
Acta Univ. Sapientiae Informatica 13, 2 (2021) 303–323

DOI: 10.2478/ausi-2021-0014

Dual quaternion-based osculating circle

algorithm for finding intersection curves

Vahide BULUT
Izmir Katip Celebi University,

Department of Engineering Sciences,
Cigli, Izmir, 35620, Turkey

email: vahide.bulut@ikcu.edu.tr

Abstract. The intersection of surfaces is a fundamental process in com-
putational geometry and computer-aided design applications to build and
interrogate complex shapes in the computer. This paper presents a novel
and simple dual quaternion-based osculating circle DQOC algorithm to
find the intersection curve of two regular surfaces based on the osculat-
ing circle concept and dual quaternions. Additionally, we expressed the
natural equations of the intersection curve. We have also demonstrated
the superiority of our method through numerical examples.

1 Introduction

Surface/surface intersections are widely used in computer-aided manufacturing
(CAM) / computer-aided design (CAD), such as path planning, animations,
and modeling some shapes. Numerical methods are generally preferred for the
intersection of two surface cases.

The marching method provides an intersection curve’s points sequences by
utilizing the local differential geometry [8],[10]. First, the initial point must
be determined to proceed through this method, and next, the point contin-
ues along the intersection curve by marching. The intersection curve’s local
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geometric properties are used to compute the marching direction plus steps.
The marching step is computed via the sequence of points that originated
from the first point. Several possible solutions exist for marching directions,
including moving in a tangential direction [2], [9] or traveling along a circle [1]
or a parabola [12]. However, the most commonly used solution is step length,
based on the curve’s curvature.

Not only are dual quaternions vital because they perform the solution more
robust and straightforward, but they also provide a compact, unambiguous,
singularity - free rigid transform using minimal computations. Another positive
feature of dual quaternions is that they are the most efficient and most compact
form that can be utilized to represent rotation and translation. Additionally,
they can solve a problem more rapidly while doing it in fewer steps, and
they show the result more clearly. Also, fewer code lines are used for dual
quaternions to practice [7].

In literature, some authors have used lengthy calculations to determine the
step length and next intersection point. This study presents a new and ap-
plicable DQOC algorithm that employs fewer computational calculations to
obtain the solution less complicated. Additionally, we obtain closer points to
the intersection curve. On the other hand, we present the natural equations of
the intersection curve. We also compare our algorithm with the method that
Wu and Andrade used [15].

2 Preliminaries

2.1 Dual quaternions

Definition 1 A dual number is written as

A = a+ εā

in which, a and ā are real numbers and ε2 = 0, ε 6= 0 [13], [16].

Definition 2 An ordinary quaternion is defined as

q = a+ bi+ cj+ dk

where i, j, k are the standard orthonormal basis in R3, providing i2 = j2 = k2 =
ijk = −1, and a, b, c, d are real numbers.

Quaternions can present a rigid body’s rotation according to an axis. Quater-
nions do not cause any singularity problem and provide the keyframe interpo-
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lation better [5], [11], [6].

Definition 3 A dual quaternion can be expressed by

Q̂ = Q+ εQ∗ (1)

in which

Q = qr + ~q Q∗ = q∗r + ~q∗

and ε2 = 0.

Dual quaternions were first described by W. Kingdon Clifford in 1873 [3].
They are different from the real quaternions because they are utilized for both
translation and rotation. A dual quaternion’s four dual number terms can be
interpreted as

Q̂ = q̂r + q̂xi+ q̂yj+ q̂zk (2)

or

Q̂ = s+ xi+ yj+ zk+ ε (sε + xεi+ yεj+ zεk) .

Lemma 4 If we take the two dual quaternions as

Q̂1 = Q1 + εQ
∗
1, Q̂2 = Q2 + εQ

∗
2,

then, the dual quaternion multiplication can be given with

Q̂1Q̂2 = Q1Q2 + ε (Q1Q
∗
2 +Q2Q

∗
1) .

