
Acta Univ. Sapientiae, Informatica 11, 2 (2019) 142–158

DOI: 10.2478/ausi-2019-0010

Evolutionary solving of the debts’ clearing

problem

Csaba PĂTCAS,
Babes,-Bolyai University
Cluj-Napoca, Romania

email: patcas@cs.ubbcluj.ro

Attila BARTHA
Babes,-Bolyai University
Cluj-Napoca, Romania

email: abartha@yahoo.com

Abstract. The debts’ clearing problem is about clearing all the debts in
a group of n entities (banks, companies etc.) using a minimal number of
money transaction operations. The problem is known to be NP-hard in
the strong sense. As for many intractable problems, techniques from the
field of artificial intelligence are useful in finding solutions close to opti-
mum for large inputs. An evolutionary algorithm for solving the debts’
clearing problem is proposed.

1 Introduction

The problem of debt clearing (DC problem) can arise among a group of friends,
but it also needs to be solved regularly among the affiliates of multinational
corporations, banks or even countries ([16, 18]). As money transactions are
time- and money-sensitive operations, it can be desirable to clear the debts in
a minimal number of money transaction operations.

Problems related to debt clearing were studied in the past. Shapiro gave
a linear programming based model to minimize the cost of payments netting
assuming that costs are directly proportional to the volume transacted ([16]).

Computing Classification System 1998: I.2.8
Mathematics Subject Classification 2010: 68T20
Key words and phrases: debt settling, genetic algorithm

142

http://www.cs.ubbcluj.ro/~patcas/
http://www.cs.ubbcluj.ro/
http://www.cs.ubbcluj.ro/
mailto:patcas@cs.ubbcluj.ro
http://www.cs.ubbcluj.ro/
http://www.cs.ubbcluj.ro/
mailto:abartha@yahoo.com


Evolutionary solving of the debts’ clearing problem 143

In [18] a network flow based model was given which solves some of the weak-
nesses of Shapiro’s model and is more efficient computationally. Because in our
problem the goal is to minimize the number of transactions in a multilateral
netting system, there is no linearity of costs, thus neither of these methods
can be used as it was briefly discussed in [13].

In [9] the NP-complete Bank Clearing Problem (BCP) was introduced as it
occurred in Germany’s largest interbank payment system and efficient heuris-
tic algorithms were given to solve it. Later in [17] an approximation algorithm
for the BCP was given. In the BCP the objective is to maximize the clear-
ing volume with the restriction that the negative net balance cannot exceed
a previously deposited amount for each bank. Because the objective and the
constraints of the BCP are different from the version of the DC problem dis-
cussed here (where the objective is to minimize the number of transactions),
these heuristic algorithms cannot be adapted to solve the DC problem and
cannot provide a comparison for our proposed evolutionary algorithm.

In [11] a survey is given on solving some other banking related issues (such
as portfolio optimization, bankruptcy prediction and FOREX rate prediction)
using evolutionary computing. A stochastic model for a payment and settle-
ment system capable of processing payments in real time is presented in [1] by
the example of the Clearinghouse of the Bank of Lithuania. Using this model,
in [2] several FIFO clearing algorithms are tested by simulation.

The problem of mutual debts compensation (MDC) is formulated using
graph theory in [4, 5]. The author proposes a cycle elimination method, but
also shows by an example that the order of elimination is important, which is
also mentioned in [13]. In this problem the goal is to maximize the total amount
of eliminated debts and can be solved efficiently by linear programming and
also by network flow methods. In [6] new models for MDC are introduced.

The problem of settling debts in a minimal number of transactions was
discussed by Verhoeff in 2004 ([21]).

Pătcaş [13] later re-discovered the problem and proposed it in 2008 at the
qualification contest of the Romanian national team of informatics. The solu-
tion was described in [13] and the problem conjectured to be intractable, which
was earlier proved in [21]. In [15] the problem’s relation to complexity classes
was further studied. In [14] the problem in a dynamic setting is discussed and
a new algorithm given, having superior speed in some cases compared to the
one described in [13].



