w;

```
\widetilde{B_w}(x_0;r):=\{x\in X|w(x_0,x)\leq r\} the closed ball centered at x_0 with radius r with respect to w;
```

 $\widetilde{B_w}^d(x_0;r)$ - the closure in (X,d) of the set $B_w(x_0;r)$.

One of the main results is the following fixed point theorem for weakly Ćirić-contractive operators.

Theorem 1 Let (X,d) be a complete metric space, $x_0 \in X$, r>0 and $T:\widetilde{B_{w}}(x_0;r) \to P_{cl}(X)$ a multivalued operator such that:

- (i) T is weakly Ćirić-contractive operator;
- (ii) $D_w(x_0, T(x_0)) \le (1 q)r$.

Then there exists $x^* \in X$ such that $x^* \in T(x^*)$.

Proof. Since $D_{w}(x_{0}, T(x_{0})) \leq (1-q)r$, then for every $x_{0} \in X$ there exists $x_{1} \in T(x_{0})$ such that $D_{w}(x_{0}, T(x_{0})) \leq w(x_{0}, x_{1}) \leq (1-q)r < r$. Hence $x_{1} \in \widetilde{B_{w}}(x_{0}; r)$.

For $x_1 \in \widetilde{B_w}(x_0; r)$, there exists $x_2 \in T(x_1)$ such that:

- i. $w(x_1, x_2) \le qw(x_0, x_1)$
- ii. $w(x_1, x_2) \le qD_w(x_0, T(x_0)) \le qw(x_0, x_1)$
- iii. $w(x_1, x_2) \le qD_w(x_1, T(x_1)) \le qw(x_1, x_2)$
- iv. $w(x_1, x_2) \le \frac{q}{2} D_w(x_0, T(x_1)) \le \frac{q}{2} w(x_0, x_2)$

 $w(x_1, x_2) \le \frac{q}{2} [w(x_0, x_1) + w(x_1, x_2)]$

 $(1 - \frac{q}{2})w(x_1, x_2) \le \frac{q}{2}w(x_0, x_1)$

 $w(x_1, x_2) \le \frac{q}{2-q} w(x_0, x_1).$

Then $w(x_1, x_2) \le \max \{q, \frac{q}{2-q}\}w(x_0, x_1)$

Since $q > \frac{q}{2-q}$ for every $q \in [0,1)$, then $w(x_1,x_2) \le qw(x_0,x_1) \le q(1-q)r$.

Then $w(x_0, x_2) \leq w(x_0, x_1) + w(x_1, x_2) < (1-q)r + q(1-q)r = (1-q^2)r < r$. Hence $x_2 \in \widetilde{B_w}(x_0; r)$.

For $x_1 \in B_w(x_0; r)$ and $x_2 \in T(x_1)$, there exists $x_3 \in T(x_2)$ such that

- i. $w(x_2, x_3) \le qw(x_1, x_2)$
- ii. $w(x_2, x_3) \le qD_w(x_1, T(x_1)) \le qw(x_1, x_2)$
- iii. $w(x_2, x_3) \le qD_w(x_2, T(x_2)) \le qw(x_2, x_3)$
- iv. $w(x_2, x_3) \le \frac{q}{2} D_w(x_1, T(x_2)) \le \frac{q}{2} w(x_1, x_3)$

 $w(x_2, x_3) \le \frac{q}{2} [w(x_1, x_2) + w(x_2, x_3)]$

 $(1 - \frac{q}{2})w(x_2, x_3) \le \frac{q}{2}w(x_1, x_2)$

 $w(x_2, x_3) \le \frac{q}{2-q}w(x_1, x_2).$

Then $w(x_2, x_3) \le \max \{q, \frac{q}{2-q}\} w(x_1, x_2)$.

Since $q>\frac{q}{2-q}$ for every $q\in [\dot{0},1),$ then $w(x_2,x_3)\leq qw(x_1,x_2)\leq q^2(x_0,x_1)\leq q^2(1-q)r.$

Then
$$w(x_0, x_3) \le w(x_0, x_2) + w(x_2, x_3) \le (1 - q^2)r + q^2(1 - q)r = (1 - q)(1 + q + q^2)r = (1 - q^3)r < r$$
. Hence $x_3 \in \widetilde{B}_w(x_0; r)$.

By this procedure we get a sequence $(x_n)_{n\in\mathbb{N}}\in X$ of successive applications for T starting from arbitrary $x_0 \in X$ and $x_1 \in T(x_0)$, such that

- (1) $x_{n+1} \in T(x_n)$, for every $n \in \mathbb{N}$;
- (2) $w(x_n, x_{n+1}) \le q^n w(x_0, x_1) \le q^n (1-q)r$, for every $n \in \mathbb{N}$.