Lemma 5 Dual conjugate Q̂ and dual quaternion norm can be defined as

Q̂ = Q− εQ∗

and

||Q̂|| = ||Q||+ ε
< Q,Q∗ >

||Q||
.

Definition 6 A dual quaternion that satisfies the conditions ||Q̂|| = 1 and
< Q,Q∗ >= 0 is called a unit dual quaternion.



306 V. Bulut

Lemma 7 The inverse of a dual quaternion is

Q̂−1 =
1

Q
− ε

Q∗

Q2

in which, Q 6= 0.

Lemma 8 A second conjugation operator for a dual quaternion is

Q̂
∗
= (s,−x,−y,−z,−sε, xε, yε, zε) .

Lemma 9 Transformations can be represented by only one dual quaternion.
Let Q̂ and P̂ be two transformation dual quaternions and Qv be a position
vector dual quaternion. Then, the combined transformation C can be applied
to Qv as

Q̂
′
v = P̂

(
Q̂QvQ̂

∗)
P̂
∗
=
(
P̂Q̂
)
(Qv)

(
Q̂
∗
P̂
∗)

(3)

or
Ĉ = P̂Q̂⇒ Q̂

′
v = ĈQvĈ

∗
.

Lemma 10 Unit dual quaternions represent the three-dimensional 3D rota-
tion with an angle θ and a unit axis n when the dual part Q∗ = 0.

Q̂r =
[
cos
(
θ
2

)
, nx sin

(
θ
2

)
, ny sin

(
θ
2

)
,

nz sin
(
θ
2

)]
[0, 0, 0, 0]

Lemma 11 A pure translation can be expressed in terms of a dual quaternion
by

Q̂t = [1, 0, 0, 0]

[
0,
tx

2
,
ty

2
,
tz

2

]
Lemma 12 On the following, a single unit quaternion can be used to denote
a rotation followed by a translation as [7], [18]

Q̂ = Q̂t × Q̂r. (4)

3 Intersection curve

3.1 Geometric concepts of the intersection curve

First and second derivatives of the parametric curve α = α (s) in R3 in terms
of arc-length parameter are given by

α
′
(s) = T, α

′′
(s) = κN (5)
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in which the vectors T, N correspond to the components of the Frenet-Serret
frame, and κ represent the curvature of this curve.

Definition 13 Assume that the points P, Q, and M be on the same curve. If
the points P and M tend to Q, the circle’s limit that passes through all these
points is called the osculating circle at Q.

The osculating circle can then be used as an approximation of the intersec-
tion curve because the curve’s osculating circle at a point has the same tangent
and curvature as the curve at that point [4].

Suppose that the intersection curve α (s) is given as of regular surfaces
S1 (u, v) and S2 (r, s). The tangent vector of this curve can be written using
the surfaces’ unit normal vectors n1 and n2 at the point P with following
equation [17].

T =
n1 × n2
||n1 × n2||

. (6)

In this paper, the intersection curve is obtained by the transversal intersection
of two regular surfaces.

3.2 Marching algorithm

Finding the starting points of the intersection curves plays a vital role in
tracing methods. Analytically, we need to compute the below equation to
determine these two parametric surfaces’ intersection.

S1 (u, v) = S2 (r, s) . (7)

In the case of not intersecting these surfaces, the minimum distance is com-
puted between two surfaces to determine the starting points. For instance, if
the two surfaces exist in the same bounding box, we can compute a starting
point using the bounding box method.

For every next point, we can find the step vector at each point by using the
marching algorithm and the marching process can be performed in parametric
or Cartesian space. In Cartesian spaces, the marching method uses a fixed-
step. However, with our algorithm, we consider the curve’s local geometry
instead of a fixed step [14].

This paper utilizes the osculating circle to compute the length of each step.
The reason is that the intersection curve’s osculating circle α (s) can best
approximate the curve at the same point [15].
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4 Proposed method

Our proposed method focused on the osculating circle of the intersection curve
via using dual quaternions:

� We need to find initial points.

� We can compute the center and the osculating circle’s radius by using
these initial points.

� We obtain the next intersection point using dual quaternions.