144 C. Pătcas, , A. Bartha

List of borrowings:
Borrower Lender Amount of money

1 3 4
3 4 7
4 2 2
2 1 2
1 5 1
3 5 1
5 4 2

Solution:
Sender Reciever Amount of money

1 4 3
3 4 4

Figure 1: Example for the DC problem

2 Stating the problem

The problem statement is the following([13]):
Let us consider a number of n entities (persons, companies etc.), and a list

of m borrowings among these entities. A borrowing can be described by three
parameters: the index of the borrower entity, the index of the lender entity and
the amount of money that was lent. The task is to find a minimal list of money
transactions that clears the debts formed among these n entities as a result of
the m borrowings made.

It is natural to model this problem using graph theory. Consider the follow-
ing definitions.

Definition 1 ([13]) Let G(V,A,W) be a directed, weighted multigraph with-
out loops, |V | = n, |A| = m, W : A → Z, where V is the set of vertices, A

is the set of arcs and W is the weight function. G represents the borrowings
made, so we will call it the borrowing graph.

The borrowing graph corresponding to the example in Figure 1 is depicted
in Figure 2.

Definition 2 ([13]) Let us define for each vertex v ∈ V the absolute amount
of debt over the graph G: DG(v) =

∑
v ′ ∈ V

(v, v ′) ∈ A

W(v, v ′) −
∑

v ′′ ∈ V

(v ′′, v) ∈ A

W(v ′′, v)



Evolutionary solving of the debts’ clearing problem 145

Figure 2: The borrowing graph associated with the given example. An arc
from node i to node j with weight w means, that entity i must pay w amount
of money to entity j.

i 1 2 3 4 5

D(i) 3 0 4 -7 0

Figure 3: Absolute amounts of debt corresponding to the given example.

Sometimes for simplicity we will refer to the absolute amount of debt of a
node as D-value.

The D-values corresponding to the example from Figure 1 are listed in
Figure 3.

Definition 3 ([13]) Let G ′(V,A ′,W ′) be a directed, weighted multigraph with-
out loops, with each arc (i, j) representing a transaction of W ′(i, j) amount of
money from entity i to entity j. We call this graph a transaction graph.
These transactions clear1 the debts formed by the borrowings modeled by graph
G(V,A,W) if and only if:
DG(vi) = DG ′(vi), ∀i = 1, n, where V = {v1, v2, . . . , vn}

We will note this by: G ∼ G ′.

See Figure 4 for a transaction graph with minimal number of arcs corres-
ponding to the example from Figure 1.

We are now ready to reformulate the problem mathematically:

1When trying to decide if the transactions described by a transaction graph clear the
debts represented by a borrowing graph, it is easy to see that only D-values matter ([21]).



146 C. Pătcas, , A. Bartha

Figure 4: The respective minimum transaction graph. An arc from node i to
node j with weight w means, that entity i pays w amount of money to entity
j.

Given a borrowing graph G(V,A,W) we are looking for a minimal tran-
saction graph Gmin(V,Amin,Wmin), so that G ∼ Gmin and ∀G ′(V,A ′,W ′) :
G ∼ G ′, |Amin| ≤ |A ′| holds.

3 An equivalent problem

The following observation is crucial in all of the solutions known so far.

Theorem 4 ([21, 13]) Any instance of the DC problem can be solved trivially
by at most n− 1 transactions.

Proof. We give an algorithmic proof.

1. Let us choose two nodes i and j, such that D(i) > 0 and D(j) < 0.

2. Add arc (i, j) to the transaction graph having weight min(D(i),−D(j)).

3. Update the D-values of i and j to reflect the addition of the arc (by
decreasing D(i) and increasing D(j)).

4. Repeat steps (1) - (3) as long as possible.

It is clear that at least one D-value becomes zero as a result of executing
steps (1) - (3). Also, because we have the invariant that the sum of all D-
values is always zero, at the last iteration we always have D(i) = −D(j). Thus



Evolutionary solving of the debts’ clearing problem 147

two D-values become zero at the last iteration, which yields the needed upper
bound. �

We observe that finding a minimal transaction graph is equivalent to parti-
tioning V into a maximal number of disjoint zero-sum subsets, more formally
V = P1 ∪ . . . ∪ Pmax,

∑
u∈Pi

D(u) = 0, ∀i = 1,max and Pi ∩ Pj = ∅, ∀i, j =

1,max, i 6= j. The reason for this is, that all the debts in a zero-sum subset
Pi can be cleared by |Pi| − 1 transactions by Theorem 4, thus to clear all the
debts, |V |−max transactions are necessary.