For every $m, n \in \mathbb{N}$, with m > n, we have

$$\begin{split} w(x_n,x_m) &\leq w(x_n,x_{n+1}) + w(x_{n+1},x_{n+2}) + ... + w(x_{m-1},x_m) \leq \\ &\leq q^n w(x_0,x_1) + q^{n+1} w(x_0,x_1) + ... + q^{m-1} w(x_0,x_1) \leq \\ &\leq \frac{q^n}{1-q} w(x_0,x_1) \leq q^n r. \end{split}$$

By Lemma 1(3) we have that the sequence $(x_n)_{n\in\mathbb{N}}\in\widetilde{B_w}(x_0;r)$ is a Cauchy sequence in (X, d). Since (X, d) is a complete metric space, then there exists $x^* \in B_w^d(x_0; r)$ such that $x_n \stackrel{d}{\to} x^*$.

Fix $n \in \mathbb{N}$. Since $(x_m)_{m \in \mathbb{N}}$ converge to x^* and $w(x_n, \cdot)$ is lower semicontinuous, we have

$$w(x_n,x^*) \leq \lim_{m \to \infty} \inf w(x_n,x_m) \leq \frac{q^n}{1-q} w(x_0,x_1) \leq q^n r.$$

 $\begin{array}{l} \mathrm{For}\; x^* \in \widetilde{B_{w}^{d}}(x_{0}; r) \; \mathrm{and} \; x_{n} \in T(x_{n-1}), \; \mathrm{there} \; \mathrm{exists} \; u_{n} \in T(x^*) \; \mathrm{such} \; \mathrm{that} \\ \mathrm{i.} \; \; w(x_{n}, u_{n}) \leq q w(x_{n-1}, x^*) \leq \frac{q^{n}}{1-q} w(x_{0}, x_{1}) \\ \mathrm{ii.} \; \; w(x_{n}, u_{n}) \leq q D_{w}(x_{n-1}, T(x_{n-1})) \leq q w(x_{n-1}, x_{n}) \leq ... \leq q^{n} w(x_{0}, x_{1}) \\ \mathrm{iii.} \; \; w(x_{n}, u_{n}) \leq q D_{w}(x^*, T(x^*)) \leq q w(x^*, u_{n}) \leq \frac{q^{n}}{1-q} w(x_{0}, x_{1}) \end{array}$

iv.
$$w(x_n, u_n) \le \frac{q}{2} D_w(x_{n-1}, T(x^*)) \le \frac{q}{2} w(x_{n-1}, u_n) \le \frac{q}{2} \cdot \frac{q^{n-1}}{1-q} w(x_0, x_1)$$

= $\frac{q^n}{2(1-q)} w(x_0, x_1)$.

Then $w(x_n,u_n) \leq max\{\frac{q^n}{1-q},q^n,\frac{q^n}{2(1-q)}\}w(x_0,x_1).$

Since for $q \in [0,1)$ we have true $\frac{q^n}{1-q} > q^n$ and $\frac{q^n}{1-q} > \frac{q^n}{2(1-q)}$ we get that $\begin{array}{l} w(x_n,u_n) \leq \frac{q^n}{1-q} w(x_0,x_1) \leq q^n r. \\ \text{So, for every } n \in \mathbb{N} \text{ we have:} \end{array}$

$$w(x_n, x^*) \le q^n r$$

 $w(x_n, u_n) \le q^n r$.

Then, from 1(2), we obtain that $u_n \stackrel{d}{\to} x^*$. As $u_n \in T(x^*)$ and using the closure of T result that $x^* \in T(x^*)$.

A global result for previous theorem is the following fixed point result for multivalued weakly Cirić-contractive operators.

Theorem 2 Let (X, d) be a complete metric space, $T: X \to P_{cl}(X)$ a multivalued weakly Ćirić-contractive operator. Then there exists $\mathbf{x}^* \in X$ such that $\mathbf{x}^* \in T(\mathbf{x}^*)$.

4 Data dependence for weakly Ćirić-contractive multivalued operators

The main result of this section is the following data dependence theorem with respect to the above global theorem 2.

Theorem 3 Let (X, d) be a complete metric space, $T_1, T_2 : X \to P_{cl}(X)$ be two multivalued weakly Ćirić-contractive operators with $q_i \in [0, 1)$ with $i = \{1, 2\}$. Then the following are true:

- 1. $\operatorname{Fix} T_1 \neq \emptyset \neq \operatorname{Fix} T_2$;
- 2. We suppose that there exists $\eta > 0$ such that for every $u \in T_1(x)$ there exists $v \in T_2(x)$ such that $w(u,v) \leq \eta$, (respectively for every $v \in T_2(x)$ there exists $u \in T_1(x)$ such that $w(v,u) \leq \eta$).

