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Alice MILLER Patrick PROSSER
School of Computing Science School of Computing Science
University of Glasgow, Scotland University of Glasgow, Scotland
email: alice.miller@glasgow.ac.uk email: pat@dcs.gla.ac.uk

Abstract. While attempting to classify partial linear spaces produced
during the execution of an extension of Stinson’s hill-climbing algorithm
a new problem arises, that of generating all graphical degree sequences
that are diamond-free (i.e. have no diamond as subgraph) and satisfy ad-
ditional constraints. We formalize this new problem, propose a constraint
programming solution and list all satisfying degree sequences of length 8
to 16 inclusive.

1 Introduction

We introduce a new problem, CSPLib number 50 [1], to generate all degree
sequences that have a corresponding diamond-free graph with secondary prop-
erties. This arises naturally from a problem in mathematics to do with partial
linear spaces; we devote Section 2 to this. The motivation described in Sec-
tion 3 is the challenge of the necessary computational effort arising from the
large number of symmetries within the models (see Section 4). We introduce
two constraint programming models. The second model is an improvement on
the first, and this improvement largely consists of breaking the problem into
three stages: the first stage produces degree sequences that satisfy arithmetic
constraints, the second stage tests that a given degree sequence is graphical
and if it is the third stage determines if there exists a graph with that degree
sequence that is diamond-free. We now present the problem in detail and give
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motivation for it. In Section 4 two models, in Section 5 a list of solutions are
presented. Finally in Section 6 we conclude and suggest future work.

2 Problem definition

Given a simple undirected graph G = (V,E), V is the set of vertices and E the
set of undirected edges. The edge {u,v} € E if and only if vertex u is adjacent
to vertex v in G. The graph is simple in that there are no loop edges, i.e.
Vvev {v,v} € E]. Each vertex v in V has a degree 56(v) = [{{v,w}: {v,w} € E}|,
i.e. the number of edges incident on that vertex. A diamond is a set of four
vertices in V such that there are five edges between those vertices (see the
diamond in Figure 1).

Figure 1: The diamond graph (four vertices and five edges)

Conversely, a graph is diamond-free if it has no diamond as a subgraph, i.e.
for every set of four vertices the number of edges between those vertices is
at most four. Determining whether a graph is diamond-free is a polynomial-
time problem. E.g. checking every four vertices for a diamond is at worst case
©(n*). Note that a diamond is sometimes referred to as a K4 — e graph. Our
definition of a diamond-free graph agrees with that of [14] which addresses a
different, but related problem. That is, identifying degree sequences for which
there is a realisation containing a diamond as a subgraph. Others [6, 7] use
the term diamond-free to denote a graph which has no diamond as an induced
subgraph (in which case a K4 is an allowable subgraph, unlike in our case). A
further definition of a diamond-free graph [2] is a graph G with no diamond as
a minor, i.e. a graph (isomorphic to one that can be) obtained from a subgraph
of G by zero or more edge contractions.

In our problem we have additional properties required of the degree se-
quences of the graphs, in particular that the degree of each vertex is greater
than zero (i.e. isolated vertices are disallowed), the degree of each vertex is
divisible by 3 and the sum of the degrees is divisible by 12 (i.e. [E| is divisible
by 6).
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The problem is then for a given value of n, such that [V| = n, produce all
degree sequences 8(1) > 8(2) > ... > §(n) such that there exists a diamond-
free graph with that degree sequence, each degree is non-zero and divisible by
3, and the number of edges is divisible by 6. In Figure 2 we give as an example
the unique degree sequence for n = 8 that satisfies our arithmetic constraints,
a corresponding diamond-free graph and its adjacency matrix.

33333333

00000111
00000111
00011001
00101010
00110100
11001000
11010000
11100000

Figure 2: Unique degree sequence for n = 8 with a corresponding diamond-free
graph and its adjacency matrix

3 Motivation

The problem is a byproduct of attempting to classify partial linear spaces that
can be produced during the execution of an extension of Stinson’s hill-climbing
algorithm [3, 4, 5, 15] for block designs with block size 4. First we need some
definitions.

