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Abstract. In this paper we define the concept of weakly Ciri¢-contractive
operator and give a fixed point result for this type of operators. Then
we study the data dependence for the fixed point set.

1 Introduction

Let (X,d) be a metric space. A singlevalued operator T from X into it-
self is called contractive if there exists a real number v € [0,1) such that
d(T(x), T(y)) < rd(x,y) for every x,y € X. It is well known that if X is a
complete metric space, then a contractive operator from x into itself has a
unique fixed point in X.

In 1996, Japanese mathematicians O. Kada, T. Suzuki and W. Takahashi
introduced the w-distance (see [4]) and discussed some properties of this new
distance. Later, T. Suzuki and W. Takahashi, starting by the definition above,
gave some fixed points result for a new class of operators, weakly contractive
operators (see [8]).

The purpose of this paper is to give a fixed point theorem for a new class
of operators, namely the so-called weakly Ciri¢-contractive operators. Then,
we present a data dependence result for the fixed point set.
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2 Preliminaries

Let (X, d) be a complete metric space. We will use the following notations:

P(X) - the set of all nonempty subsets of X;

P(X)=P(X)U0O

Pa(X) - the set of all nonempty closed subsets of X;

Pu(X) - the set of all nonempty bounded subsets of X;

Py c1(X) - the set of all nonempty bounded and closed, subsets of X;
For two subsets A, B € Py(X), we recall the following functionals:

D:P(X) x P(X) - R.,D(ZY) =inf{ld(x,y):x € Z,y €Y}, ZC X — the
gap functional.

5:P(X) x P(X) — Ry, 8(A,B) :=sup{d(a,b)|x € A,b € B} — the diameter
functional;

p:P(X)xP(X) — Ry, p(A,B) := sup{D(a,B)la € A} — the excess func-
tional,;

H: P(X) x P(X) —» Ry, H(A, B) := max{sup inf d(a,b),sup inf d(a,b)} —
acA beB beB acA
the Pompeiu-Hausdorff functional;

Fix F:={x € X | x € F(x)} — the set of the fized points of F;

The concept of w-distance was introduced by O. Kada, T. Suzuki and W.
Takahashi (see [4]) as follows:
Let (X,d) be a metric space, w : X x X — [0, 00) is called w-distance on X if
the following axioms are satisfied :

1. w(x,z) <w(x,y) +wl(y,z), for any x,y,z € X;
2. for any x € X:w(x,-): X — [0, 00) is lower semicontinuous;

3. for any € > 0, there exists 6 > 0 such that w(z,x) < & and w(z,y) < &
implies d(x,y) < e.

Let us give some examples of w-distances (see [4]).

Example 1 Let (X, d) be a metric space . Then the metric ”d” is a w-distance
on X.

Example 2 Let X be a normed liniar space with norm ||-||. Then the function
w: X x X = [0,00) defined by w(x,y) = ||x|| + Y|l for every x,y € X is a w-
distance.
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Example 3 Let (X,d) be a metric space and let g : X — X a continuous
mapping. Then the function w: X x Y — [0,00) defined by:

w(x,y) = max{d(g(x),y), d(g(x),g(y))}

for every x,y € X is a w-distance.

For the proof of the main results we need the following crucial result for
w-distance (see [8]).

Lemma 1 Let (X,d) be a metric space, and let w be a w-distance on X. Let
(xn) and (yn) be two sequences in X, let (xn), (Bn) be sequences in [0, +ool
converging to zero and let x,y,z € X. Then the following holds:

1. If w(xn,y) < an and w(xn,z) < Bn for anyn € N, then y = z.

2. Ifw(xn,Un) < an and w(xn,z) < Bn for anyn € N, then (yn) converges
to z.

3. If w(xn,xm) < an for any n,m € N with m > n, then (xn) is a Cauchy
sequence.

4. If w(y,xn) < an for any n € N, then (x) is a Cauchy sequence.

3 Existence of fixed points for multivalued weakly
Ciri¢-contractive operators

At the beginning of this section let us define the notion of multivalued
weakly Ciri¢-contractive operators.

Definition 1 Let (X,d) be a metric space and T : X — P(X) a multivalued
operator. Then T is called weakly Cirié-contractive if there exists a w-distance
on X such that for every x,y € X and u € T(x) there is v € T(y) with
w(w,v) < q maz{w(x,y), Dw(x, T(x), Dyw(y, T(y)), 3Dw(x, T(y))},

for every q € [0,1).

Let (X, d) be a metric space, w be a w-distance on X xg € X and r > 0.
Let us define:

Bw(x0;1) :={x € X|w(xp,x) < 7} the open ball centered at xo with radius
T with respect to w;
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g;v(xo; 1) = {x € X|w(xg,x) < 7} the closed ball centered at xo with radius
T with respect to w;
~d
B, (xg;1)- the closure in (X, d) of the set By, (xg;1).
One of the main results is the following fixed point theorem for weakly
Cirié-contractive operators.