4 Evolutionary technique for solving the DC prob-
lem

We use the reformulation of the problem described in Section 3.

Representation In our method we represent a solution of the problem by a
permutation of the D-values of V, the set of nodes. Thus a candidate solution
is a vector C = (c1, c2, . . . , cn), such that ci = D(u), ∀i ∈ 1, n for some unique
u ∈ V.

For instance C = (3, 0,−7, 4, 0) is a chromosome representing a candidate
solution for the D-values from Figure 3.

The idea of representing solutions as permutations was discussed intensively
in the context of the Traveling Salesman Problem (TSP) ([7, 12, 22]).

Fitness assignment To evaluate the fitness of a chromosome, we need to
determine the number of zero-sum subsets codified by the candidate solution,
taking into consideration the order of appearance of the D-values. In order to
calculate it, we iterate over the genes of the chromosome from left to right and

maintain the partial sum obtained so far, that is si =
i∑

j=1

cj. For every si = 0,

we have found a new zero-sum subset of the partition (starting after the last
encountered partial sum equal to zero and ending at i), so we can add one to
the fitness of the chromosome.

For instance if we have C = (−3, 2, 1,−5, 5), then s = (−3,−1, 0,−5, 0), so
the fitness of C will be 2, corresponding to the partition formed by the first
three elements and the last two elements.



148 C. Pătcas, , A. Bartha

Recombination Various operators for permutation representations are dis-
cussed in [3, 7, 8, 12, 19, 20, 22, 23].

When selecting existing recombination operators or designing new ones the
representation of the problem is crucial to consider. In our case we had to
take into account that we have a permutation representation corresponding
to disjoint sets whose number has to be maximized. Thus for our problem
the resulting offsprings of a crossover must represent a valid permutation and
must have the potential to improve the number of zero-sum sets.

Because these sets are constructed by looking at the order of genes, for
operator Recomb1 we have chosen an order-based crossover method, in par-
ticular the Modified Order Crossover (MOX) operator described in [23]. Most
crossover operators for permutation representations are designed for the TSP.
Replacing a few arcs in the solution of the TSP usually does not greatly change
the fitness of the solution, but may have a negative impact in the DC prob-
lem by perturbing too many zero-sum sets. Thus we had to be careful which
operators to adapt to our problem.

For operator Recomb2 we propose a new crossover operator, which intu-
itively has a great potential in increasing the number of subsets codified by
the offsprings, by leveraging information from the parents.

Recomb1 Let C1 and C2 be the two chromosomes, and k ∈ [1, n] a random
crossover point. Then, the first descendant C ′

1 can be obtained by copying the
first k genes from C1 and appending to it the elements of the permutation not
used so far in the same order as they appear in C2. The second descendant C ′

2

is obtained symmetrically.
For instance,

k = 2

C1 = (−3,2, 1,−5, 5) C2 = (−5,2, 1,−3, 5)↓
C ′
1 = (−3,2,−5, 1, 5) C ′

2 = (−5,2,−3, 1, 5)

Recomb2 The problem with Recomb1 is, that the first descendant inherits
most of its properties from C1 and very little from C2. Symmetrically C ′

2 inher-
its most of its properties from C2 and very little from C1. This is undesirable,
as both C1 and C2 can contain subsets from the optimal partition.

A better recombination operator may be the following. First, determine the
zero-sum subsets codified by C1 and C2, as described at the fitness assignment.



Evolutionary solving of the debts’ clearing problem 149

Let those be C1 = P1,1 ∪P1,2 ∪ . . . and C2 = P2,1 ∪P2,2 ∪ . . .. Initialize C ′
1 := C1

and C ′
2 := C2.