Definition 1 A Balanced Incomplete Block Design (BIBD) is a pair (V,B)
where V is a set of n points and B a collection of subsets of V (blocks) such
that each element of V is contained in exactly v blocks and every 2-subset of
V is contained in exactly A blocks.

Variations on BIBDs include Pairwise Balanced Designs (PBDs) in which
blocks can have different sizes, and linear spaces which are PBDs in which
every block has size at least 2. It is usual to refer to the blocks of a linear
space as a line. A partial linear space is a set of lines in which every pair
appears in at most A blocks. Here we refer to a BIBD with A = 1 as a block
design and to a partial linear space with A = 1, having s; lines of size i, where
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i >3 and s; > 0 as a 3%34% ... structure. For example, a block design on 7
points with block size 3 is given by the following set of blocks:

{(],2)3)) (] ) 6) 7)) (]’4’5)) (2’5’ 6)) (3’4’ 6)) (3)5’ 7)) (2)4) 7)}
and a 3%4' structure on 8 points by the following set
{(])2)3)4)) (1)5) 6)’ (])7) 8)’ (2)5) 7)’ (2) 6) 8)}

Note that in the latter case we do not list the lines of size 2. Block designs with
block size 3 are known as Steiner Triple Systems (STSs). These exist for all n
for which n = 1,3 (mod 6) [12]. For example the block design given above is
the unique STS of order 7 (STS(7)). Similarly block designs with block size 4

always exist whenever n = 1,4 (mod 12).

STINSON(n)

1 LivePairs « {(1,j) : 1 <i<j<n}

2 Blocks « ()

3 while LivePairs # ()

4 choose pairs (x,y) and (y,z) from LivePairs
5 LivePairs « LivePairs \ {(x,y)}

6 LivePairs «+ LivePairs \ {(y, z)}

7 if (x,z) € LivePairs

8 LivePairs «+ LivePairs \ {(x, z)}

9 else Blocks « Blocks \ {(w,x,z) : (w,x,z) € Blocks}
10 LivePairs « LivePairs U {(w,x)}

11 LivePairs « LivePairs U{(w,z)}

12 Blocks « Blocks U {(x,y,z)}

13 return Blocks

Algorithm STINSON above allows us to generate an STS for any n and is due
to Stinson [13]. This algorithm always works, i.e. it never fails to terminate
due to reaching a point where the STS is not created and there are no suitable
pairs (x,y) and (y,z).

A natural extension to this algorithm, for the case where block size is 4, is
proposed in algorithm STINSON4. Note that the triples in set WeightedTriples
are all initially assigned weight O in line 1. Triples can only be selected to make
a new block if they have weight zero. If S is a set of triples and X a set of points
then the algorithms INCREASEWEIGHT(X,S) and DECREASEWEIGHT(X, S)
(lines 6 and 9) increment (decrement) the weight of every element of S that
contains 7, for all pairs 7t of distinct points from X.
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STINSON4(n)

1 WeightedTriples « {((i,j,k),0): 1 <i<j<k <n}

2 Blocks «

3 while ((w,x,y),0) € WeightedTriples A ((x,y,z),0) € WeightedTriples
4 choose ((w,x,y),0) and ((x,y,z),0) from WeightedTriples
5 for (u,v,w,z) € Blocks

