
Acta Univ. Sapientiae Informatica 12, 2 (2020) 159–182

DOI: 10.2478/ausi-2020-0010

Development of ATmega 328P

micro-controller emulator for educational

purposes

Michal ŠIPOŠ
IBM Slovakia, Ltd., branch office Košice

Aupark Tower, Protifašistických
bojovńıkov 11, Košice, Slovak Republic

email: michal.sipos@ibm.com

Slavomı́r ŠIMOŇÁK
Technical University of Košice

Košice, Slovak Republic
email: slavomir.simonak@tuke.sk

Abstract. The paper presents some of our recent results in the field of
computer emulation for supporting and enhancing the educational pro-
cesses. The ATmega 328P micro-controller emulator has been developed
as a set of emuStudio emulation platform extension modules (plug-ins).
The platform is used at the Department of Computers and Informatics
as a studying and teaching support tool. Within the Assembler course,
currently, the Intel 8080 architecture and language is briefly described as
a preliminary preparation material for the study of Intel x86 architecture,
and the Intel 8080 emuStudio emulator module is used here. The aim of
this work is to explore the possibility to enrich the course by introducing
a more up-to-date and relevant technology and the ATmega is the heart
of Arduino – a popular hardware and software prototyping platform. We
consider the options to make the process of studying the assembly lan-
guage principles more attractive for students and using the ATmega AVR
architecture, which is broadly deployed in embedded systems, seems to
be one of them.

Computing Classification System 1998: K.3.2, C.1.0
Mathematics Subject Classification 2010: 68U20, 68M01
Key words and phrases: emuStudio, emulation, Atmega, Arduino

159

https://www.ibm.com/sk-en
https://www.ibm.com/sk-en
https://www.ibm.com/sk-en
https://www.ibm.com/sk-en
mailto:michal.sipos@ibm.com
https://kpi.fei.tuke.sk/en/person/slavomir-simonak
http://www.tuke.sk
http://www.tuke.sk
mailto:slavomir.simonak@tuke.sk


160 M. Šipoš, S. Šimoňák

1 Introduction

Emulation [13] can be described as a technique of imitating a software or hard-
ware product by another software [21]. Emulation currently is widely used
mainly as a technique for running a software written for computer system dif-
ferent from the host computer operating environment. It provides the possi-
bility of cross-platform compatibility between different computer systems [31],
so it can also be considered as a preservation strategy for digital content [32],
[33]. Our motivation behind the development of the ATmega emulator was
slightly different however, as it was mainly intended for educational purposes.

At the present time, there are many emulators of computer systems avail-
able [34]. Choosing the emuStudio as the platform for which we developed
our emulator was straightforward, since it provides many features, which are
essential for its successful application in educational process. emuStudio is a
platform for emulation of computer architectures that integrates, as a form of
an IDE, also source code editing, compiling and debugging features.

Within the platform, programs for emulated machines are usually written
using assembly language of the particular architecture. Another significant
advantage of the emuStudio is the fact that it does not only serve as a one-
purpose emulator. Essentially, it provides a framework1 in the form of a Java
API. By utilizing it, programmers are enabled to design and implement their
own computer emulators as a set of plug-in modules. The above-mentioned
framework is intended to help to standardize the process of emulation [11], i.e.
to define the key responsibilities, functionalities and types of components that
are common for most emulators. In particular, the task of a programmer is to
implement modules for assembler source code compilation, CPU and memory
emulation, but optional peripheral devices can also be emulated.

With its ability of illustrative exploring the internal operation of emulated
architecture, emuStudio is well suited for educational purposes. The platform
has been designed to be easily extendable and once a component is imple-
mented, it can be reused effectively. As a result, possibilities of enriching the
emuStudio by new modules are very broad.

At the time of writing this paper, the emuStudio is used at the Department
of Computers and Informatics in Assembler and Data Structures and Algo-
rithms courses. In the Assembler course, Intel 8080 emulator is utilized and
within the Data Structures and Algorithms course, emulators of RAM and
RASP [29] abstract machines are used. The 8080 as a predecessor of x86 ar-

1http://www.emustudio.net

http://www.emustudio.net


Development of ATmega 328P micro-controller emulator 161

chitecture and a relevant example of an 8-bit processor architecture is used as
a simple preparation for studying Intel x86 architecture and language. How-
ever, being introduced to the microprocessors market in 1974 [20], despite
of its impact on the industry, it can cause some students to become slightly
demotivated by using a less up-to-date technology.

In the thesis [18], an idea of incorporating Arduino with its ATmega micro-
controller instead of the Intel 8080 in the assembly language course curriculum
has been investigated. Some similarities between Intel 8080 and ATmega 328P
assembly languages has been observed and the possibilities of such substitution
are discussed there. Furthermore a simple library providing students with the
possibility to use basic input and output operations has been developed within
the thesis and further enhanced later.

2 Related work

ATmega is the core of the popular Arduino Uno platform2. In recent years,
Arduino has been introduced to several computer science courses at the De-
partment of Computers and Informatics. This tendency has also been stimu-
lated by the growing demand for knowledge in the area of embedded systems
[1]; the popularity of the term Internet of Things [19] can be observed for
being rapidly increasing, too.

Globally, we can see that teaching assembler courses at some universities
is continually being shifted aside in favor of new subjects. Nowadays, as the
author of [17] suggests, operating systems and virtual machines on the top
of them pose a certain problem for teachers and students when it comes to
studying internal operation of computer systems as they act as a form of a
shield that hides the inner mechanisms. It can be concluded that it is one
of the causes for the phenomena of leaving assembler courses out from the
curriculum that students might not see enough reasons for studying it.