Then, iterate over every P1,i. If some P1,i is contained in some P2,j, that is
P1,i ⊂ P2,j, replace P2,j in the second descendant with P1,i∪ (P2,j \P1,i)2 Repeat
the same procedure for C2 symmetrically.

For instance,

C1 = (−3, 2, 1,−5, 5) = {−3, 2, 1} ∪ {−5, 5}

C2 = (2, 1, 5,−5,−3) = {2, 1, 5,−5,−3}↓
C ′
1 = {−3, 2, 1} ∪ {−5, 5} = (−3, 2, 1,−5, 5)

C ′
2 = {−3, 2, 1} ∪ {5,−5} = (−3, 2, 1, 5,−5)

Mutation In our experiments we have used three mutation operators. Mut1
is a classical inversion operator.

We propose two new mutation operators with the property, that the fit-
ness value of the chromosome does not decrease. The new mutation operators
are based on Mut1, but are using the additional information of the chosen
representation of our particular problem.

Mut1 Holland described an inversion operator in [10], which reverses the
order of the elements between two randomly chosen indices. This method
can be used without modification, on the sequence between the ith and jth

elements.
For instance,

i = 2, j = 5

C = (−3,2,1,−5,5)↓
C ′ = (−3,5,−5,1,2)

Mut2 Mut1 can be used on the partition C = P1 ∪ P2 ∪ . . . instead of the
permutation representation. This method guarantees that the fitness of the
chromosome does not decrease.

For instance,

2In our implementation we have chosen to put the elements of P1,i into C ′2 in the same
order as they were in C1 and the elements of P2,j \P1,i in the same order as they were in C2.
Other variations are possible as well.



150 C. Pătcas, , A. Bartha

i = 1, j = 4

C = (−2, 2, 3, 4,−7, 1,−1, 6,−3, 2,−5) =
{−2,2} ∪ {3,4,−7} ∪ {1,−1} ∪ {6,−3,2,−5}↓

C ′ = {6,−3,2,−5} ∪ {1,−1} ∪ {3,4,−7} ∪ {−2,2} =
(6,−3, 2,−5, 1,−1, 3, 4,−7,−2, 2)

Mut3 Mut1 can also be used inside some Pk without decreasing the fitness.
For instance,

k = 4, i = 1, j = 4

C = (−2, 2, 3, 4,−7, 1,−1, 6,−3, 2,−5) =
{−2, 2} ∪ {3, 4,−7} ∪ {1,−1} ∪ {6,−3,2,−5}↓

C ′ = {−2, 2} ∪ {3, 4,−7} ∪ {1,−1} ∪ {−5,2,−3,6} =
(−2, 2, 3, 4,−7, 1,−1,−5, 2,−3, 6)

5 How to obtain large instances of the DC problem

Because our problem is NP-hard as demonstrated in [15], it is challenging to
generate large test cases for which information about the optimal solution is
known. We describe five methods to generate large test cases.

Method 1 If the optimal solution for some input is known, padding the set
of D-values with k zeros increases the optimal solution also by k.

Method 2 Method 1 can be modified by padding the input with k pairs of
the structure (x,−x).

Method 3 If the number of negative (or positive) numbers is two, the prob-
lem is equivalent to the Subset Sum problem and is solvable in pseudopoly-
nomial time by dynamic programming. Using this method we can generate
inputs for which the optimal solution is unique, that is, there is a single subset
of positive (negative) numbers having the sum equal to one of the two neg-
ative (positive) numbers (in absolute value). An optimal answer for such an
input is expected to be difficult to find for our evolutionary approach, as in the
worst case (when the cardinality of the subset is n/2) only 2 · (n2 !)

2 out of the
n! possible permutations do represent an optimal solution. For n = 10, this



Evolutionary solving of the debts’ clearing problem 151

means that the ratio of optimal solutions and all solutions is about 7.9 · 10−3,
while for n = 100 the ratio is about 1.9 · 10−29.

