
Acta Univ. Sapientiae, Mathematica, 1, 2 (2009) 151–159

Existence and data dependence for

multivalued weakly Ćirić-contractive
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Abstract. In this paper we define the concept of weakly Ćirić-contractive
operator and give a fixed point result for this type of operators. Then
we study the data dependence for the fixed point set.

1 Introduction

Let (X, d) be a metric space. A singlevalued operator T from X into it-
self is called contractive if there exists a real number r ∈ [0, 1) such that
d(T(x), T(y)) ≤ rd(x, y) for every x, y ∈ X. It is well known that if X is a
complete metric space, then a contractive operator from x into itself has a
unique fixed point in X.

In 1996, Japanese mathematicians O. Kada, T. Suzuki and W. Takahashi
introduced the w-distance (see [4]) and discussed some properties of this new
distance. Later, T. Suzuki and W. Takahashi, starting by the definition above,
gave some fixed points result for a new class of operators, weakly contractive
operators (see [8]).

The purpose of this paper is to give a fixed point theorem for a new class
of operators, namely the so-called weakly Ćirić-contractive operators. Then,
we present a data dependence result for the fixed point set.
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2 Preliminaries

Let (X, d) be a complete metric space. We will use the following notations:
P(X) - the set of all nonempty subsets of X ;
P(X) = P(X)

⋃
∅

Pcl(X) - the set of all nonempty closed subsets of X ;
Pb(X) - the set of all nonempty bounded subsets of X ;
Pb,cl(X) - the set of all nonempty bounded and closed, subsets of X ;

For two subsets A, B ∈ Pb(X), we recall the following functionals:
D : P(X) × P(X) → R+,D(Z, Y) = inf{d(x, y) : x ∈ Z , y ∈ Y}, Z ⊂ X – the

gap functional.
δ : P(X) × P(X) → R+, δ(A, B) := sup{d(a, b)|x ∈ A, b ∈ B} – the diameter

functional ;
ρ : P(X) × P(X) → R+, ρ(A, B) := sup{D(a, B)|a ∈ A} – the excess func-

tional ;
H : P(X) × P(X) → R+, H(A, B) := max{sup

a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)} –

the Pompeiu-Hausdorff functional ;
Fix F := {x ∈ X | x ∈ F(x)} – the set of the fixed points of F;

The concept of w-distance was introduced by O. Kada, T. Suzuki and W.
Takahashi (see [4]) as follows:
Let (X,d) be a metric space, w : X × X → [0,∞) is called w-distance on X if
the following axioms are satisfied :

1. w(x, z) ≤ w(x, y) + w(y, z), for any x, y, z ∈ X;

2. for any x ∈ X : w(x, ·) : X → [0,∞) is lower semicontinuous;

3. for any ε > 0, there exists δ > 0 such that w(z, x) ≤ δ and w(z, y) ≤ δ

implies d(x, y) ≤ ε.

Let us give some examples of w-distances (see [4]).

Example 1 Let (X, d) be a metric space . Then the metric ”d” is a w-distance
on X.

Example 2 Let X be a normed liniar space with norm || · ||. Then the function
w : X × X → [0,∞) defined by w(x, y) = ||x|| + ||y|| for every x, y ∈ X is a w-
distance.
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Example 3 Let (X,d) be a metric space and let g : X → X a continuous
mapping. Then the function w : X × Y → [0,∞) defined by:

w(x, y) = max{d(g(x), y), d(g(x), g(y))}

for every x, y ∈ X is a w-distance.

For the proof of the main results we need the following crucial result for
w-distance (see [8]).

Lemma 1 Let (X, d) be a metric space, and let w be a w-distance on X. Let
(xn) and (yn) be two sequences in X, let (αn), (βn) be sequences in [0,+∞[

converging to zero and let x, y, z ∈ X. Then the following holds:

1. If w(xn, y) ≤ αn and w(xn, z) ≤ βn for any n ∈ N, then y = z.

2. If w(xn, yn) ≤ αn and w(xn, z) ≤ βn for any n ∈ N, then (yn) converges
to z.

3. If w(xn, xm) ≤ αn for any n, m ∈ N with m > n, then (xn) is a Cauchy
sequence.

4. If w(y, xn) ≤ αn for any n ∈ N, then (xn) is a Cauchy sequence.

3 Existence of fixed points for multivalued weakly

Ćirić-contractive operators

At the beginning of this section let us define the notion of multivalued
weakly Ćirić-contractive operators.