On the other hand, when using embedded systems, a virtual machine as an
abstraction layer is often missing and direct access to hardware is much easier,
but it requires some knowledge of its internal operation. And this is where, in
addition to C language, assembler becomes much more relevant. The topic is
deeper discussed in [17].

An approach similar to the one presented in this paper (but based on 8051
micro-controller emulation) has been taken with the EdSim51 - the 8051 sim-
ulator for teachers and students [25]. The EdSim51 is a simulator of 8051

2https://store.arduino.cc/arduino-uno-rev3

https://store.arduino.cc/arduino-uno-rev3


162 M. Šipoš, S. Šimoňák

micro-controller, which is interfaced with virtual peripheral devices like key-
pad, DC motor, 7-segment display, UART, LEDs, etc. A nice advantage of
the EdSim51 over some other available 8051 simulators is that it provides
graphical representation of several peripheral devices, which can be used in-
teractively [26]. It is a Java-based application, so it can be used in multiple
operating environments.

Another example of very popular processor within the computer architec-
ture academic community and one often utilized for educational purposes [22]
is MIPS. Several simulators have been developed to date for this architec-
ture [37]. We can mention DrMIPS, an educational MIPS simulator [23, 22],
which can simulate the execution of an assembly program and display the dat-
apath graphically. Moreover it can display the values of inputs and outputs
of several components, which are relevant for the execution of the current in-
struction. The simulator was developed in Java and is available not only for
PC, but also for Android devices. On the other hand, since the emulator is
developed mainly for educational purposes, it supports rather limited set of
instructions. Several instructions like syscalls, floating-point operations and
shifts are not supported [23].

CPUlator is a Nios II, ARMv7, and MIPS computer system simulator and
debugger running in a web browser [37]. It allows running and debugging pro-
grams without corresponding hardware board. Systems simulated by CPUlator
are based on the computer systems from the Altera University Program (Nios
II, ARMv7) and SPIM (MIPS) respectively.

Gerd’s AVR simulator [27] is a complex solution for simulating AVR 8-bit
micro-controllers. It provides an editor, assembler, simulator, overview of I/O
ports and timers, memories, etc. Lazarus Pascal source code and executable 64-
bit versions for Windows and for Linux are available from [27]. The advantage
of this solution is the support for many types of AVR 8-bit micro-controllers
and complex support of built-in peripheral devices. As an advantage of our
solution, described in this paper, can be considered the fact that it is developed
using Java and thus could be more portable. It is developed as a set of plug-in
modules for emuStudio emulation platform, so it could be easier to develop
and enhance in the future. Modules for some simple external devices are also
available within our solution (like USART terminal and LED diode emulation
modules).

An interesting approach has been employed in [24], where a methodology
is proposed for teaching the microprocessors interface course based on the
idea of emulating the microprocessor operation. Students are instructed to
use the parallel port for emulating the signals generated by 8088/8086 micro-



Development of ATmega 328P micro-controller emulator 163

processors. According to authors of the paper, emulating a working system
by generating the necessary control signals leads to a good knowledge of the
system.

An educational approach for bridging the gap between low-level and higher
level programming, based on usage of 8-bit microcontrollers has been proposed
in [6]. The approach proposed aims in simplification the students’ learning by
making the parallelization between the assembly language programming and
higher level programming.

But what is the purpose of using an emulator in addition to original hard-
ware? When studying the above-mentioned inner workings of computers, em-
ulation tools can be a way of a deeper insight into them [36], as the complexity
of hardware might sometimes exceed the limit of what can be effectively stud-
ied or taught [38], respectively. Also, emulator gives students the opportunity
to exercise what they have learned at the classes, at home, without owning the
hardware components physically. What is more, emulating an ATmega device
in software brings another advantage – it can be used to automate the testing
of students’ assignments, as has also been suggested in [18].

In addition to using emulators, there are also other efficient approaches
that are used within the education in the field of computer architecture and
organization, such as hardware-description languages and reconfigurable cir-
cuits [7, 16]. An interesting case study is described in [8] where critical investi-
gation of existing course on digital electronics revealed that it mostly produces
surface understanding of digital systems and students lack practical skills to
develop complex digital designs. The course outline has been improved and an
enhanced delivery method was proposed. The study of students’ performance
over a period of six years was evaluated and the results indicate that students
had developed good level of understanding of basic principles and were able
to employ system modeling using VHDL.

3 Emulation techniques

Before proceeding to description of the design of ATmega emulator modules
set, several emulation-related terms will be introduced. According to the study
[21] two basic types of emulation can be distinguished, as they correspond to
the format of the emulated program:

� interpretation – the program is represented in the form that is native for
the original processor it has been written for; this enables the emulator,
in this case interpreter, to work in the “fetch-decode-execute” loop,



164 M. Šipoš, S. Šimoňák

� binary translation – the code of the program is translated into the form
native for the architecture it is being emulated on, which usually means
x86-like binary. The translation, can either take place at runtime (dy-
namic) or in advance, before emulation (static).

In the study also advantages and disadvantages of both of the approaches are
mentioned. Interpretation is generally less complex to implement than binary
translation. On the contrary, as during binary translation a native code is
generated, the resulting performance of the emulation is usually better. One
of the techniques to increase the performance of interpreter emulators is so-
called threaded code. James R. Bell explains its basic principles in his paper
[5]. The algorithm begins by reading the instruction at the PC-th address from
the emulated program storage, where the PC is the program counter register.
The retrieved opcode serves as an index into a so-called jump table. Each
particular table entry contains a reference to the function that implements the
corresponding instruction emulation. The only step left is to call the function,
which is analogous to executing the instruction on the emulator. The jump
table can be filled by function references in advance, when the emulator is
initialized, which unburdens the emulation loop from the time consuming task
of decoding instruction opcodes.