In our method, we begin with determining the starting points by applying the
steps as follows:

Step 1: Determine the point P to be a starting point using the equation
(7).

Step 2: Obtain the point Q. It is accepted that the distance between the
points P and Q is L

(k.10) . The initial value of k is taken as 2. Here, L indicates
the step length.

Step 3: Increase the value of k by one, and continue by Step 2 if the point
Q becomes a singular point. On the other hand, if the singular case remains
the same, the value of k can be increased sequentially till 10.

Step 4: Continue with step 1 if the point Q can not be found because of
the singularity.

Next, to find the osculating circle’s center and radius, we utilized the method
in [15]. We can compute the osculating circle’s center with the following linear
system of equations. 

Cu = Pu

Cv = Qv

Cw = Qw

(8)

in which C is the osculating circle’s center point at Q. This center point C is
obtained via the intersection of three planes that have the normal vectors u,
v and w. Also, the distance between C and Q indicates the osculating circle’s
radius.

The step length can be obtained right after the osculating circle approxima-
tion. Wu and Andrade first computed the normal vector to the circumference
plane. After the transformations of translation and rotation, they moved the
osculating circle to the XOY plane by placing the center to O = (0, 0, 0). Con-
sequently, they obtained the transformed points and then determined whether



Osculating circle algorithm for finding intersection curves 309

P

Q

C

A

L

u v

θ
R

Figure 1: The circular step is obtained by the proposed method.

the orientation of the arc

(
_
PQ

)
was clockwise or counterclockwise. Next,

they found point A
′

after some computations and applied the inverse trans-
formations to point A

′
to ascertain the next intersection point A [15]. For this

process, they used very long calculations to find the next intersection point A.
In our new method, we determined θ as an increment L as shown in Fig.

1. We can compute the next intersection point A using only the equation (3)
below as

A = Q̂QQ̂
∗

= [1, 0, 0, 0] + ε[0, c1 + (q1 − c1) cos θ+ (c2 − q2) sin θ,

c2 + (q2 − c2) cos θ+ (q1 − c1) sin θ, q3].

(9)

Using the equation (9), we translate the osculating circle’s center C to the
origin O, implement the rotation, and then re-translate C to its initial position
and find the next intersection point applying only unit dual quaternions. The
proposed dual quaternion based osculating circle DQOC algorithm is given in
Algorithm 1.

5 Natural equation of the intersection curve

We can obtain the natural equation of the intersection curve obtained by the
transversal intersection of two regular surfaces, using the Darboux frames of
these surfaces.

Theorem 14 Let two surfaces be given as S1 (u, v) and S2 (r, s), and the inter-
section curve of these surfaces be α(s) parametrized with arc length parameter.



310 V. Bulut

We can expand series of the intersection curve α(s) at s = 0 as

α(s) =
s

1!

dα

ds
+
s2

2!

d2α

ds2
+
s3

3!

d3α

ds3
+ ... (10)

We can write the natural equation of the intersection curve α(s) at s = 0

in terms of the Darboux frame coefficients of the surfaces S1 and S2 with the
following equation.

α(s) =
s

1!
t+

s2

2!

1

||n1 ∧ n2||
[−a (τg1 − τg2)n

−kn2
g1 + τg1bn1 + kn1

g2 − τg2cn2]

= +
s3

3!

1

||n1 ∧ n2||

[
−a

′
(τg1 − τg2) − a

(
τ
′
g1

− τ
′
g2

)
+

1

||n1 ∧ n2||
a2 (τg1 − τg2)

2 + kn2
g1

−τg1bkn1
− kn1

kg2 − τg2kn2
] t

+
s3

3!

1

||n1 ∧ n2||

[
1

||n1 ∧ n2||
a (τg1 − τg2)kn2

−k
′
n2

− τ2g1b
]
g1

+
s3

3!

1

||n1 ∧ n2||

[
−

1

||n1 ∧ n2||
a (τg1 − τg2) τg1b

−kn2
τg1 + τ

′
g1
b+ τg1b

′]n1
+
s3

3!