This idea can be extended for any fixed number of negative (positive) num-
bers, but the running time of the dynamic programming solution raises quickly.

Method 4 Let n be the desired size of the input and l ≤ bn/2c an integer.
First generate randomly a set of n − l elements, containing only positive D-
values and l distinct integers from the [1, n− l] range (denoted r1 < . . . < rl).

Let s be the vector of partial sums, that is si =
i∑

j=1

D(j), ∀i = 1, n− l (we

assume s0 = 0 and r0 = 0). For every ri, ∀i = 1, l insert −(sri − sri−1
) to

the set. In other words we insert with a negative sign the sum of l partial
sequences, whose borders are denoted by ri−1 and ri. By this method we can
get the optimal solution to be equal to l. As the range of the possible values
of the first n− l positive elements gets bigger, we expect the optimal solution
to be harder and harder to find. The reason is that the probability to get the
same sum from a different combination of positive numbers gets smaller, thus
the number of genetic representations corresponding to an optimal solution
decreases.

Method 5 It can be easily seen, that if the optimal solution for a set V is
known to be max, then the solution for V ∪V will be 2 ·max, the solution for
V ∪ V ∪ V will be 3 ·max and so on.

6 Numerical experiments

A preliminary testing phase was carried out using the same 15 test cases
which were used when the problem was proposed in 2008 at the qualification
contest of the Romanian national team (see [14] for a description of each
instance). These test cases all have specially crafted structures, with n ≤ 20,
m ≤ 100 and the cost of an arc being a natural number no larger than 100. For
comparison, the optimal solution was determined for each test case by using
the algorithm described in [13].

Because these instances have small size, our genetic algorithm can be used
with a wide range of parameters and operators to reach the optimal solution
in a matter of seconds.

To test the above statement empirically, we used a population of 100 indi-
viduals and the number of generations was set 100. We used operator Recomb2



152 C. Pătcas, , A. Bartha

in conjunction with roulette wheel selection and operator Mut1 with a muta-
tion probability of 0.5. The best five individuals always survived to the next
generation. Our genetic algorithm found the best solution for all of the test
cases.

6.1 Combinations of operators

In the first set of experiments our goal was to determine which combinations
of our recombination and mutation operators work best in practice, along
with desirable values for mutation probability. We constructed three test cases
(debt100a, debt100b and debt100c)3 with different structures, all of them
having n = 100

debt100a was obtained by concatenating the test case from the initial 15
which was the most difficult to solve for the genetic algorithm (case 15) five
times to itself. By the observation above in Method 5, the optimal solution for
this test case is max = 25.

To generate debt100b we used Method 3 for n = 50 and concatenated the
obtained set once to itself, thus obtaining a case having max = 4 by the
observation above.

To obtain debt100c we first generated, using a dynamic programming algo-
rithm, a set having 20 elements, which can be uniquely partitioned into three
zero-sum subsets (and no more). Then we concatenated this set five times to
itself, yielding max = 15 for this test case.

For each of the three described test cases we used the following methodol-
ogy. For every possible combination of recombination and mutation operators
we fixed the mutation probability to every value from 0 to 1 in steps of 0.1
and executed the genetic algorithm 10 times. We recorded the best solution
obtained among the 10 executions, the average of the 10 best values and the
average fitness of all genomes. In each case the population size was set to
100 individuals and the number of generations to 1000. For the recombination
operators roulette wheel selection was used in every case and the best five
individuals always survived to the next generation.

To assess the efficacy of our algorithm we compared it to an algorithm called
RandomSearch, which works by generating an independent random solution
in every generation for each chromosome. In our case this meant generating
100000 random solutions and remembering the one with the maximum fitness
value among them.

3All test cases used in our experiments can be downloaded from http://cs.ubbcluj.ro/

~patcas/debt_experiments.zip

http://cs.ubbcluj.ro/~patcas/debt_experiments.zip
http://cs.ubbcluj.ro/~patcas/debt_experiments.zip


Evolutionary solving of the debts’ clearing problem 153

The results of the first set of experiments were the following:

• debt100c was the most difficult of the three test cases used, no algo-
rithm being able to find the optimal solution max = 15. The best solu-
tion found by RandomSearch was 5, and the best solution found by the
evolutionary algorithms was 13, using Recomb2 along with Mut1 with a
mutation probability ranging from 0.8 to 1. The average fitness of all
genomes was maximal at mutation probability 0.7.