By performing the above-mentioned procedure, we have eliminated the effort
needed for the decode step from the fetch-decode-execute loop. In addition to
this, it is also possible to minimize the fetch part, if we cache the instructions
already fetched from the memory. These optimizations lead to the algorithm
presented in Figure 1 [30].

4 ATmega 328P micro-controller architecture

ATmega 328P micro-controller is based on the AVR architecture, which is
one of the leading 8-bit architectures [4]. From instructions complexity point
of view, it is a RISC (Reduced Instruction Set Computer) architecture [4].
From the perspective of an emulator programmer, this can be considered as
an advantage as it is characteristic for RISC computers to have simpler in-
structions. The fixed-length instructions also make the decoding part of the
execution loop less complex. On the other hand, from the point of view of
the one developing programs for the micro-controller, the CISC (Complex In-
struction Set Computer) addressing modes flexibility might be missing. Also,
a program size might be bigger in case of RISC binary [35] in comparison to a



Development of ATmega 328P micro-controller emulator 165

Figure 1: Threaded code execution algorithm.

CISC one as for one operation, a sequence of several simpler instructions can
be required.

ATmega is a representative of Harvard architecture [4], which affects the
structure of the memory subsystem – separate modules are used for storing
program and data. When compared to von Neumann architecture, Harvard
computers enable more effective pipelined execution [9] – while one instruction
is being executed and is retrieving its operands from the data memory, the
next one can be pre-fetched from the program memory module.

The ATmega 328P micro-controller is equipped with a 32 kilobyte flash pro-
gram memory [2]. It is organized in a less conventional way – each memory cell
contains an instruction word, i.e. two bytes. The reason for such a distribution



166 M. Šipoš, S. Šimoňák

[2] is that the length of all opcodes is either 16 or 32 bits. As a program is
addressed by words, program counter is 14 bits wide, which is enough for the
whole range.

In case of the data memory, addressing is conventional – one byte for one
cell. ATmega chip includes a SRAM (Static Random Access Memory) data
memory module with all general purpose registers (GPR) and input/output
registers (IOR) mapped to its address space. The organization is depicted in
Figure 2 and the capacity of the internal SRAM, i.e. excluding the GPRs and
IORs, is 2 KB.

Figure 2: Data memory organization.

An inevitable part of the micro-controller is the input/output subsystem.
On the ATmega, it includes digital and analog input/output pins, USART
(Universal Synchronous-Asynchronous Receiver/Transmitter) serial interface,
timers and a lot of other peripherals. The peripheral devices communication
with the micro-controller is realized by using of so called ports. They serve as
gates [28] between the CPU core and the other parts of the micro-controller,
or between the CPU and devices out of the chip. These might be various
types of sensors or mechanical equipment, e.g. servo motors or relays. For
digital input/output, there are three ports – B, C and D available. Each of
those ports is controlled by three registers: the DDR register for determining
whether the pin has INPUT or OUTPUT direction, the PORT register for
setting the pin to HIGH or LOW level, and the PIN register for reading the
state of INPUT pins (or toggling the value of particular PORT bit by writing
‘1’ to the corresponding bit of the PIN register) [2]. So to send data e.g. to
port B, writing to the register PORTB is required. Each of its bits represents



Development of ATmega 328P micro-controller emulator 167

the corresponding pin of the port. To read its current value, the PINB register
can be read and the relevant bit needs to be evaluated.

5 ATmega 328P - emuStudio extensions design

The initial step to consider when designing the support for a new architecture
in emuStudio is so called abstract scheme3. The scheme is always based on
the von Neumann model [12], which represents a certain complication in our
design as the ATmega is a computer of the Harvard type – it contains sepa-
rate memory modules for data and for program. Furthermore, also EEPROM
(Electrically Erasable Programmable Read-Only Memory) memory module for
permanent data storage is included on the chip.

5.1 Memory emulation

There has been a discussion with the author of the emuStudio platform re-
garding the memory subsystem, in which several possible solutions has been
considered. One of them was to extend the emuStudio to support Harvard
architecture computers by adding a new type of component in the abstract
scheme – program memory. However, such component would be limited only
to store programs, which would mean to narrow the functionality of a storage
component only for this purpose. Another considered option was to use the
concept of a Memory Management Unit (MMU) that would provide access
to all the three memory modules. This would, however, require them to be
mapped to a single memory space.

Finally, the solution reducing Harvard architecture of ATmega to von Neu-
mann type has been chosen. To perform this, one of the memory modules
needed to be considered as memory, since von Neumann computers, and there-
fore also emuStudio abstract scheme include at most one memory. For practical
purposes, such as the fact that the compiler module needs storage to load a
program to and also that the CPU needs it to fetch instructions, flash program
memory has been chosen.

For the data memory, as it could not be considered as memory after this
decision, it has been chosen to include it within the CPU module. Such an
organization is a compromise. Both of the memory modules are integral parts
of the chip on a real device, so including data memory in the CPU module is
acceptable. As for the program memory, it has been chosen, from the logical

3http://www.emustudio.net/docuser/main_module/index/

http://www.emustudio.net/docuser/main_module/index/


168 M. Šipoš, S. Šimoňák

point of view of a von Neumann computer, as the only memory in the scheme.
EEPROM data permanent storage is not implemented within our solution yet,
however, in the future, it can be added as a device, i.e. peripheral device type
of module.