1

||n1 ∧ n2||

[
−

1

||n1 ∧ n2||
a (τg1 − τg2)kn1

+ k
′
n1

+ τ2g2

]
n2

+
s3

3!

1

||n1 ∧ n2||

[
+

1

||n1 ∧ n2||
a (τg1 − τg2) τg2c

+kn1
τg2 − τ

′
g2
c− τg2c

′
]
n2

+...

(11)
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Proof. Since the intersection curve will take place on both surfaces, Darboux
frames of this curve on the surfaces S1 and S2 can be taken as {t1, g1, n1} and
{t2, g2, n2}. These frames are right-handed orthogonal frames associated with
each point of the intersection curve α(s), where t1 and t2 are the unit tangent
vectors of α(s) at the surfaces S1 and S2 ; n1 and n2 are the unit normal vectors
of the surfaces S1 and S2; g1 and g2 are the geodesic normals of the surfaces S1
and S2, respectively. On the other hand, we can write the unit tangent vector
of the intersection curve using the equation (6) as

dα

ds
=

n1 ∧ n2
||n1 ∧ n2||

= t = t1 = t2. (12)

Next, we can get the second derivative of the above equation as follows:

d2α

ds2
=

1

||n1 ∧ n2||

[
n
′
1 ∧ n2 + n1∧n

′
2

]
=

1

||n1 ∧ n2||
[(−kn1

t− τg1g1)∧n2 + n1∧ (−kn2
t− τg2g2)]

=
1

||n1 ∧ n2||
[kn1

n2 − τg1 ((n1n2) t− (tn2) n1)

−kn2
g1 − τg2 ((n1t) n2 − (n1n2) t)]

=
1

||n1 ∧ n2||
[−a (τg1 − τg2) t

−kn2
g1 + τg1bn1 + kn1

g2 − τg2cn2]

(13)

where, n1n2 = a, tn2 = b and n1t = c. Also, we can write the third derivative
of the equation (12) with below equation as
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d3α

ds3
=

1

||n1 ∧ n2||
[−a

′
(τg1 − τg2) t

−a
(
τ
′
g1

− τ
′
g2

)
t− a (τg1 − τg2) t

′
− k

′
n2
g1 − kn2

g
′
1

+τ
′
g1
bn1 + τg1b

′
n1 + τg1bn

′
1 + k

′
n1
g2

+kn1
g
′
2 − τ

′
g2
cn2 − τg2c

′
n2 − τg2cn

′
2]

=
1

||n1 ∧ n2||

[
−a

′
(τg1 − τg2) − a

(
τ
′
g1

− τ
′
g2

)
+

1

||n1 ∧ n2||
a2 (τg1 − τg2)

2 + kn2
g1 − τg1bkn1

−kn1
kg2 − τg2kn2

] t

+
1

||n1 ∧ n2||

[
1

||n1 ∧ n2||
a (τg1 − τg2)kn2

− k
′
n2

− τ2g1b

]
g1

+
1

||n1 ∧ n2||

[
−

1

||n1 ∧ n2||
a (τg1 − τg2) τg1b

−kn2
τg1 + τ

′
g1
b+ τg1b

′]n1
+

1

||n1 ∧ n2||

[
−

1

||n1 ∧ n2||
a (τg1 − τg2)kn1

+ k
′
n1

+ τ2g2

]
g2

+
1

||n1 ∧ n2||

[
+

1

||n1 ∧ n2||
a (τg1 − τg2) τg2c

+kn1
τg2 − τ

′
g2
c− τg2c

′
]
n2.