Theorem 1 Let (X,d) be a complete metric space, xog € X, v > 0 and T :
é:v(xo;r) — Pa(X) a multivalued operator such that:
(i) T is weakly Cirié-contractive operator;
(ii) Dyu(xo, T(xo)) < (1— q)r-
Then there exists x* € X such that x* € T(x*).

Proof. Since D,y(x0, T(x0)) < (1 — q)r, then for every xg € X there exists
x1 € T(xo) such that Dy, (xg, T(x0)) < w(xg,x1) < (1 —qg)r <.
Hence x;1 € é:v(xo;r).
For x; € l?;\,(xo;r), there exists x> € T(x1) such that:
i. w(x1,x2) < qw(xo,x1)
ii. w(x1,x2) < dDw(x0, T(x0)) < qw(xo,x1)
iii. w(xy,%2) < qDw(x1,T(x1))
iv. w(x1,%x2) < 9Dwl(x0, T(x1)
w(x1,%x2) < Fw(xo,x1) + wW(
(1 —Pwlx1,x2) < Fw(xo,x1
w(x1,%2) < 728 wlxo,x1).
Then w(x1,%2) < max {q, ﬁ}w(xo,xﬂ
Since q > qu for every q € [0, 1), then w(x1,%x2) < gw(xg,x1) < q(1—q)r.

Then w(xo,x2) < W(xo,x1) +W(x1,%2) < (1=a)r+4q(1—g)r = (1—g*)r <.

Hence x5 € Byy(x0;7).
For x; € é:v(xo;r) and x; € T(x1), there exists x3 € T(x2) such that
i. w(xz,x3) < gw(x1,x2)
ii. w(x2,x3) < gDw(x1,T(x1))
iii. w(x2,x3) < qDw(x2, T(x2)

)

(T—Fwlxz,x3) < Fwlx,x2
w(xz,x3) < 74 w(x1,%x2).
Then w(x2,x3) < max {q, 3% Jw(x1,%2).

Since q > qu for every q € [0, 1), then w(x2,x3) < qw(x1,x2) < q?(xo,x1) <
2
(1 —q)r.
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Then w(xg,x3) < W(xo,x2) +W(x2,%x3) < (1 —g?)r —1112(1 —q)r=
=(1—q)(1+qg+qg%)r=(1—qg3)r<r. Hence x3 € By(x0;7).
By this procedure we get a sequence (xn)nen € X of successive applications
for T starting from arbitrary xp € X and xq € T(xp), such that

(1) Xn41 € T(xn), for every n € N;

(2) Wxn, Xns1) < G™W(xo,x1) < q™(1 — q)r, for every n € N.
For every m,n € N, with m > n, we have

W(Xn, Xm) < W(Xn, Xnt1) + W(Xnt1, Xnt2) + oo + W(Xm—1,Xm) <

< q™Ww(x0,%1) + 4" M w(xo, x1) + oo + ™ T W(x0,x1) <

n

<

w(xo,x1) < q"r.

By Lemma 1(3) we have that the sequence (xn)nen € é\;\,(xo;r) is a Cauchy
sequence in (X, d). Since (X, d) is a complete metric space, then there exists
x* € B4 (xq; 1) such that x,, 4

Fixn € N. Since (Xm)men converge to x* and w(xn, -) is lower semicontinuous,

we have
mn

W(xn,x*) < lim inf w(xn,xm) < w(xo,x1) < q"r.

m— o0 ]—q

For x* € é\é\,(xo;r) and x, € T(xn_1), there exists u, € T(x*) such that
i Wlxn, Un) < qW(xn_1,%*) < 7w(x0,x1)
ii. W(xn, un) < gDw(xn-1, T(xn-1)) < gw(xn_ 1»Xn) <..<
i, W(xn, Un) < gDy (x*, T(x*)) < qw(x*, un) < 1Low(xo,x1)
n—1

)
lV W(XTU TL) < qD (XTLf])T(X )) S %W(anhun) S % : q],q W(XO)X1)

gw(xo )

(
Then W(XTU TL) {] q’q »2 )} (XO)X1)
Since for q € [0,

q"
) we have true ]— > g™ and 7 > g We get that

W(xn, un) < Eow(xo,x1) < g™,

So, for every n € N we have:

W(xn, x*) < q™r

Then, from 1(2), we obtain that un 94 As U, € T(x*) and using the
closure of T result that x* € T(x*). |
A global result for previous theorem is the following fixed point result for
multivalued weakly Ciri¢-contractive operators.
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Theorem 2 Let (X,d) be a complete metric space, T : X — Pa(X) a multi-
valued weakly Cirié-contractive operator. Then there exists x* € X such that
x* e T(x*).