For the purpose of storing program, Standard Memory, an already imple-
mented emuStudio module has been chosen. This component has been part
of MITS Altair 8800 computer emulator and the fact makes it a sufficient
candidate for reuse. Though, we had to adapt it for two-byte cells address-
ing. Updates in Standard Memory module could have been done, for example,
by designing a new context to support different cell sizes. This would, how-
ever, require changes in the emuLib4 library. Also, an already existing utility
HexfileManager, responsible for loading contents of an Intel HEX files into
memory, would be needed to be adapted as it currently depends on memories
with one byte at a cell.

Therefore, we had to choose a solution with as little changes in Standard
Memory as possible. It has been decided to adapt just the visual representation
of the memory content in the GUI (Graphical User Interface). As a result,
internally, in our solution, the content is still an array of one byte values, while
in the GUI, user sees two bytes at a cell. The interface of the StandardMemory
context has been extended by the option to set the cell size by a programmer.
He or she only needs to do this configuration when requesting it from the
context pool. Also, endianness can be set. The resulting view of the memory
content can be seen in Figure 3.

5.2 Compiler module

Another module that is part of the set presented in this paper is the compiler
module. All compilers currently present in emuStudio use automation tools to
generate lexical (lexer) and syntactic (parser) [10] analyzer. For lexical anal-
ysis, JFlex5 is used. This phase of compilation is also needed for the purpose
of syntax highlighting in the emuStudio source code editor. Thanks to lexical
analyzer generated on the basis of the JFlex specification file, the emuStudio
main module takes care of this task, we only needed to specify the types of
tokens. This fragment from the JFlex file illustrates it:

4https://github.com/vbmacher/emuLib
5http://jflex.de/

https://github.com/vbmacher/emuLib
http://jflex.de/


Development of ATmega 328P micro-controller emulator 169

Figure 3: GUI of StandardMemory after adding a support for different cell
sizes.

"ADD" {

return token(Token.RESERVED);

}

".DB" {

return token(Token.PREPROCESSOR);

}

For the core task of compiling assembler source code of programs written for
ATmega, we call an external tool – GAVRASM6 from the compiler module.
From Java code, it is invoked by utilizing ProcessBuilder provided by the Java
API:

ProcessBuilder processBuilder = new ProcessBuilder(command);

Process process = processBuilder.start();

process.waitFor();

The command depends on the underlying operating system, since the
GAVRASM is available for MS Windows as well as for Linux OS.

6http://www.avr-asm-tutorial.net/gavrasm/index_en.html

http://www.avr-asm-tutorial.net/gavrasm/index_en.html


170 M. Šipoš, S. Šimoňák

5.3 CPU emulator module

Within this subsection we will continue to the core part of the emulator – the
CPU module. The basic algorithm of a CPU emulator in general is presented
in [21]. The diagram is depicted in Figure 4. The algorithm will also be applied
in our solution.

Figure 4: General CPU core emulator algorithm.

Let us explore the steps in deeper detail and discuss how they will be im-
plemented. At first, we need to determine how many CPU clock cycles will be
executed. For this purpose, it is necessary to define a synchronization interval



Development of ATmega 328P micro-controller emulator 171

for which the number will be calculated. The time range will be figured out
by the following formula [15]:

timeSlice = T · numberOfCycles . (1)

This will be equal, as the formula suggests, to the time of execution of
numberOfCycles clock cycles on the real CPU; T is the clock cycle period,
i.e. multiplicative inverse of the CPU frequency. Therefore, timeSlice will be
calculated according to this formula:

timeSlice =
numberOfCycles

f
. (2)

The numberOfCycles value can be then calculated as follows:

numberOfCycles = timeSlice · f . (3)

Now, what is still missing is the timeSlice value. It can be an empirically
chosen constant [15]. In the Intel 8080 emuStudio extension, it is 100 ms
(0.1 s). We will also use this time range and assuming that clock frequency of
ATmega 328P is 16 MHz7, the following formula holds:

numberOfCycles = 0.1 · 16 · 106 = 16 · 105 . (4)

The next step is to determine whether the number of executed cycles is
less than how many are to be executed at all within the 100 ms interval. To
evaluate this condition, we need to know the number of clock cycles of specific
instructions. These are constant values and can be obtained from the AVR
Instruction Set Manual [3]. To keep the number of cycles executed so far, we
need to return the number of clock cycles that the instruction execution took
from the execute(instruction) method.

The following part of the algorithm is reading the instruction opcode from
the program memory. After fetching the instruction, we need to decode it.
This can be done by using an extensive switch statement for all the 131 in-
structions, not even counting all the possible combinations of opcodes that
have their operand encoded in them. The idea is illustrated by the following
code fragment:

7https://www.arduino.cc/en/Products/Compare

https://www.arduino.cc/en/Products/Compare


172 M. Šipoš, S. Šimoňák

switch(opcode){

case 0x0:

execute(instruction1);

case 0x1:

execute(instruction2);

...