Then for every $u^* \in FixT_1$, there exists $v^* \in FixT_2$ such that

$$w(\mathfrak{u}^*, \mathfrak{v}^*) \leq \frac{\eta}{1-\mathfrak{q}}$$
, where $\mathfrak{q} = \mathfrak{q}_{\mathfrak{i}}$ for $\mathfrak{i} = \{1, 2\}$;

(respectively for every $v^* \in FixT_2$ there exists $u^* \in FixT_1$ such that

$$\label{eq:weights} w(\nu^*,u^*) \leq \frac{\eta}{1-q}, \ \text{where} \ q = q_i \ \text{for} \ i = \{1,2\}).$$

Proof. From the above theorem we have that $FixT_1 \neq \emptyset \neq FixT_2$.

Let $u_0 \in FixT_1$, then $u_0 \in T_1(u_0)$. Using the hypothesis (2) we have that there exists $u_1 \in T_2(u_0)$ such that $w(u_0, u_1) \le \eta$.

Since T_1, T_2 are weakly Cririć-contractive with $q_i \in [0, 1)$ and $i = \{1, 2\}$ we have that for every $u_0, u_1 \in X$ with $u_1 \in T_2(u_0)$ there exists $u_2 \in T_2(u_1)$ such that

```
 \begin{split} &\mathrm{i.} \  \, w(u_1,u_2) \leq qw(u_0,u_1) \\ &\mathrm{ii.} \  \, w(u_1,u_2) \leq D_w(u_0,\mathsf{T}_2(u_0)) \leq qw(u_0,u_1) \\ &\mathrm{iii.} \  \, w(u_1,u_2) \leq D_w(u_1,\mathsf{T}_2(u_1)) \leq qw(u_1,u_2) \\ &\mathrm{iv.} \  \, w(u_1,u_2) \leq \frac{q}{2}D_w(u_0,\mathsf{T}_2(u_1)) \leq \frac{q}{2}w(u_0,u_2) \\ & w(u_1,u_2) \leq \frac{q}{2}[w(u_0,u_1)+w(u_1,u_2)] \\ & w(u_1,u_2) \leq \frac{q}{2-q}w(u_0,u_1). \end{split}
```

Then $w(u_1, u_2) \le \max\{q, \frac{q}{2-q}\}w(u_0, u_1)$.

Since for $q \in [0,1)$ we have true $q > \frac{q}{2-q}$, then we have

$$w(u_1,u_2) \leq qw(u_0,u_1).$$

For $u_1 \in X$ and $u_2 \in T_2(u_1)$, there exists $u_3 \in T_2(u_2)$ such that

i.
$$w(u_2, u_3) \le qw(u_1, u_2)$$

ii.
$$w(u_2, u_3) \le D_w(u_1, T_2(u_1)) \le qw(u_1, u_2)$$

iii.
$$w(u_2, u_3) \le D_w(u_2, T_2(u_2)) \le qw(u_2, u_3)$$

iv.
$$w(u_2, u_3) \leq \frac{q}{2} D_w(u_1, T_2(u_2)) \leq \frac{q}{2} w(u_1, u_3)$$

$$w(u_2, u_3) \le \frac{q}{2} [w(u_1, u_2) + w(u_2, u_3)]$$

$$w(u_2, u_3) \le \frac{2q}{2-q} w(u_1, u_2)$$

Then $w(\mathfrak{u}_2,\mathfrak{u}_3) \leq \max\{\mathfrak{q},\frac{\mathfrak{q}}{2-\mathfrak{q}}\}w(\mathfrak{u}_1,\mathfrak{u}_2).$

Since for $q \in [0,1)$ we have true $q > \frac{q}{2-q}$, then we have

$$w(u_2, u_3) \le qw(u_1, u_2) \le q^2w(u_0, u_1).$$

By induction we obtain a sequence $(u_n)_{n\in\mathbb{N}}\in X$ such that

- (1) $u_{n+1} \in T_2(u_n)$, for every $n \in \mathbb{N}$;
- (2) $w(u_n, u_{n+1}) \le q^n w(u_0, u_1)$.

For $n, m \in \mathbb{N}$, with m > n we have the inequality

$$\begin{array}{l} w(u_n,u_m) \leq w(u_n,u_{n+1}) + w(u_{n+1},u_{n+2}) + \cdots + w(u_{m-1},u_m) \leq \\ < q^n w(u_0,u_1) + q^{n+1} w(u_0,u_1) + \cdots + q^{m-1} w(u_0,u_1) \leq \\ \leq \frac{q^n}{1-q} w(u_0,u_1) \end{array}$$

By Lemma 1(3) we have that the sequence $(\mathfrak{u}_n)_{n\in\mathbb{N}}$ is a Cauchy sequence. Since (X, d) is a complete metric space, we have that there exists $v^* \in X$ such that $u_n \stackrel{d}{\rightarrow} v^*$.