(14)

If we continue taking this derivative process as above, we can find the nth

derivative with following equation.

dnα

dsn
= unt+ vng1 +wnn1 + v

∗
ng2 +w

∗
nn2 (15)
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where, un, vn, wn, v∗n and w∗n are the known functions of sequential derivatives
of kni

, kgi and τgi , i = 1, 2. Taking derivative of (15), we can get the equation
below.

dn+1α

dsn+1
=
dun

ds
t+ unt

′ +
dvn

ds
g1 + vng

′
1 +

dwn

ds
n1

+wnn
′
1 +

dv∗n
ds

g2 + v
∗
ng
′
2 +

dw∗n
ds

n2 +w
∗
nn
′
2

=

[
dun

ds
− kg1vn − kn1

wn − kg2v
∗
n − kn2

w∗n

−
un

||n1 ∧ n2||
a (τg1 − τg2)

]
t

+

(
dvn

ds
− τg1wn −

un

||n1 ∧ n2||
akn2

)
g1

+

(
dwn

ds
+ τg1vn +

un

||n1 ∧ n2||
τg1b

)
n1

+

(
dv∗n
ds

− τg2w
∗
n +

un

||n1 ∧ n2||
kn1

)
g2

+

(
dw∗n
ds

+ τg2v
∗
n −

un

||n1 ∧ n2||
τg2c

)
n2.

(16)

Thus, we can obtain the recurrence formulas as



314 V. Bulut

un+1 =
dun

ds
− kg1vn − kn1

wn − kg2v
∗
n − kn2

w∗n

−
un

||n1 ∧ n2||
a (τg1 − τg2) ,

vn+1 =
dvn

ds
− τg1wn −

un

||n1 ∧ n2||
akn2

,

wn+1 =
dwn

ds
+ τg1vn +

un

||n1 ∧ n2||
τg1b,

v∗n+1 =
dv∗n
ds

− τg2w
∗
n +

un

||n1 ∧ n2||
kn1
,

w∗n+1 =
dw∗n
ds

+ τg2v
∗
n −

un

||n1 ∧ n2||
τg2c.

(17)

Finally, using the equations (12), (13), (14), (15), (16) and (17) the natural
equation of the intersection curve given in (11) can be written. �

6 Experimental results

This study compares our proposed dual quaternion-based osculating circle
DQOC algorithm with Wu and Andrade’s [15] method. To determine the in-
tersection curve points, we need to check the parallelism between the tangent
vectors u and v at the points P and Q, and so on. If u and v are parallel,
the curvature radius goes to infinity. Therefore, the best choice for step vector
is the tangent vector at Q. We used the value cos θ, which is the angle be-
tween the tangent vectors of consecutive intersection points. If cos θ ≥ 1 − ε
or cos θ ≤ −1 + ε, we can assume that the vectors u and v are parallel. If,
cos θ −→ 1 or cos θ −→ −1, then radius of the osculating circle −→ ∞. Be-
cause of this situation, we defined a parallel threshold value called ε above. In
the following applications, we obtained closer points to the intersection curve
than their method did. On the other hand, the number of next intersection
points on the tangential direction of the point Q can change according to the
threshold value. If the threshold value grows steadily, then, the number of
next intersection points may increase on the tangential direction of the point
Q. If the threshold value is taken as very small, next intersection points are
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Algorithm 1 Dual Quaternion based Osculating Circle DQOC Algorithm

Input: Two surfaces, Si (i = 1, 2)
Output: Points on the intersection curve
1: global Points, pointA, pointP, pointQ, pointM, center
2: global Tangent vectors, pointPtan, pointQtan
3: global Normal vector of plane, normal; radius of osculating circle, R
4: global Transformation matrices and their elements, lambda, V, TMatrix, RMa-

trix, pointPTrans, pointQTrans, directionValue, beta, dist, L;
. Find the initial points of the intersection of two surfaces Si (i = 1, 2)

5: count← 1;
6: tValue1← 0.0;
7: tStartValue← 0.0;
8: tValue1← tStartValue+ count ∗ 0.005;
9: findInitialPointsPQM(tValue1);