}

In contrast to this, it is more efficient to use the concept of a jump ta-
ble, that has been introduced in the Introduction section and can be seen
in the Figure 1. In terms of Java, which is the implementation language
of our solution, we can use so called functional interface for this purpose,
let us call it ExecutableInstruction, with one method – execute(Short[]

opcodeWord) that takes a two-bytes opcode and returns the number of CPU
clock cycles executed by the particular instruction. The jumpTable needs to
be initialized. It is relevant to do so outside of the emulation loop itself and
have it prepared in advance. The number of all possible distinct opcodes is

numOfDistinctOpcodes = 216 = 65536 . (5)

During the emulator initialization, we will go through all these possibilities,
i.e. from 0 to 65535, and in all the case branches of the switch statement, we
will apply assignments in the following form:

executableInstructions[OP] = EmulatorEngine.this::add;

As we can see, a reference to the method add() that implements emulation of
the ADD instruction is put at the OP-th position in the executableInstruc-
tions[] array, which represents the jump table and the OP is the operation
code of the instruction. The last step of the algorithm is to execute the in-
struction at the OP-th item of the jump table. As we have already mentioned,
the table items are of the type ExecutableInstruction and executing the
instruction means calling its execute() method:

cycles = executableInstructions[opcode].execute(opcodeWord);

cyclesExecuted += cycles;

However, one additional adjustment is needed. If we have already reached
the number of cycles to be executed but the time range of 100 ms still has
not passed, we have to wait for the remaining part of the time interval. For
this purpose, Java API provides a utility method to stop current thread –
emulation thread (in emuStudio, there is a separate thread for emulation):

LockSupport.parkNanos(timeSliceNanos - endTime);



Development of ATmega 328P micro-controller emulator 173

5.4 Input/output subsystem emulation

As one of suitable representatives of the input/output subsystem of ATmega
we have chosen the USART serial interface. We will not explain its functional-
ity and operation here, more can be found in the analytic part of the Master’s
thesis [30] and also in the manual [2]. USART interface is usually used for com-
munication between the micro-controller and external peripheral devices, or
even an another micro-controller. A frequent application is also data exchange
between ATmega and a personal computer via a terminal.

On a real ATmega device, the CPU core communicates with the USART
module on the chip via data bus. On the other side, USART is connected with
the outside world via RX and TX micro-controller pins. Communication with
the PC is enabled by a special one-purpose integrated circuit that converts
the data stream between the format used by USART and USB (Universal
Serial Bus) format. The authors of article [14] explain that a suitable level
of abstraction must be agreed on when implementing emulators. One-purpose
auxiliary chips together with buses and also, in our case, RX and TX pins as
communication channels can be omitted in the emulator design.

As a result of abstracting away from these hardware details, two components
in the abstract scheme – USART and Terminal modules can be used in our
solution. The design of the scheme is depicted in Figure 5.

Figure 5: Abstract scheme of the solution.

As we have already stated, bit-after-bit communication via RX and TX
pins will not be emulated exactly as on a real device. We will use a different
approach here. In the section 4, we explained that I/O registers are mapped



174 M. Šipoš, S. Šimoňák

into the SRAM data memory space and this can be effectively exploited also
in our solution.

emuStudio modules use a special component – context, that serves as their
communication interface to exchange data and commands with the other mod-
ules. In our implementation, all the SRAM data memory is integrated in the
CPU module. We will use the context of CPU in modules of peripheral devices
to subscribe them to observe changes in I/O registers. In the case of USART
module, the most important register is UDR0. When writing or reading from
it using OUT and IN instructions, on a real device it is used as a temporary
storage for the byte (character) being transmitted or received. For the sub-
scribing, the CPUContext interface provided by the emuLib library must be
extended, as it can be seen in Figure 6. Here, UDR0 will be the device context,
in our case.

Figure 6: The CPUContext extension.

The interconnection of the CPU and USART modules via subscribing to
changes in I/O registers (mapped to the data memory, which is integrated in
the CPU module) can be seen in Figure 7.

On the other side of communication, USART and terminal modules are
interconnected, again, by using their contexts, as the component diagram in
Figure 8 depicts.

Graphical user interface of the terminal implemented in our solution can be
seen in Figure 9.

For the purpose of effective testing of students’ assignments, automatic em-
ulation support has been added to the terminal module. The functionality is
enabled by redirecting input from a text file with prepared inputs into the
terminal and outputs are then written to a separate output file instead of
being printed to the terminal GUI. Automatic emulation without GUI and
user interaction is already one of the emuStudio features, so it what was only



Development of ATmega 328P micro-controller emulator 175

Figure 7: Interconnection of CPU and USART modules.

Figure 8: Interconnection of CPU, USART and terminal modules.

needed to add support for it in the terminal module. To run the emulation
using USART and terminal in the automatic mode, the following command
can be used:

java -jar emuStudio.jar --auto --nogui --config "AVR"

--input example.s

What needs to be specified is the name of the file with source code of the
program. Path to the file with input values and also to the file where outputs
will be redirected, can be set in the terminal module settings.

Similar concept of observing specific I/O registers for changes has also
been used in another extension – LED (Light-Emitting Diode) diode emu-
lation module. It visualizes the communication via digital ports of the micro-



176 M. Šipoš, S. Šimoňák

Figure 9: Graphical user interface of the USART terminal.

controller. However, now, the LED module needs to subscribe to a specific
pin of a digital port. It is represented by the corresponding bit in the PORTx
register, where “x” stands either for B, C or D. To enable this, one more oper-
ation needed to be added to CPU context extension – the resulting interface
is depicted at diagram in Figure 10.

Figure 10: The CPUContext extension for pin subscribing.

One more peripheral device module has been implemented within our so-
lution – the timer. ATmega chip includes three timers [2]; since our emulator
is mainly intended for usage as a study supporting tool, one of them is suf-
ficient to be emulated at the moment – Timer/Counter0. Again, timer uses,
similarly to USART, its dedicated I/O registers. Just to mention some of
them, TCNT0 register holds current counter value and TIMSK0 is used to



Development of ATmega 328P micro-controller emulator 177

enable/disable timer interrupts. As in the case of the USART module, we can
apply the concept of subscribing the timer to relevant I/O registers within the
data memory, which is included in the CPU module.

