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Abstract. For some classes of family of real valued functions defined in
a unit disk, we use a linear operator to obtain some interesting differential
subordination results.

1 Introduction and preliminaries

Let E+
α denote the family of all functions F(z), in the unit disk U, of the form

F(z) = 1+

∞∑

n=1

anz
n−n/α, α = {2, 3, 4 . . . } (1)

satisfying F(0) = 1.
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Let E−
α denote the family of all functions F(z), in the unit disk U, of the

form

F(z) = 1−

∞∑

n=1

anz
n−n/α, α = {2, 3, 4 . . . } (2)

which satisfy the condition F(0) = 1.
We know that if functions f and g are analytic in U, then f is called sub-

ordinate to g if there exists a Schwarz function w(z), analytic in U such that
f(z) = g(w(z)), and z ∈ U = {z : z ∈ C, |z| < 1} .

Then we denote this subordination by f(z) ≺ g(z) or simply f ≺ g, but in
a special case if g is univalent in U then above subordination is equivalent to
f(0) = g(0), and f(U) ⊂ g(U).

Let φ : C3×U → C and let h analytic in U. Assume that p, φ are analytic
and univalent in U and p satisfies the differential superordination

h(z) ≺ φ(p(z), zp ′(z), z2p ′′(z); z). (3)

Then p is called a solution of the differential superordination.
An analytic function q is called a subordinant if q ≺ p, for all p satisfying

equation (3). A univalent function q such that p ≺ q for all subordinants p of
equation (3) is said to be the best subordinant.

Let E+ be the class of analytic functions of the form

f(z) = 1+

∞∑

n=1

anz
n, z ∈ U , an, bn ≥ 0.

Let f, g ∈ E+ where

f(z) = 1+

∞∑

n=1

anz
n and g(z) = 1+

∞∑

n=1

bnz
n,

then their convolution or Hadamard product f(z) ∗ g(z) is defined by

f(z) ∗ g(z) = 1+

∞∑

n=1

anbnz
n, z ∈ U .

Juneja et al. [1] define the family ε(φ,ψ) so that

Re

(

f(z) ∗ φ(z)

f(z) ∗ψ(z)

)

> 0, z ∈ U
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where

φ(z) = 1+

∞∑

n=1

φnz
n

and

ψ(z) = 1+

∞∑

n=1

ψnz
n

are analytic in U with the conditions φn, psin ≥ 0, φn ≥ ψn and
φ(z) ∗ψ(z) 6= 0.

Definition 1 Let ζ+
α(ϕ, ϑ) be the class of family of all F(z) ∈ E+

α such that

Re

(

F(z) ∗ϕ(z)

F(z) ∗ ϑ(z)

)

> 0, z ∈ U

where

ϕ(z) = 1+
∞∑

n=2

ϕnz
n−n/α and ϑ(z) = 1+

∞∑

n=2

ϑnz
n−n/α

are analytic in U with specific conditions, ϕn, ϑn ≥ 0, ϕn ≥ ϑn and
F(z) ∗ ϑ(z) 6= 0 and for all n ≥ 0.

Definition 2 Let ζ−
α(ϕ, ϑ) be the class of family of all F(z) ∈ E−

α such that

Re

(

F(z) ∗ϕ(z)

F(z) ∗ ϑ(z)

)

> 0, z ∈ U

where

ϕ(z) = 1−
∞∑

n=2

ϕnz
n−n/α and ϑ(z) = 1−

∞∑

n=2

ϑnz
n−n/α

are analytic in U with specific conditions, ϕn, ϑn ≥ 0, ϕn ≥ ϑn and
F(z) ∗ ϑ(z) 6= 0 and for all n ≥ 0.

The aim of the present paper is to propose some sufficient conditions for all
functions F(z) belongs to the new classes E+

α and E−
α to satisfy

F(z) ∗ϕ(z)

F(z) ∗ ϑ(z)
≺ q(z), z ∈ U.