• debt100b was the easiest of the test cases, our genetic algorithm being
able to find the optimal solution max = 4 in the majority of the cases (in
about 76% of the possible combinations of recombination and mutation
operators and mutation probabilities). Mutation probability 0.7 along
with Recomb2 and Mut1 maximized the average fitness again. The best
solution found by RandomSearch was 3.

• For debt100a RandomSearch was able to find a solution with fitness
9. Our genetic algorithm found the optimal solution 25 in a small per-
centage of the cases, using the same parameters that yielded the best
solutions for debt100c. Maximal average fitness was obtained with mu-
tation probability 0.4 using Recomb2 and Mut1.

We can draw the conclusion that our genetic algorithm is much more efficient
than generating random solutions. The results suggest that using Recomb2 with
Mut1 works best in practice for a wide range of inputs. On the other hand we
note that Recomb2 and Mut2 is a particularly bad combination, the reason
being that it does not allow the exploration of a sufficient varied range of
solutions, because neither of the operators is able to introduce new partition
sets into the population. Still, Mut2 works fairly well together with Recomb1,
as the latter is capable of constructing new partition sets.

6.2 Convergence to optimum

In the second set of experiments we studied the convergence of the solution
to the optimal value as the number of generations increases. We concatenated
each of the three test cases described above ten times to itself, obtaining
cases debt1000a, debt1000b and debt1000c respectively. We executed our
genetic algorithm using Recomb2 and Mut1 with a mutation probability of
0.75. The population size was set to 80 and the best five individuals were
always promoted to the next generation. The algorithm was executed once for



154 C. Pătcas, , A. Bartha

Figure 5: The fitness of the best individual compared to the optimal solution
in percentages for test case debt1000a as the number of generations increases.

50000 generations, and the fitness of the best chromosome was recorded every
100 generations.

The results are depicted in Figures 5, 6 and 7. We can observe that in
every case the fitness of the best individual raises sharply in the first 5000
generations, then slows down gradually. 50000 generations were enough to
find a solution having fitness 244 (97.6% of the optimum) for debt1000a and
a solution having fitness 39 (97.5% of the optimum) for debt1000b. Case
debt1000c was significantly more difficult, the best solution having only fitness
122 (81.3% of the optimum).

6.3 Efficiency on very difficult test cases

In the third set of experiments we used Method 2 to generate test cases which
are very difficult for our evolutionary algorithm. Starting with n = 100 and go-
ing by increments of 100 we generated sets having the structure {1, 2, . . . , n/2,

− 1,−2, . . . ,−n/2}. It can be easily seen that the optimal solution for these
cases is max = n/2 and it is unique. Only n

2 ! · 2
n/2 representations out of

n! translate to an optimal solution, which means that the ratio of optimal
solutions to all solutions is about 1.0 · 10−3 for n = 10 and about 3.6 · 10−79

for n = 100.
For every case we executed the genetic algorithm 10 times using Recomb2



Evolutionary solving of the debts’ clearing problem 155

Figure 6: The fitness of the best individual compared to the optimal solution
in percentages for test case debt1000b as the number of generations increases.

and Mut1 with a mutation probability 0.75. The population size was set to 80
and the best five individuals were always promoted to the next generation. The
algorithm was stopped after 5000 generations. For every test case we recorded
the best solution found by the algorithm, the average of the best solutions
over the 10 executions and the summed up running time of the 10 executions.
The results are presented in Figure 8.

For n = 100 the optimal solution was found in all of the 10 executions, but
as the size of the input increased, the best solution got further and further from
the optimum. We note the robustness of the algorithm, as the best solution is
usually just a few percentages away from the average.