According to the documentation8, within emuStudio main module, there is
a dedicated execution thread for emulation. It is not suitable to burden it by
other auxiliary tasks. One of these is the process of counting timer/counter
cycles. Therefore, we should create a separate thread for this purpose. It will
take care of updating the counter register TCNT0 and check for situations
when it should signal timer interrupts. One of them is timer overflow inter-
rupt. Since the Timer/Counter0 uses an 8-bit counter, the highest value is
therefore 255 and in the clock cycle when the counter reaches it, interrupt
signal is generated and sent to the CPU. To configure how often it will occur,
TCCR0B register can be used – by assigning it a specific value, the prescaler
will be set accordingly. Prescaler serves as a frequency divider – it divides
16 MHz frequency of ATmega micro-controller by given constant. E.g., if we
set TCCR0B to 0b101, the divisor will be 1024 and the resulting frequency
of the timer will be equal to 15625 Hz. As a result, the period between timer
ticks will be longer and overflow of the counter register will be less frequent.

Moving on to the interrupts signalization. For this purpose, it is enough to
keep a flag boolean variable – if its value is TRUE, it means that a pending,
not yet handled interrupt is present. We need to, however, ensure synchronized
access to it from both threads that use it – emulation and timer thread.

In each emulation step, it is then required to check the flag variable and
if it is set to TRUE, it is needed to execute corresponding interrupt han-
dling subroutine. Interrupts currently supported by our CPU emulator are
Timer/Counter0 overflow interrupt and Timer/Counter0 compare match in-
terrupt that occurs when TCNT0 counter register becomes equal to either of
two registers values set by the programmer – OCR0A or OCR0B. If an un-
served interrupt is present, program counter register is set to the corresponding
vector address. The algorithm of handling the timer interrupts is depicted in
Figure 11.

6 Conclusion

In this paper we presented a set of extension modules implemented for emuS-
tudio platform that provide support for emulation of ATmega 328P micro-
controller. During the design and implementation, thematic areas covered in

8http://www.emustudio.net/docdevel/emulator_tutorial/index/

http://www.emustudio.net/docdevel/emulator_tutorial/index/


178 M. Šipoš, S. Šimoňák

Figure 11: Algorithm of signaling interrupts from the timer.

a collection of exercises that was a part of thesis [18] have been taken into
account as relevant for application in the Assembler course. Therefore the
areas included work with USART serial interface, digital output, timer and
interrupts handling.

As a result, the set of extensions includes the following modules:

� module for assembler source code compilation using an external tool
(GAVRASM),

� module for emulation of ATmega micro-controller CPU core with in-
tegrated SRAM data memory with general purpose and I/O registers
mapped into its address space; also a disassembler is included for the
purpose of more comfortable program debugging,

� module emulating USART serial interface,

� USART terminal module,



Development of ATmega 328P micro-controller emulator 179

� module emulating Timer/Counter0 – one of three ATmega timers, in-
cluding interrupt generation in cases of counter overflow and counter
match,

� LED diode emulation module to visualize voltage changes on digital pins
of the micro-controller.

As a program storage (ATmega flash program memory), an already existing
module Standard Memory has been reused. What needed to be adjusted was
the visual representation of values in memory cells as the ATmega program
memory is addressed by words (pairs of bytes). In comparison with the official
Atmel Studio IDE9 from the manufacturer of the micro-controller, it removed
the source of misinterpretation of addressing – the Studio displayed one byte
per cell.

As for the CPU emulation, the whole ATmega 328P instruction set is
supported in our solution, except for instructions for switching the device
into sleep mode (SLEEP), breaking program execution for debugging pur-
poses (BREAK), resetting watchdog timer which is not implemented (WDR)
and writing into the program memory as we do not support program self-
modification (SPM).

From peripheral devices, USART and terminal modules can be used in math-
ematical and text-oriented exercises for the purpose of providing inputs and
retrieving outputs from the programs. To support students’ assignments test-
ing, automatic emulation feature has been added to the terminal module, too.
Students can also practically learn how to handle interrupts thanks to avail-
able timer/counter module. As a reaction to timer events, the LED diode
module can be effectively used. It also can visualize the voltage changes on
the ATmega digital pins.

The solution presented within the paper can be practically applied in the
Assembler course at the Department of Computers and Informatics as a study-
ing and teaching support tool. It would help the students to better understand
the internal operation of the ATmega 328P micro-controller.

However, lot of the features of the ATmega micro-controller is currently not
included in our solution. To fulfill the goal of making the Assembler course
more attractive, there is still a large scale of possibilities of how our set of
emuStudio modules can be further improved and extended. What could be
added is the support for EEPROM permanent data storage memory that has
not been implemented within our solution. Within the available timer/counter

9http://www.microchip.com/avr-support/atmel-studio-7

http://www.microchip.com/avr-support/atmel-studio-7


180 M. Šipoš, S. Šimoňák

module, additional modes of operation could be implemented. The next alter-
native is the emulation of additional peripheral devices, e.g. the remaining two
timers/counters. Also, an input on digital pins of the micro-controller could
be considered in addition to currently supported digital output.

Some from the available external peripheral devices could be emulated as
well, like an LCD display or boards for network communication. In addition
to these, servo motors, relays and various sensors could be emulated, too. Our
solution, as explained in the text above, is open for further development and
extension to continue with the effort of making the educational process at our
department more attractive for students by supporting their interest in the
field of machine-oriented languages and computer organization.