Definition 1 Let (X, d) be a metric space and T : X → P(X) a multivalued
operator. Then T is called weakly Ćirić-contractive if there exists a w-distance
on X such that for every x, y ∈ X and u ∈ T(x) there is v ∈ T(y) with
w(u, v) ≤ q max{w(x, y), Dw(x, T(x), Dw(y, T(y)), 1

2
Dw(x, T(y))},

for every q ∈ [0, 1).

Let (X, d) be a metric space, w be a w-distance on X x0 ∈ X and r > 0.
Let us define:

Bw(x0; r) := {x ∈ X|w(x0, x) < r} the open ball centered at x0 with radius
r with respect to w;
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B̃w(x0; r) := {x ∈ X|w(x0, x) ≤ r} the closed ball centered at x0 with radius
r with respect to w;

B̃w

d
(x0; r)- the closure in (X, d) of the set Bw(x0; r).

One of the main results is the following fixed point theorem for weakly
Ćirić-contractive operators.

Theorem 1 Let (X, d) be a complete metric space, x0 ∈ X, r > 0 and T :

B̃w(x0; r) → Pcl(X) a multivalued operator such that:
(i) T is weakly Ćirić-contractive operator;
(ii) Dw(x0, T(x0)) ≤ (1 − q)r.

Then there exists x∗ ∈ X such that x∗ ∈ T(x∗).

Proof. Since Dw(x0, T(x0)) ≤ (1 − q)r, then for every x0 ∈ X there exists
x1 ∈ T(x0) such that Dw(x0, T(x0)) ≤ w(x0, x1) ≤ (1 − q)r < r.

Hence x1 ∈ B̃w(x0; r).

For x1 ∈ B̃w(x0; r), there exists x2 ∈ T(x1) such that:
i. w(x1, x2) ≤ qw(x0, x1)

ii. w(x1, x2) ≤ qDw(x0, T(x0)) ≤ qw(x0, x1)

iii. w(x1, x2) ≤ qDw(x1, T(x1)) ≤ qw(x1, x2)

iv. w(x1, x2) ≤
q
2
Dw(x0, T(x1)) ≤

q
2
w(x0, x2)

w(x1, x2) ≤
q
2
[w(x0, x1) + w(x1, x2)]

(1 − q
2
)w(x1, x2) ≤

q
2
w(x0, x1)

w(x1, x2) ≤
q

2−q
w(x0, x1).

Then w(x1, x2) ≤ max {q, q
2−q

}w(x0, x1)

Since q > q
2−q

for every q ∈ [0, 1), then w(x1, x2) ≤ qw(x0, x1) ≤ q(1 − q)r.

Then w(x0, x2) ≤ w(x0, x1)+w(x1, x2) < (1−q)r+q(1−q)r = (1−q2)r < r.

Hence x2 ∈ B̃w(x0; r).

For x1 ∈ B̃w(x0; r) and x2 ∈ T(x1), there exists x3 ∈ T(x2) such that
i. w(x2, x3) ≤ qw(x1, x2)

ii. w(x2, x3) ≤ qDw(x1, T(x1)) ≤ qw(x1, x2)

iii. w(x2, x3) ≤ qDw(x2, T(x2)) ≤ qw(x2, x3)

iv. w(x2, x3) ≤
q
2
Dw(x1, T(x2)) ≤

q
2
w(x1, x3)

w(x2, x3) ≤
q
2
[w(x1, x2) + w(x2, x3)]

(1 − q
2
)w(x2, x3) ≤

q
2
w(x1, x2)

w(x2, x3) ≤
q

2−q
w(x1, x2).

Then w(x2, x3) ≤ max {q, q
2−q

}w(x1, x2).

Since q > q
2−q

for every q ∈ [0, 1), then w(x2, x3) ≤ qw(x1, x2) ≤ q2(x0, x1) ≤

q2(1 − q)r.
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Then w(x0, x3) ≤ w(x0, x2) + w(x2, x3) ≤ (1 − q2)r + q2(1 − q)r =

= (1 − q)(1 + q + q2)r = (1 − q3)r < r. Hence x3 ∈ B̃w(x0; r).
By this procedure we get a sequence (xn)n∈N ∈ X of successive applications
for T starting from arbitrary x0 ∈ X and x1 ∈ T(x0), such that

(1) xn+1 ∈ T(xn), for every n ∈ N;
(2) w(xn, xn+1) ≤ qnw(x0, x1) ≤ qn(1 − q)r, for every n ∈ N.