6 DECREASEWEIGHT ({u, v, w, z}, WeightedTriples)

7 Blocks « Blocks \ {(u,w,x,z)}

8 Blocks « Blocks U {(w,x,y,z)}

9 INCREASEWEIGHT ({w, X, y, z}, WeightedTriples)

10 return Blocks

Algorithm STINSON4 does not always work. It is possible for a situation
to be reached from which one pair of triples is constantly swapped with an-
other, in which case the algorithm fails to terminate. It is also possible for
the algorithm to terminate but fail to create a block design due to reaching
a point at which WeightedTriples contains elements of weight zero but does
not contain suitable triples (w,x,y) and (x,y, z) with weight zero. In this case
the algorithm produces a 4% structure (where s4 is less than the number of
blocks in the corresponding block design) for which the complement has no
pair of triples (w, x,y), (x,y, z), with weight zero. I.e. the complement graph is
diamond-free. When n = 13 the algorithm either produces a block design or a
48 structure whose complement graph consists of 4 non-intersecting triangles.

The next open problem therefore is for n = 16. If the algorithm terminates
but does not produce a block design, what is the nature of the structure it does
produce? To do this, we need to classify the 4™ structures whose complement
graph is diamond-free.

The cases for which the 4% structure has at least 2 points that are in the
maximum number of blocks (5) are fairly straightforward. (There are fewer
cases as this number increases.). However if the number of such points is 0 or
1, there is a large number of sub-cases to consider. The problem is simplified if
we can dismiss potential 4% structures because the degree sequences of their
complements can not be associated with a diamond-free graph. This leads
us to the problem outlined in this report: to classify the degree sequences of
diamond-free graphs of order 15 and 16. Note that each point that is not in 5
blocks is either in no blocks or is in blocks with some number of points, where
that number is divisible by 3. Thus for every point there is a vertex in the
complement graph whose degree is also divisible by 3. In addition, since the
number of pairs in both a block design on 16 points and a 45 structure are
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divisible by 6, the number of edges in the complement graph must be divisible
by 6. We can immediately eliminate some cases via the following lemmas. In
all cases G is a diamond-free graph with n vertices for which every vertex has
degree greater than 0 and divisible by 3.

Lemma 2 Ifn =16 then no vertex has degree 15.

Proof. Suppose that u be a vertex that has degree 15. Then all other vertices
are adjacent to u. Let v be such a vertex. Since v has degree at least 3, there are
two vertices, w and x that are adjacent to both u and v. There is a diamond
on vertices u, v, w and x. This is a contradiction. ]

Lemma 3 Ifn =15 and 5(1) = 12 then the degree sequence is either

1. (12,12,12,3,3,3,3,3,3,3,3,3,3,3,3), or
2. (12,6,6,3,3,3,3,3,3,3,3,3,3,3,3).

Proof. Let u be a vertex that has degree 12 and N(u) the set of vertices
that are in the neighbourhood of (i.e. adjacent to) u. Then there are two
vertices, v and w that are not u and are not in N(u). No element of N(u)
can have degree greater than 3, for then it would have degree at least 6 and
must be adjacent to at least two other elements of N(u), and we would have
a diamond. Let 6(v) and d(w) be the degrees of v and v respectively. Without
loss of generality we can assume that &(v) > 6(w). Then G has degree sequence
(12,8(v), 8(w), 3,3,3,3,3,3,3,3,3,3,3,3), where 6(v) +5(w) is divisible by 12.
Hence (8(v),8(w)) is (12,12), (9,3) or (6,6).

If (8(v),6(w)) = (12,12) there is a solution. In this case every element of
N(u) is adjacent to both v and w.

If (&8(v),d(w)) = (9,3), then suppose that v and w are adjacent. None of
the 8 vertices in N(u) that are adjacent to v can be adjacent to w (or we have
a diamond), so they must all be adjacent to one of the 4 remaining vertices
in N(u). Hence some vertices in N(u) are adjacent to more than one other
vertex in N(u), and there is a diamond. A similar argument holds if v and w
are not adjacent.