References

[1] N. Ádám, Interconnection of computer and software engineering courses (Pre-
pojenie predmetov poč́ıtačového a softvérového inžinierstva), Proceedings of the
10th Workshop on Intelligent and Knowledge oriented Technologies WIKT 2015,
Center of Business Informatics, FEI TUKE, 7 2015. ⇒161

[2] Atmel Corporation, Atmega328/P – datasheet complete, 2016. ⇒165, 166, 173,
176

[3] Atmel Corporation, AVR instruction set manual, 2016. ⇒171
[4] Atmel Corporation, AVR microcontrollers for high-performance and power-

efficient 8-bit processing, 2013. ⇒164, 165
[5] J. R. Bell, Threaded code, Communications of the ACM 16, 6 (1973) 370–372.⇒164
[6] D. E. Bolanakis, G. A. Evangelakis, E. Glavas, K. T. Kotsis, A teaching ap-

proach for bridging the gap between low-level and high-level programming using
assembly language learning for small microcontrollers, Computer Applications in
Engineering Education 19, 3 (2011) 525–537. ⇒163

[7] F. Cancare, D. B. Bartolini, M. Carminati, D. Sciuto, M. D. Santambrogio,
On the Evolution of Hardware Circuits via Reconfigurable Architectures, ACM
Trans. Reconfigurable Technol. Syst. 5, 4 (2012). ⇒163

[8] C. V. Eguzo, B. J. Robert, O. C. Ihemadu, P. A. Avong, Integrating hardware
descriptive language (HDL) in teaching digital electronics-a case of Nigerian
polytechnics, 2017 IEEE 3rd International Conference on Electro-Technology
for National Development (NIGERCON), Owerri, 2017, pp. 650-655. ⇒163

[9] R. Eigenmann, D. J. Lilja, Von Neumann Computers. John Wiley & Sons, Inc.,
2001. ⇒165

[10] S. Chodarev, J. Porubän, Development of custom notation for XML-based lan-
guage: a model-driven approach, Computer Science and Information Systems
(ComSIS) 14, 3 (2017) 939–958. ⇒168

http://web.mit.edu/6.111/volume2/www/f2018/handouts/ATmega328P.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-0856-AVR-Instruction-Set-Manual.pdf
https://www.scribd.com/document/201422312/45058A-About-AVR-090913
https://www.scribd.com/document/201422312/45058A-About-AVR-090913
https://dl.acm.org/citation.cfm?id=362270
https://onlinelibrary.wiley.com/doi/full/10.1002/cae.20333
https://onlinelibrary.wiley.com/doi/full/10.1002/cae.20333
https://onlinelibrary.wiley.com/doi/full/10.1002/cae.20333
https://dl.acm.org/doi/10.1145/2392616.2392620
https://ieeexplore.ieee.org/document/8281935
https://ieeexplore.ieee.org/document/8281935
https://ieeexplore.ieee.org/document/8281935
http://dx.doi.org/10.1002/047134608X.W1704
http://www.comsis.org/archive.php?show=ppr5560
http://www.comsis.org/archive.php?show=ppr5560


Development of ATmega 328P micro-controller emulator 181

[11] P. Jakubčo, M. Domiter, Standardization of computer emulation, Applied Ma-
chine Intelligence and Informatics (SAMI), 2010 IEEE 8th International Sym-
posium, IEEE, 2010, pp. 221–224. ⇒160

[12] P. Jakubčo, S. Šimoňák, emuStudio - a plugin-based emulation platform, Journal
of Information, Control and Management Systems 7, 1 (2009) 33–45. ⇒167

[13] P. Jakubčo, S. Šimoňák, Utilizing GPGPU in computer emulation, Journal of
Information and Organizational Sciences 36, 1 (2012) 39–53. ⇒160

[14] P. Jakubčo, S. Šimoňák, N. Ádám, Communication model of emuStudio em-
ulation platform, Acta Univ. Sapientiae, Informatica 2, 2 (2010) 117-134. ⇒
173

[15] P. Jakubčo, L. Vokorokos, Preserving host independent emulation speed,
CSE’2010 International Scientific Conference on Computer Science and Engi-
neering, Department of Computers and Informatics, FEEI, Technical University
of Košice, 2010. ⇒171

[16] B. Madoš, Z. Bilanová, E. Chovancová, N. Ádám, Field Programmable Gate
Array Hardware Accelerator of Prime Implicants Generation for Single-Output
Boolean Functions Minimization, ICETA 2019 - 17th IEEE International con-
ference on emerging elearning technologies and applications, Starý Smokovec,
Slovakia, 2019, pp. 493-498. ⇒163

[17] T. S. Margush, Using an 8-bit RISC microcontroller in an assembly language
programming course, Journal of Computing Sciences in Colleges 22, 1 (2006)
15–22. ⇒161

[18] O. Matija, Using the Arduino platform within the Assembler subject (Využitie
platformy Arduino v rámci predmetu Asembler), Bachelor’s Thesis, Department
of Computers and Informatics, FEEI, Technical University of Košice, Košice,
2015. ⇒161, 163, 178

[19] O. Mavropoulos, H. Mouratidis, A. Fish, E. Panaousis, C. Kalloniatis, A con-
ceptual model to support security analysis in the internet of things, Computer
Science and Information Systems (ComSIS) 14, 2 (2017) 557–578. ⇒161

[20] S. P. Morse, B. W. Ravenel, S. Mazor, W. B. Pohlman, Intel microprocessors –
8008 to 8086, IEEE Computer 13, 10 (1980) 42–60. ⇒161

[21] V. Moya del Barrio, Study of the techniques for emulation programming,
Proyecto fin de carrera. Universidad Politécnica de Cataluña, España, 2001. ⇒
160, 163, 170