For every m, n ∈ N, with m > n, we have

w(xn, xm) ≤ w(xn, xn+1) + w(xn+1, xn+2) + ... + w(xm−1, xm) ≤

≤ qnw(x0, x1) + qn+1w(x0, x1) + ... + qm−1w(x0, x1) ≤

≤
qn

1 − q
w(x0, x1) ≤ qnr.

By Lemma 1(3) we have that the sequence (xn)n∈N ∈ B̃w(x0; r) is a Cauchy
sequence in (X, d). Since (X, d) is a complete metric space, then there exists

x∗ ∈ B̃d
w(x0; r) such that xn

d
→ x∗.

Fix n ∈ N. Since (xm)m∈N converge to x∗ and w(xn, ·) is lower semicontinuous,
we have

w(xn, x∗) ≤ lim
m→∞

inf w(xn, xm) ≤
qn

1 − q
w(x0, x1) ≤ qnr.

For x∗ ∈ B̃d
w(x0; r) and xn ∈ T(xn−1), there exists un ∈ T(x∗) such that

i. w(xn, un) ≤ qw(xn−1, x
∗) ≤ qn

1−q
w(x0, x1)

ii. w(xn, un) ≤ qDw(xn−1, T(xn−1)) ≤ qw(xn−1, xn) ≤ ... ≤ qnw(x0, x1)

iii. w(xn, un) ≤ qDw(x∗, T(x∗)) ≤ qw(x∗, un) ≤ qn

1−q
w(x0, x1)

iv. w(xn, un) ≤ q
2
Dw(xn−1, T(x∗)) ≤ q

2
w(xn−1, un) ≤ q

2
· qn−1

1−q
w(x0, x1)

= qn

2(1−q)
w(x0, x1).

Then w(xn, un) ≤ max{ qn

1−q
, qn, qn

2(1−q)
}w(x0, x1).

Since for q ∈ [0, 1) we have true qn

1−q
> qn and qn

1−q
> qn

2(1−q)
we get that

w(xn, un) ≤ qn

1−q
w(x0, x1) ≤ qnr.

So, for every n ∈ N we have:
w(xn, x∗) ≤ qnr

w(xn, un) ≤ qnr.

Then, from 1(2), we obtain that un
d
→ x∗. As un ∈ T(x∗) and using the

closure of T result that x∗ ∈ T(x∗). �

A global result for previous theorem is the following fixed point result for
multivalued weakly Ćirić-contractive operators.
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Theorem 2 Let (X, d) be a complete metric space, T : X → Pcl(X) a multi-
valued weakly Ćirić-contractive operator. Then there exists x∗ ∈ X such that
x∗ ∈ T(x∗).

4 Data dependence for weakly Ćirić-contractive mul-

tivalued operators

The main result of this section is the following data dependence theorem
with respect to the above global theorem 2.

Theorem 3 Let (X, d) be a complete metric space, T1, T2 : X → Pcl(X) be two
multivalued weakly Ćirić-contractive operators with qi ∈ [0, 1) with i = {1, 2}.
Then the following are true:

1. FixT1 6= ∅ 6= FixT2;

2. We suppose that there exists η > 0 such that for every u ∈ T1(x) there
exists v ∈ T2(x) such that w(u, v) ≤ η, (respectively for every v ∈ T2(x)

there exists u ∈ T1(x) such that w(v, u) ≤ η).

Then for every u∗ ∈ FixT1, there exists v∗ ∈ FixT2 such that

w(u∗, v∗) ≤ η
1−q

, where q = qi for i = {1, 2};

(respectively for every v∗ ∈ FixT2 there exists u∗ ∈ FixT1 such that

w(v∗, u∗) ≤ η
1−q

, where q = qi for i = {1, 2}).