4 Data dependence for weakly Cirié-contractive mul-
tivalued operators

The main result of this section is the following data dependence theorem
with respect to the above global theorem 2.

Theorem 3 Let (X, d) be a complete metric space, T1, T2 : X — Po(X) be two
multivalued weakly Cirié-contractive operators with q; € [0,1) with i = {1,2}.
Then the following are true:

1. FixTy # 0 # FixTy;

2. We suppose that there exists 1 > 0 such that for every w € Ty(x) there
exists v € Ta(x) such that w(u,v) <1, (respectively for every v € Ty(x)
there exists w € Ty(x) such that w(v,u) <n).

Then for every u* € FixTy, there exists v € FixT, such that
w(u*, v < Q—q, where q = qi fori={1,2};
(respectively for every v* € FixT, there exists u* € FixTy such that

wv* u*) < ]E—q, where q = qy for i =1{1,2}).

Proof. From the above theorem we have that FixT; # () # FixT,.
Let ug € FixTy, then ug € Ty(up). Using the hypothesis (2) we have that there
exists uy € Ta(ug) such that w(ug, u7) <mn.
Since Ty, T, are weakly Cririé-contractive with gi € [0,1) and 1 = {1,2} we
have that for every up, u; € X with u; € To(ug) there exists uy; € To(u) such
that
i w(ur,uz) < gw(ug, ut)
ii. w(ug, uz) < Dywl(ug, T2(wo)) < gw(up,uq)
iii. w(uy,uz) < Dyy(ug, T2(wq)) < qwlug, uz)
iv. w(ug,uz) < 9Dy (up, T2(ur)) < Jw(up, uz)
wlur, uz) < Fwlug,ur) +wlug, uy)]
wlug, ug) < 74 wluo, ug).

<
) < <
) <
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Then w(wr, 1) < max{q, 7% w(uo, wr).
Since for q € [0,1) we have true q > qu, then we have

w(ug, uz) < gw(ug,ur).

For uq € X and uy € Tr(uq), there exists uz € To(u,) such that
i. wluz,u3) < qw(ug, uz)
ii. w(uz,uz) < Dy(ug, T2(uq))
iii. w(uz,uz) < Dyl(uz, To(us))
iv. wuz,uz) < 9Dyw(ur, T2(uz))
wluz,uz) < Jlwlur,uz) +wluz
w(uz,u3) < zqu(uhuz)
Then w(uy,u3) < max{q, qu}w(m,uz).
Since for q € [0,1) we have true q > qu, then we have

aw(u, uz)

aw(uz, u3)

< Jw(ug,uz)
, W

3)]

<
<

w(uz,u3) < gwlur, uz) < g*wlug, ur).

By induction we obtain a sequence (un)nen € X such that
(1) Un41 € T2(un), for every n € N;
(2) W(un, uns1) < q"w(uo, us).

For n,m € N, with m > n we have the inequality

W(Un, Um) < W(Un, Uni1) F W(Unt1, Unt2) + - F W(Umo1, Um) <
< q"w(uo, W) + g™ wlug,ur) + -+ g™ wlug,ug) <
< ﬂqu(uO)l’H)

By Lemma 1(3) we have that the sequence (un)nen is a Cauchy sequence.
Since (X, d) is a complete metric space, we have that there exists v* € X such
that u, E> v,

By the lower semicontinuity of w(x,-) : X — [0, 00) we have
n

W, v¥) < lim infw(tn, tm) < ——w(uo, up).
m—oo 1—

For u,,—1,v* € X and u, € To(un—_1) there exists z, € To(v*) such that we
have
i w(un,zn) < gwlun_1,v ) < 1(47“ (uo, u1)
ii. W(un,zn) < qDw(un1, T2(un—1)) < qw(un—
iii. w(un, zn) < gDw(v*, To(v¥)) < w(v*, zn) <
(v

iv. W(un, zn) < 3Dw(un1, T2(v)) < Jwlun_1,2n) < z7=gwluo, ur).
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Then W(uTh Zn) S maX{]q_iqa qn) ﬁ}w(u()) uq )

Since % > g™ and % > 2(?7:” for every q € [0,1) we have that

n

w(ug, uy).
q 0, W1

So, we have:
W(ln, v*)
W(un, zn)

Applying Lemma 1(2), from the above relations we have that z,, 4,

Then, we know that z,, € T>(v*) and z, 94 V¥, Tn this case, by the closure
of Ty, it results that v* € Tp(v*). Then, by w(un,v*) < ﬂqu(uo,m), with
n € N, for n =0, we obtain

1 n

< — <
Wlug V) < g owluow) < g7

which completes the proof. |
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