[22] B. Nova, J.C. Ferreira, A. Araújo, Tool to Support Computer Architecture
Teachingand Learning, 2013 1st International Conference of the Portuguese So-
ciety for Engineering Education (CISPEE), 2013. ⇒162

[23] B. Nova, DrMIPS Educational MIPS simulator, 2013-2015. ⇒162
[24] E. A. Qaralleh, K. A. Darabh, A new method for teaching microprocessors course

using emulation, Computer Applications in Engineering Education 23, 3 (2014)
455–463. ⇒162

[25] J. Rogers, EdSim51’s Guide to the 8051: core of the popular 51 series of 8-bit
micro-controllers, CreateSpace Independent Publishing Platform, 2009. ⇒161

[26] J. Rogers, The 8051 Simulator for Teachers and Students, 2005-2016. ⇒162

https://jios.foi.hr/index.php/jios/article/view/225
http://www.acta.sapientia.ro/acta-info/C2-2/info22-1.pdf
http://www.acta.sapientia.ro/acta-info/C2-2/info22-1.pdf
https://dl.acm.org/citation.cfm?id=1181813
https://dl.acm.org/citation.cfm?id=1181813
http://www.comsis.org/archive.php?show=pprcaise5039
http://www.comsis.org/archive.php?show=pprcaise5039
https://ieeexplore.ieee.org/document/1653375
https://ieeexplore.ieee.org/document/1653375
http://www.xsim.com/papers/Bario.2001.emubook.pdf
https://repositorio.inesctec.pt/bitstream/123456789/5569/1/P-009-4VC.pdf
https://repositorio.inesctec.pt/bitstream/123456789/5569/1/P-009-4VC.pdf
https://brunonova.github.io/drmips/
https://onlinelibrary.wiley.com/doi/full/10.1002/cae.21616
https://onlinelibrary.wiley.com/doi/full/10.1002/cae.21616
https://www.amazon.com/EdSim51s-Guide-8051-popular-microcontrollers/dp/1442141808/
https://www.amazon.com/EdSim51s-Guide-8051-popular-microcontrollers/dp/1442141808/
https://www.edsim51.com/


182 M. Šipoš, S. Šimoňák

[27] G. Schmidt, Gerd’s AVR simulator, 2017-2020. ⇒162
[28] G. Schmidt, Beginners introduction to the assembly language of ATMEL AVR

microprocessors, 2016. ⇒166
[29] M. Šipoš, S. Šimoňák, RASP abstract machine emulator - extending the emuS-

tudio platform, Acta Electrotechnica et Informatica 17, 3 (2017) 33–41. ⇒160
[30] M. Šipoš, Extension of the emuStudio platform for emulation of computer archi-

tectures (in slovak), Diploma Thesis, Department of Computers and Informatics,
FEEI, Technical University of Košice, Košice, 2018. ⇒164, 173

[31] K. Stevens, The Emulation User’s Guide, Lulu.com, 2008. ⇒160
[32] R. K. Dirk von Suchodoletz, B. van der Werf, Long-term preservation in the

digital age - emulation as a generic preservation strategy, PIK - Praxis der In-
formationsverarbeitung und Kommunikation 35, 4 (2012) 225–226. ⇒160

[33] D. von Suchodoletz, K. Rechert, I. Valizada, A. Strauch, Emulation as an alterna-
tive preservation strategy – use-cases, tools and lessons learned, INFORMATIK
2013 – Informatik angepasst an Mensch, Organisation und Umwelt, 2013. ⇒
160

[34] Wikipedia, List of computer system emulators, 2020. ⇒160
[35] A. Wolfe, A. Chanin, Executing compressed programs on an embedded RISC

architecture, ACM SIGMICRO Newsletter 23, 1-2 (1992) 81–91. ⇒164
[36] G. S. Wolffe, W. Yurcik, H. Osborne, M. A. Holliday, Teaching computer or-

ganization/architecture with limited resources using simulators, ACM SIGCSE
Bulletin 34, 1 (2002) 176–180. ⇒163

[37] H. Wong, CPUlator Computer System Simulator, University of Toronto, 2019.⇒162
[38] C. Yehezkel, W. Yurcik, M. Pearson, D. Armstrong, Three simulator tools for

teaching computer architecture: EasyCPU, Little Man Computer, and RTLSim,
J. Educ. Resour. Comput. 1, 4 (2001) 60–80. ⇒163

Received: February 18, 2020 • Revised: July 1, 2020

http://www.avr-asm-tutorial.net/avr_sim/index_en.html
http://www.avr-asm-download.de/beginner_en.pdf
http://www.avr-asm-download.de/beginner_en.pdf
http://www.aei.tuke.sk/papers/2017/3/07_Simonak.pdf
http://www.aei.tuke.sk/papers/2017/3/07_Simonak.pdf
https://dl.gi.de/handle/20.500.12116/20781
https://dl.gi.de/handle/20.500.12116/20781
https://en.wikipedia.org/wiki/List_of_computer_system_emulators
http://doi.acm.org/10.1145/144965.145003
http://doi.acm.org/10.1145/144965.145003
https://dl.acm.org/citation.cfm?id=563408
https://dl.acm.org/citation.cfm?id=563408
https://cpulator.01xz.net/wiki/Main_Page
http://doi.acm.org/10.1145/514144.514732
http://doi.acm.org/10.1145/514144.514732

	1 Introduction
	2 Related work
	3 Emulation techniques
	4 ATmega 328P micro-controller architecture
	5 ATmega 328P - emuStudio extensions design
	5.1 Memory emulation
	5.2 Compiler module
	5.3 CPU emulator module
	5.4 Input/output subsystem emulation

	6 Conclusion