10: while count < 2 do
11: count← count+ 1;
12: parallel← isParallel(pointPtan, pointQtan);
13: if parallel then
14: pointA← getNewPointAlongTangent(pointQ, L);
15: else
16: findCenterOfOsculatingCircle();
17: R← getRadiusOfOsculator(pointQ, center);
18: normal← getNormalVector(center, pointQ, pointP);
19: lambda← getLambda(normal);
20: V ← getV(normal);
21: TMatrix← getTMatrix(center); . Obtain translation matrix
22: RMatrix← getRMatrix(normal); . Obtain rotation matrix
23: findTransformedPoints();
24: directionValue← getDirectionValue(pointPTrans, pointQTrans);
25: beta← getBeta(directionValue);
26: pointA← getPointA(R, beta, TMatrix, RMatrix);
27: dist← getDistanceToCurve(pointA);
28: end if
29: pointAtan← getTangentOfPoint(pointA);
30: updatePoints();
31: end while
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going to be far from the intersection curve. First, we present intersection of
two surfaces and intersection curves of these surfaces as seen from the figures
(6) and (6) for example 1, figures (6(a)) and (6) for example 2, and figures
(10(a)) and (10) for example 3. Next, we compared our method with Wu and
Andrade’s [15] method for different parallel threshold values as seen from the
figures (3), (4) and (5) for example 1, figures (7), (8) and (9) for example 2,
and figures (11), (12) and (13) for example 3.

Example 1: Let two surfaces be given as S1 : xy − z = 0 and S2 : z =
x3 + xy − 2z = 0. Then, the intersection curve of these two surfaces can be
expressed as α (t) =

(
t, t2, t3

)
.

(a) The intersection of surfaces
S1 : xy − z = 0 S2 : z = x3 + xy − 2z = 0

(b) The intersection curve
α (t) =

(
t, t2, t3

)
Figure 2: Intersection curve of two given surfaces.
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(a) (b)

Figure 4: The figure in (a) shows the approximated points found by the method
in ([15]), and the figure (b) shows the approximated points found by the pro-
posed method based on the threshold value 10−9.

(a) (b)

Figure 3: The figure in (a) shows the approximated points found by the method
in ([15]), and the figure (b) shows the approximated points found by our
method based on the threshold value 10−7.
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Figure 5: Comparison of distances to the intersection curve.

Example 2: The surfaces are given as S1 : x
2 + y2 = z and S2 : y = x2. We

can define the intersection curve with α (t) =
(
t, t2, t2 + t4

)
.

(a) The intersection of surfaces S1 : x2 + y2 = z
and S2 : y = x2.

(b) The intersection curve α (t) =
(
t, t2, t2 + t4

)
.

Figure 6: Intersection curve of two given surfaces.
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(a) (b)

Figure 7: The figure in (a) shows the approximated points found by the method
in ([15]), and the figure (b) shows the approximated points found by our
method based on the threshold value 10−7.

(a) (b)

Figure 8: The figure in (a) shows the approximated points found by the method
in ([15]), and the figure (b) shows the approximated points found by the pro-
posed method based on the threshold value 10−9.
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Figure 9: Comparision of distances to the intesection curve.

Example 3: Let’s take two surfaces as S1 : x
2+y2 = 1 and S2 : z = x

2−y2.
We can find the intersection curve as α (t) = (cos t, sin t, cos 2t, ).

(a) The intersection of surfaces S1 : x2 +
y2 = 1 and S2 : z = x2 − y2.

(b) The intersection curve α (t) =
(cos t, sin t, cos 2t, ).

Figure 10: Intersection curve of two given surfaces.
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(a) (b)

Figure 11: The figure on the left shows the approximated points found by the
method in ([15]), and the one on the right shows the approximated points
found by our method based on the threshold value 10−7.

(a) (b)

Figure 12: The figure in (a) shows the approximated points found by the
method in ([15]), and the figure (b) shows the approximated points found by
the proposed method based on the threshold value 10−9.
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Figure 13: Comparision of distances to the intesection curve.

7 Conclusion

In this study, we presented a novel dual quaternion-based osculating circle
DQOC algorithm for finding the intersection curve points of regular two sur-
faces based on the differential geometric properties of the curve and the use
of dual quaternions. We obtained closer points to the intersection curve when
we compare our method with Wu and Andrade’s [15] method. Our proposed
method is more efficient and accurate when we compare our method with Wu
and Andrade’s method for different parallel threshold values. Also, we used
fewer calculations for this process. Moreover, we gave the natural equations of
the intersection curve.
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