If (8(v),86(w)) = (6,6) there is a solution and it can be constructed as
follows. Divide the 12 vertices in N(u) into two disjoint sets of equal cardinality
ax={aj...ag}and B ={by...bg}. Connect vertex a; to b; for 1 <1i < 6. Now
connect vertex v to all vertices in & and connect w to all vertices in 3. Such
a graph is shown in Figure 3. U
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Figure 3: A diamond-free graph with 15 vertices and degree sequence (12,6,
6,6,3,3,3,3,3,3,3,3,3,3,3,3)

Lemma 4 Ifn =16 and (1) = 12 then the degree sequence is either

1. (12,12,9,3,3,3,3,3,3,3,3,3,3,3,3,3), or
2. (12,12,6,6,3,3,3,3,3,3,3,3,3,3,3,3), or
3. (12,9,9,6,3,3,3,3,3,3,3,3,3,3,3,3), or
4. (12,6,3,3,3,3,3,3,3,3,3,3,3,3,3,3).

Proof. Let u and N(u) be defined as above, and let v, w and x be vertices that
are not u and are not in N(u), with corresponding degrees 6(v) > &(w) > 6(x).
By an argument similar to the above, G has degree sequence

(12,5(v), 8(w), 8(x), 3,3,3,3,3,3,3,3,3,3,3,3)

where 8(v)+6(w)+58(x) is divisible by 12. Then we must have (5(v), 6(w), 8(x)) =
(12,12,12), (12,9,3), (12,6,6) or (9,9,6) or (6,3,3). If (8(v),d(w),d(x)) =
(12,12,12) then there are at least 3 vertices in N(u) that are adjacent to all
of u, v, w and x, which is impossible since, as before, vertices in N(u) must
have degree 3. In all other cases there are solutions (which we do not include
here). O

4 Constraint programming models

We present two constraint models for the diamond-free degree sequence prob-
lem. The first model we call model A, the second model B. In many respects
the two models are very similar but what is different is how we solve them. In
the subsequent descriptions we assume that we have as input the integer n,
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where |V| =n and vertex i € V. All the constraint models were implemented
using the choco toolkit [9]. Further we assume that a variable x has a domain
of values dom(x).

4.1 Model A
Model A is based on the adjacency matrix model of a graph. We have a 0/1

constrained integer variable Aj; for each potential edge in the graph such that
Ay =1 = {i,j} € E. In addition we have constrained integer variables deg;
to degn corresponding to the degrees of each vertex, such that

Vien.n) dom(degi) =[3 .. n—1]. (1)
We then have constraints to ensure that the graph is simple:

Vien.nViein Aij = Aji (2)
Vien.n Aii =0. (3)

Constraints are then required to ensure that the graph is diamond-free:
vi<j<k<le[1..n] [Ai’j + Ai,k + Au + Aj,k + Ajy{ + Ak,l < 4]. (4)

Finally we have constraints on the degree sequence:

j=n

Vien . n degi = Z A (5)
j=1

Vien . no1 degi > degiti (6)

Vie[] .1l degi mod 3 =0 (7)

(E degi) mod 12 =0. (8)

i=1

The vertex degree variables deg; to degy are the decision variables. The con-
straint model uses O(n?) constrained integer variables and O(n?*) constraints.

4.2 Model B

Model B is essentially model A broken into three parts, each part solved sepa-
rately. The first part is to produce a degree sequence that meets the arithmetic
constraints. The second part tests if that degree sequence is graphical and if
it is the third part determines if there exists a diamond-free graph with that
degree sequence. Therefore solving proceeds as follows.
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Step 1 Generate the next degree sequence 7 = dj, dy,...,d, that meets the
arithmetical constraints. If no more degree sequences exist then termi-
nate the process.

Step 2 If the degree sequence 7t is not graphical return to Step 1.
Step 3 Determine if there is a diamond-free graph with degree sequence 7.
Step 4 Return to Step 1.

The first part of model B is then as follows. Integer variables deg; to degy
correspond to the degrees of each vertex and satisfy constraints (1), (6), (7),
and (8) to generate a degree sequence.