Proof. From the above theorem we have that FixT1 6= ∅ 6= FixT2.
Let u0 ∈ FixT1, then u0 ∈ T1(u0). Using the hypothesis (2) we have that there
exists u1 ∈ T2(u0) such that w(u0, u1) ≤ η.
Since T1, T2 are weakly Ćririć-contractive with qi ∈ [0, 1) and i = {1, 2} we
have that for every u0, u1 ∈ X with u1 ∈ T2(u0) there exists u2 ∈ T2(u1) such
that

i. w(u1, u2) ≤ qw(u0, u1)

ii. w(u1, u2) ≤ Dw(u0, T2(u0)) ≤ qw(u0, u1)

iii. w(u1, u2) ≤ Dw(u1, T2(u1)) ≤ qw(u1, u2)

iv. w(u1, u2) ≤
q
2
Dw(u0, T2(u1)) ≤

q
2
w(u0, u2)

w(u1, u2) ≤
q
2
[w(u0, u1) + w(u1, u2)]

w(u1, u2) ≤
q

2−q
w(u0, u1).
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Then w(u1, u2) ≤ max{q, q
2−q

}w(u0, u1).

Since for q ∈ [0, 1) we have true q > q
2−q

, then we have

w(u1, u2) ≤ qw(u0, u1).

For u1 ∈ X and u2 ∈ T2(u1), there exists u3 ∈ T2(u2) such that
i. w(u2, u3) ≤ qw(u1, u2)

ii. w(u2, u3) ≤ Dw(u1, T2(u1)) ≤ qw(u1, u2)

iii. w(u2, u3) ≤ Dw(u2, T2(u2)) ≤ qw(u2, u3)

iv. w(u2, u3) ≤
q
2
Dw(u1, T2(u2)) ≤

q
2
w(u1, u3)

w(u2, u3) ≤
q
2
[w(u1, u2) + w(u2, u3)]

w(u2, u3) ≤
q

2−q
w(u1, u2)

Then w(u2, u3) ≤ max{q, q
2−q

}w(u1, u2).

Since for q ∈ [0, 1) we have true q > q
2−q

, then we have

w(u2, u3) ≤ qw(u1, u2) ≤ q2w(u0, u1).

By induction we obtain a sequence (un)n∈N ∈ X such that
(1) un+1 ∈ T2(un), for every n ∈ N;
(2) w(un, un+1) ≤ qnw(u0, u1).

For n, m ∈ N, with m > n we have the inequality

w(un, um) ≤ w(un, un+1) + w(un+1, un+2) + · · · + w(um−1, um) ≤

< qnw(u0, u1) + qn+1w(u0, u1) + · · · + qm−1w(u0, u1) ≤

≤ qn

1−q
w(u0, u1)

By Lemma 1(3) we have that the sequence (un)n∈N is a Cauchy sequence.
Since (X, d) is a complete metric space, we have that there exists v∗ ∈ X such

that un
d
→ v∗.

By the lower semicontinuity of w(x, ·) : X → [0,∞) we have

w(un, v∗) ≤ lim
m→∞

inf w(un, um) ≤
qn

1 − q
w(u0, u1).

For un−1, v
∗ ∈ X and un ∈ T2(un−1) there exists zn ∈ T2(v

∗) such that we
have

i. w(un, zn) ≤ qw(un−1, v
∗) ≤ qn

1−q
w(u0, u1)

ii. w(un, zn) ≤ qDw(un−1, T2(un−1)) ≤ qw(un−1, un) ≤ ... ≤ qnw(u0, u1)

iii. w(un, zn) ≤ qDw(v∗, T2(v
∗)) ≤ w(v∗, zn) ≤ qn

1−q
w(u0, u1)

iv. w(un, zn) ≤ q
2
Dw(un−1, T2(v

∗)) ≤ q
2
w(un−1, zn) ≤ qn

2(1−q)
w(u0, u1).
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Then w(un, zn) ≤ max{ qn

1−q
, qn, qn

2(1−q)
}w(u0, u1).

Since qn

1−q
> qn and qn

1−q
> qn

2(1−q)
for every q ∈ [0, 1) we have that

w(un, zn) ≤
qn

1 − q
w(u0, u1).

So, we have:
w(un, v∗) ≤ qn

1−q
w(u0, u1)

w(un, zn) ≤ qn

1−q
w(u0, u1).

Applying Lemma 1(2), from the above relations we have that zn
d
→ v∗.

Then, we know that zn ∈ T2(v
∗) and zn

d
→ v∗. In this case, by the closure

of T2, it results that v∗ ∈ T2(v
∗). Then, by w(un, v∗) ≤ qn

1−q
w(u0, u1), with

n ∈ N, for n = 0, we obtain

w(u0, v
∗) ≤

1

1 − q
w(u0, u1) ≤

η

1 − q
,

which completes the proof. �

References
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