Where q(z) is a given univalent function in U such that q(0) = 1.
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Define the function ϕα(a, c; z) by

ϕα(a, c; z) = 1+

∞∑

1

(a)n

(c)n
zn−n/α, z ∈ U, c ∈ ℜ \ {0,−1,−2 . . . }

where (a)n is the Pochhammer symbol defined by

(a)n =
Γ(n+ a)

Γ(a)
=

{
1 if n = 0

a(a+ 1)(a+ 2) · · · (a+ n− 1) if n ∈ N

Corresponding to the function ϕα(a, c; z), define a linear operator Iα(a, c) ,
by

Iα(a, c)F(z) = Iα(a, c; z) ∗ F(z), F(z) ∈ E+

α,

or equivalently by

Iα(a, c)F(z) = 1+

∞∑

1

(a)n

(c)n
zn−n/α, z ∈ U, c ∈ ℜ \ {0,−1,−2 . . . }

Different authors have used this linear operator for various types of classes
of univalent functions namely, Uralgaddi and Somanatha [4], Cho, Kwon and
Srivastava [5], Saitoh [6], and Sokol and Spelina [7], respectively.

The classes E+

α and E−

α defined above exhibit some interesting properties.
We need the following lemmas.

Lemma 1 [3]. Let q(z) be univalent in the unit U disk and θ(z) be analytic
in a domain D containing q(U). If zq ′(z)θ(q) is starlike in U , and

zp ′(z)θ(p(z)) ≺ zq ′(z)θ(q(z))

then p(z) ≺ q(z) and q(z) is the best dominant.

Theorem 1 Let the function q(z) be univalent in the unit disk U such that

q ′(z) 6= (0) and
zq ′(z)

q(z)
6= 0 is starlike in U, if F(z) ∈ E+

α satisfies the subordi-

nation

b

[

z(Iα(a, c)φ(z)) ′

Iα(a, c)φ(z)
−
z(Iα(a, c)ψ(z)) ′

Iα(a, c)ψ(z)

]

≺
bzq ′(z)

q(z)

then,
[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

≺ q(z)

Then is q(z) the best dominant.
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Proof. First we defined the function p(z),

p(z) =

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

then,
bzp ′(z)

p(z)
= b

[

z(Iα(a, c)φ(z)) ′

Iα(a, c)φ(z)
−
z(Iα(a, c)ψ(z)) ′

Iα(a, c)ψ(z)

]

(4)

By setting, θ(ω) =
b

ω
, it can easily observed that θ(ω) is analytic in C \ {0}.

Then we obtain that,

θ(p(z)) =
b

p(z)
and θ(q(z)) =

b

q(z)
.

So from equation (4), we have

zp ′(z)θ(p(z)) � b
q ′(z)

q(z)
= zq ′(z)θ(q(z)),

this implies,

zp ′(z)θ(p(z)) ≺ zq ′(z)θ(q(z))

from lemma (1), we have

p(z) ≺ q(z)

this implies,
[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

≺ q(z)

�

Corollary 1 If F(z) satisfies the subordination

b

[

z(Iα(a, c)φ(z)) ′

Iα(a, c)φ(z)
−
z(Iα(a, c)ψ(z)) ′

Iα(a, c)ψ(z)

]

≺

[

b(A− B)z

(1+Az)(1+ BZ)

]

then,
[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

≺

[

1+Az

1+ Bz

]

, −1 ≤ A ≤ B ≤ 1,

and
(1+Az)

(1+ Bz)
is the best dominant.
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Corollary 2 If F(z) satisfies the subordination

b

[

z(Iα(a, c)φ(z)) ′

Iα(a, c)φ(z)
−
z(Iα(a, c)ψ(z)) ′

Iα(a, c)ψ(z)

]

≺

[

2bz

(1+ z)(1+ z)

]

then,
[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

≺

[

1+ z

1− z

]

, −1 ≤ A ≤ B ≤ 1,

and
(1+ z)

(1+ z)
is the best dominant.