7 Conclusions

The debts’ clearing problem is an NP-hard problem of practical interest, as it
arises in real life situations as well. The only known algorithms to solve the
problem were the ones presented in [13] and [14], which are exact algorithms
that always provide the optimal solution, but their running time is practical
only for small inputs (n ≤ 20).

Using an equivalent problem, we described an evolutionary algorithm to
solve the problem and made extensive experiments to assess its efficacy. From
the experiments we concluded that our algorithm is much more efficient than a
random search in the space of the solutions. Our algorithm is capable of finding



156 C. Pătcas, , A. Bartha

Figure 7: The fitness of the best individual compared to the optimal solution
in percentages for test case debt1000c as the number of generations increases.

N Best solution Average of bests Running time
(% of optimum) (% of optimum) (in seconds)

100 50 (100%) 50 (100%) 203
200 76 (76%) 70.4 (70.4%) 710
300 91 (60.6%) 85.5 (57%) 1247
400 108 (54%) 100.5 (50.2%) 1919
500 116 (46.4%) 109.8 (43.9%) 2610
600 130 (43.3%) 121.1 (40.3%) 3328
700 138 (39.4%) 132 (37.7%) 4225
800 147 (36.7%) 142.4 (35.6%) 5134
900 155 (34.4%) 146.6 (32.5%) 6084
1000 166 (33.2%) 157.3 (31.4%) 6766

Figure 8: Results of 10 executions for 5000 generations each, on very difficult
test cases

the optimal solution for the most difficult test cases with sizes up to n = 100

in a matter of minutes. For cases as large as n = 1000 our approach remains
practical, as it can obtain solutions in the range of 80% - 98% compared to
the optimal solution in about an hour on a personal computer. In comparison
a random search does not go above 15% even for the easiest cases of this size.



Evolutionary solving of the debts’ clearing problem 157

References

[1] D. Bakšys and L. Sakalauskas, Modelling, simulation and optimisation of
interbank settlements, Information technology and control 36, 1 (2007)
43–52. ⇒143

[2] D. Bakšys and L. Sakalauskas, Simulation and testing of FIFO clearing
algorithms, Information technology and control 39, 1 (2010) 24–31. ⇒
143

[3] L. Davis, Applying adaptive algorithms to epistatic domains, Proceedings
of the 9th International Joint Conference on Artificial Intelligence, 162–
164, Morgan Kaufmann, 1985. ⇒148

[4] V. Gazda, Mutual debts compensation as graph theory application, Chal-
lenges for Business Administrators in the New Millennium, 793–811,
2000. ⇒143

[5] V. Gazda, Mutual debts compensation as graph theory problem, Mathe-
matical Finance, 162–167, Springer, 2001. ⇒143

[6] V. Gazda, D. Horváth and M. Rešovskỳ, An application of graph theory
in the process of mutual debt compensation, Acta Polytechnica Hungarica
12, 3 (2015) 7–24. ⇒143

[7] D. Goldberg and R. Lingle, Jr. Alleles, loci, and the traveling salesman
problem, Proceedings of the 1st International Conference on Genetic Al-
gorithms and their Applications, 154–159, Lawrence Erlbaum Associates,
1985. ⇒147, 148

[8] M. Gorges-Schleuter, Genetic algorithms and population structure - A
massively parallel algorithm, Ph.D. thesis, University of Dortmund, 1990.⇒148

[9] M. M. Güntzer, D. Jungnickel and M. Leclerc, Efficient algorithms for
the clearing of interbank payments, European Journal of Operational Re-
search 106, 1 (1998) 212–219. ⇒143

[10] J. H. Holland, Adaptation in Natural and Artificial Systems, The Univer-
sity of Michigan Press, 1975. ⇒149

[11] G. J. Krishna and V. Ravi, Evolutionary computing applied to solve some
operational issues in banks, Optimization in Industry 31–53, Springer,
2019. ⇒143