By the lower semicontinuity of $w(x,\cdot):X\to [0,\infty)$ we have

$$\begin{split} & w(u_n, \nu^*) \leq \lim_{m \to \infty} \inf w(u_n, u_m) \leq \frac{q^n}{1-q} w(u_0, u_1). \\ & \text{For } u_{n-1}, \nu^* \in X \text{ and } u_n \in T_2(u_{n-1}) \text{ there exists } z_n \in T_2(\nu^*) \text{ such that we} \end{split}$$

i.
$$w(u_n, z_n) \le qw(u_{n-1}, v^*) \le \frac{q^n}{1-q}w(u_0, u_1)$$

ii.
$$w(u_n, z_n) \leq qD_w(u_{n-1}, T_2(u_{n-1})) \leq qw(u_{n-1}, u_n) \leq ... \leq q^n w(u_0, u_1)$$

iii.
$$w(u_n, z_n) \leq qD_w(v^*, T_2(v^*)) \leq w(v^*, z_n) \leq \frac{q^n}{1-q}w(u_0, u_1)$$

$$\begin{split} &\mathrm{i.} \ \, w(u_n,z_n) \leq qw(u_{n-1},\nu^*) \leq \frac{q^n}{1-q}w(u_0,u_1) \\ &\mathrm{ii.} \ \, w(u_n,z_n) \leq qD_w(u_{n-1},T_2(u_{n-1})) \leq qw(u_{n-1},u_n) \leq ... \leq q^nw(u_0,u_1) \\ &\mathrm{iii.} \ \, w(u_n,z_n) \leq qD_w(\nu^*,T_2(\nu^*)) \leq w(\nu^*,z_n) \leq \frac{q^n}{1-q}w(u_0,u_1) \\ &\mathrm{iv.} \ \, w(u_n,z_n) \leq \frac{q}{2}D_w(u_{n-1},T_2(\nu^*)) \leq \frac{q}{2}w(u_{n-1},z_n) \leq \frac{q^n}{2(1-q)}w(u_0,u_1). \end{split}$$

Then $w(\mathfrak{u}_n,z_n) \leq \max\{\frac{\mathfrak{q}^n}{1-\mathfrak{q}},\mathfrak{q}^n,\frac{\mathfrak{q}^n}{2(1-\mathfrak{q})}\}w(\mathfrak{u}_0,\mathfrak{u}_1).$ Since $\frac{\mathfrak{q}^n}{1-\mathfrak{q}} > \mathfrak{q}^n$ and $\frac{\mathfrak{q}^n}{1-\mathfrak{q}} > \frac{\mathfrak{q}^n}{2(1-\mathfrak{q})}$ for every $\mathfrak{q} \in [0,1)$ we have that

$$w(u_n, z_n) \leq \frac{q^n}{1-q} w(u_0, u_1).$$

So, we have:

$$w(u_n, v^*) \le \frac{q^n}{1-q} w(u_0, u_1)$$

 $w(u_n, z_n) \le \frac{q^n}{1-q} w(u_0, u_1).$

Applying Lemma 1(2), from the above relations we have that $z_n \stackrel{d}{\to} v^*$.

Then, we know that $z_n \in T_2(\nu^*)$ and $z_n \stackrel{d}{\to} \nu^*$. In this case, by the closure of T_2 , it results that $\nu^* \in T_2(\nu^*)$. Then, by $w(u_n, \nu^*) \leq \frac{q^n}{1-q} w(u_0, u_1)$, with $n \in \mathbb{N}$, for n = 0, we obtain

$$w(u_0, v^*) \le \frac{1}{1-q} w(u_0, u_1) \le \frac{\eta}{1-q},$$

which completes the proof.

References

- [1] Lj. B. Ćirić, A generalization of Banach's contraction principle, *Proc. Amer. Math. Soc.*, **45** (1974), 267–273.
- [2] Lj. B. Ćirić, Fixed points for generalized multi-valued contractions, *Mat. Vesnik*, **9**(24) (1972), 265–272.
- [3] A. Granas, J. Dugundji, Fixed Point Theory, Berlin, Springer-Verlag, 2003.
- [4] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, *Math. Japonica*, 44 (1996), 381–391.
- [5] N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl., 141 (1989), 177–188.
- [6] I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.

- [7] I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory, Cluj University Press, 2008.
- [8] T. Suzuki, W. Takahashi, Fixed points theorems and characterizations of metric completeness, *Topological Methods in Nonlinear Analysis*, Journal of Juliusz Schauder Center, 8 (1996), 371–382.
- [9] J. S. Ume, Fixed point theorems related to Ćirić contraction principle, *J. Math. Anal. Appl.*, **255** (1998), 630–640.

Received: May 18, 2009