Lemma 2 [2]. Let q(z) be convex in the unit disk U with q(0) = 1 and ℜ(q) >

1/2, z ∈ U. If 0 ≤ U < 1, p is analytic function in with p(0) = 1 and if

(1− µ)p2(z) + (2µ− 1)p(z) − µ+ (1− µ)zp ′(z)

≺ (1− µ)q2(z) + (2µ− 1)q(z) − µ+ (1− µ)zq ′(z)

then p(z) ≺ q(z) and q(z) is the best dominant.

Theorem 2 Let q(z) be convex in the unit disk U with q(0) = 1 and ℜ(q) >

1/2. If F(z) ∈ E+
α and

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

is an analytic function in U satisfies the

subordination

(1− µ)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]2

+ (2µ− 1)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

− µ+

+ (1− µ)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

] [

z(Iα(a, c)φ(z)) ′

Iα(a, c)φ(z)
−
z(Iα(a, c)ψ(z)) ′

Iα(a, c)ψ(z)

]

≺

≺ (1− µ)q2(z) + (2µ− 1)q(z) − µ+ (1− µ)zq ′(z)

Then,
[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

≺ q(z)

and q(z) is the best dominant.

Proof. Let the function p(z) be defined by

p(z) =

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

, z ∈ U
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since p(0) = 1, therefore

(1− µ)p2(z) + (2µ− 1)p(z) − µ+ (1− µ)zp ′(z) =

= (1− µ)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]2

+ (2µ− 1)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

− µ+

+ (1− µ)z

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

′

=

= [1− µ]

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]2

+ [2µ− 1]

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

− [µ] +

+ (1− µ)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

] [

z(Iα(a, c)φ(z)) ′

Iα(a, c)φ(z)
−
z(Iα(a, c)ψ(z)) ′

Iα(a, c)ψ(z)

]

≺

≺ (1− µ)q2(z) + (2µ− 1)q(z) − µ+ (1− µ)zq ′(z)

now by using the Lemma 2, we have

p(z) ≺ q(z)

implies that,

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

≺ q(z)

and q(z) is the best dominant. �

Corollary 3 If F(z) ∈ E+
α and

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

is an analytic function in U

satisfying the subordination

(1− µ)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]2

+ (2µ− 1)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

− µ+

+ (1− µ)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

] [

z(Iα(a, c)φ(z)) ′

Iα(a, c)φ(z)
−
z(Iα(a, c)ψ(z)) ′

Iα(a, c)ψ(z)

]

≺

≺ (1− µ)

[

1+Az

1+ Bz

]2

+ (2µ− 1)

[

1+Az

1+ Bz

]

− µ+

+ (1− µ)

[

1+Az

1+ Bz

] [

(A− B)z

(1+Az)(1+ Bz)

]

Then,
[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

≺

[

(1+Az)

(1+ Bz)

]
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and

[

1+Az

1+ Bz

]

is the best dominant.

Proof. Let us define q(z) by

q(z) =

[

1+Az

1+ Bz

]

, z ∈ U

this implies that q(0) = 1 and ℜ(q) > 1/2 for arbitrary A,B, z ∈ U where

zq ′(z)

q(z)
=

(A− B)z

(1+Az)(1+ Bz)

Then applying the Theorem 2, we obtain the result. �

Corollary 4 If F(z) ∈ E+
α and

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

is an analytic function in U

satisfying the subordination

(1− µ)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]2

+ (2µ− 1)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

− µ+

+ (1− µ)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

] [

z(Iα(a, c)φ(z)) ′

Iα(a, c)φ(z)
−
z(Iα(a, c)ψ(z)) ′

Iα(a, c)ψ(z)

]

≺

≺ (1− µ)

[

1+ z

1− z

]2

+ (2µ− 1)

[

1+ z

1− z

]

− µ+ (1− µ)

[

1+ z

1− z

] [

2z

(1+ z)(1− z)

]

Then,
[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

≺
(1+ z)

(1− z)

and
1+ z

1− z
is the best dominant.