Each valid degree sequence produced is then tested to determine if it is
graphical (Step 2 above) using the Havel-Hakimi algorithm. We have used
the ®(n?) algorithm [8] although the linear Erdés-Gallai type [10] or linear
Havel-Hakimi type [11] algorithms could equally well be used and would have
been more efficient.

If the degree sequence is graphical (Step 3) we create an adjacency matrix
with properties (2) and (3) and post the constraints (4) and (5) (diamond
free with given degree sequence) where the variables deg; to deg, have al-
ready been instantiated (in Step 1). Finally we are in a position to post static
symmetry breaking constraints. If we are producing a graph and deg; = deg;
then these two vertices are interchangeable. Consequently we can insist that
row i in the adjacency matrix is lexicographically less than or equal to row j.
Therefore we post the symmetry breaking constraints:

Vien . n-nldegi = degi1 = Ai < Ayl (9)

where =< means lexicographically less than or equal. In this second stage of
solving the variables A1 to Ay, are the decision variables.

5 Solutions

Our results are tabulated in Table 1 for 8 < n < 16. All our results are
produced using model B run on a machine with 8 Intel Zeon E5420 processors
running at 2.50 GHz, 32Gb of RAM, with version 5.2 of linux. The longest
run time was for n = 16 taking about 5 minutes cpu time. Included in Table
1 is the cpu time in seconds to generate all degree sequences for a given value
of n.

All our results were verified. For each degree sequence the corresponding
adjacency matrix was saved to file and verified to correspond to a simple
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degree sequence
33333333

666333333

6633333333

63333333333

333333333333
666633333333
666666666666
966333333333

6663333333333
6666666333333
6666666666633
9633333333333

66666633333333
66666666663333
66666666666666
93333333333333
96666333333333
99663333333333
99933333333333

633333333333333
666663333333333
666666666333333
666666666666633
966633333333333
966666663333333
966666666666 333
996333333333333
996666633333333
996666666663333
999666333333333
999999666666666

1266333333333333

121212333333333333
3333333333333333
6666333333333333
6666666633333333
6666666666663333

9666666666633333
9933333333333333
9966663333333333
9966666666333333
9966666666666633
9996633333333333
9996666666666333
9999333333333333
9999666666663 333
999966666666666°6
9999966666666663
9999996666666633

12633333333333333

12996333333333333

121266333333333333
121293333333333333

time

10
11
12

0.8

1.4

3.7

13

14.0

14

107.7

15

339.8

16

Table 1: Degree sequences, of length n, that meet the arithmetic constraints

and have a simple diamond-free graph. Tabulated is n, cpu time in seconds to

generate all sequences of length n and those sequences.
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diamond-free graph that matched the degree sequence and satisfied the arith-
metic constraints and this is an ®(n*) process. The verification software did
not use any of the constraint programming code.

6 Conclusion

We have presented a new problem, the generation of all degree sequences for
diamond free graphs subject to arithmetic constraints. Two models have been
presented, A and B. Model A is impractical whereas model B is two stage and
allows static symmetry breaking.

There are two possible improvements. The first is to model A. We might
add the lexicographical constraints, as used in model B, conditionally during
search. The second improvement worthy of investigation is to employ a mixed
integer programming solver for the second stage of model B.

We are currently using the lists of feasible degree sequences for diamond-free
graphs with 15 or 16 vertices to simplify our proofs for the classification of 454
structures with diamond-free complements, when the number of points in the
maximum number of blocks is 1 or 0 respectively. The degree sequence results
for a smaller number of points will also help to simplify our existing proofs for
cases where more points are in the maximum number of blocks. Ultimately
we would like to use our classification to modify the extension of Stinson’s
algorithm for block size 4 to ensure that a block design is always produced.

In the more distant future, we would like to analyse the structures pro-
duced using our algorithm when n > 16. The next case is 1 = 25 and the
corresponding diamond-free graphs would have up to 25 vertices.
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