[12] I. Oliver, D. Smith and J. Holland, A study of permutation crossover
operators on the traveling salesman problem, Proceedings of the Second
International Conference on Genetic Algorithms, 224–230, Lawrence Erl-
baum Associates, 1987. ⇒147, 148

http://itc.ktu.lt/index.php/ITC/article/view/11814/6481
http://www.itc.ktu.lt/index.php/ITC/article/download/12085/6733
https://uni-obuda.hu/journal/Gazda_Horvath_Resovsky_59.pdf
https://www.journals.elsevier.com/european-journal-of-operational-research
https://www.journals.elsevier.com/european-journal-of-operational-research


158 C. Pătcas, , A. Bartha

[13] C. Pătcaş, On the debts’ clearing problem, Studia Universitatis Babeş-
Bolyai Series Informatica, 54, 2 (2009) 109–120. ⇒ 143, 144, 145, 146,
151, 155

[14] C. Pătcaş, The debts’ clearing problem: a new approach, Acta Universi-
tatis Sapientiae, Informatica, 3, 2 (2011) 192–204. ⇒143, 151, 155

[15] C. Pătcaş, The debts’ clearing problem’s relation with complexity classes,
Acta Mathematica Academiae Paedagogicae Nýıregyháziensis, 28, 2 (2012)
217–226. ⇒143, 150

[16] A. C. Shapiro, Payments netting in international cash management, Jour-
nal of International Business Studies, 9, 2 (1978) 51–58. ⇒142

[17] Y. M. Shafransky and A. A. Doudkin, An optimization algorithm for
the clearing of interbank payments, European Journal of Operational Re-
search, 171, 3 (2006) 743–749. ⇒143

[18] V. Srinivasan and Y. H. Kim, Payments netting in international cash
management: a network optimization approach, Journal of International
Business Studies, 17, 2 (1986) 1–20. ⇒142, 143

[19] G. Syswerda, Schedule optimization using genetic algorithms, Handbook
of Genetic Algorithms, 332–349, Van Nostrand Reingold, 1991. ⇒148

[20] A. J. Umbarkar and P. D. Sheth, Crossover operators in genetic algo-
rithms: a review, ICTACT journal on soft computing, 6, 1, 2015 ⇒148

[21] T. Verhoeff, Settling multiple debts efficiently: an invitation to computing
science, Informatics in Education, 3, 1 (2004), 105–126. ⇒143, 145, 146

[22] D. Whitley, T. Starkwater and D. Fuquay, Scheduling problems and trav-
eling salesmen: The genetic edge recombination operator, Proceedings of
the Third International Conference on Genetic Algorithms, 133–140, Mor-
gan Kaufmann Publishers, 1989. ⇒147, 148

[23] J. Wróblewski, Theoretical foundations of order-based genetic algorithms,
Fundamenta Informaticae 28, 3-4 (1996) 423–430. ⇒148

Received: September 26, 2019 • Revised: November 26, 2019

http://cs.ubbcluj.ro/~patcas/
http://studia.ubbcluj.ro/arhiva/abstract.php?editie=INFORMATICA&nr=2&an=2009&id_art=7268
http://cs.ubbcluj.ro/~patcas/
http://www.acta.sapientia.ro/acta-info/C3-2/info32-4.pdf
http://cs.ubbcluj.ro/~patcas/
https://www.emis.de/journals/AMAPN/vol28_2/28_21.pdf
https://link.springer.com/journal/41267
https://www.journals.elsevier.com/european-journal-of-operational-research
https://www.journals.elsevier.com/european-journal-of-operational-research
https://link.springer.com/journal/41267
http://wce.ac.in/faculty-pages/faculty-page.php?tfaculty=7
http://ictactjournals.in/paper/IJSC_V6_I1_paper_4_pp_1083_1092.pdf
http://www.win.tue.nl/~wstomv/
http://www.mii.lt/informatics_in_education/pdf/INFE023.pdf
https://fi.mimuw.edu.pl/index.php/FI

	1 Introduction
	2 Stating the problem
	3 An equivalent problem
	4 Evolutionary technique for solving the DC problem
	5 How to obtain large instances of the DC problem
	6 Numerical experiments
	6.1 Combinations of operators
	6.2 Convergence to optimum
	6.3 Efficiency on very difficult test cases

	7 Conclusions