Proof. Let the function q(z) be defined by

q(z) =

[

1+ z

1− z

]

, z ∈ U,

then in view of Theorem 2 we obtain the result. �
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Definition 3 The fractional integral of order α is defined, for a function f(z)
by

Iαz f(z) =
1

Γ(α)

∫z

0

f(z)(z− ζ)α−1dζ, 0 ≤ α < 1

where, the function f(z) is analytic in simply-connected region of the complex
z-plane containing the origin and the multiplicity of (z − ζ)α−1 is removed by
requiring log(z − ζ) to be real when (z − ζ) > 0. Note that Iαz f(z) = f(z) ×

zα−1/Γ(α) for z > 0 and 0 (see [8, 9, 10, 11]). Let

f(z) =

∞∑

0

φnz
n−n/β+1−α,

this implies that,

Iαz f(z) = f(z) × zα−1/Γ(α) = zα−1/Γ(α)

∞∑

0

φnz
n−n/β+1−α for z > 0

=

∞∑

o

anz
n−n/β, where an = φn/Γ(α),

thus,

1± Iαz f(z) ∈M
+

α(M−

α)

then we have the following results.

Theorem 3 Let q(z) be convex in the unit disk U with q(0) = 1 and R(q(z)) >

1/2. If F(z) ∈ E+
α and

(1+ Iαz f(z)) ∗ϕ(z)

(1+ Iαz f(z)) ∗ ϑ(z)
is an analytic function in U satisfies

the subordination

(1− u)

[

(1+ Iαz f(z)) ∗ϕ(z)

(1+ Iαz f(z)) ∗ ϑ(z)

]2

(z) + (2u− 1)

[

(1+ Iαz f(z)) ∗ϕ(z)

(1+ Iαz f(z)) ∗ ϑ(z)

]

− u+

+ (1− u)

[

(1+ Iαz f(z)) ∗ϕ(z)

(1+ Iαz f(z)) ∗ ϑ(z)

] [

z(1+ Iαz f(z)) ∗ϕ(z)) ′

(1+ Iαz f(z)) ∗ϕ(z))
−
z(1+ Iαz f(z)) ∗ ϑ(z))

′

(1+ Iαz f(z)) ∗ ϑ(z))

]

≺ (1− u)q2(z) + (2u− 1)q(z) − u+ (1− u)zq ′(z)

then,
[

(1+ Iαz f(z)) ∗ϕ(z)

(1+ Iαz f(z)) ∗ ϑ(z)

]

≺ q(z).
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Proof. Let the function p(z) be defined by

F(z) =
(1+ Iαz f(z)) ∗ϕ(z)

(1+ Iαz f(z)) ∗ ϑ(z)
, z ∈ U

then in view of Theorem 2 we obtain the result. �

Theorem 4 Let the function q(z) be univalent in the unit disk U such that

q ′(z) 6= 0 and
zq ′(z)

q(z)
6= 0 is starlike in U, if (1 − Iαz f(z)) ∈ E−

α satisfies the

subordination

b

[

(1− Iαz f(z)) ∗ϕ(z)) ′

(1− Iαz f(z)) ∗ϕ(z))
−

(1− Iαz f(z)) ∗ ϑ(z))
′

(1− Iαz f(z)) ∗ ϑ(z))

]

≺
bzq ′(z)

q(z)

then,

b

[

(1− Iαz f(z)) ∗ϕ(z)

(1− Iαz f(z)) ∗ ϑ(z)

]

≺ q(z)

then q(z) is the best dominant.

Proof. Let the function p(z) be defined by

(1− Iαz f(z)) ∗ϕ(z)

(1− Iαz f(z)) ∗ ϑ(z)
, z ∈ U

then in view of Theorem 2 we obtain the result. �
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