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Abstract: The main goal of the proposed project is to enhance the capabilities of a 

wheeled or flying mobile robot with features like egomotion estimation and/or obstacle 

avoidance. This implies the implementation of vision-based navigation of robots using 

artificial vision, computed with on-board embedded hardware. The current paper aims 

to contribute on the implementation of a real-time motion extraction from a video feed 

using embedded FPGA circuits. An alternative implementation using a Raspberry Pi is 

also presented. A performance analysis is given with references to other works.  

 

Keywords: motion extraction, optical flow, embedded implementation, real-time, 
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1. Scientific background 

The optical flow calculation involves extracting a dense velocity field of an 

image sequence assuming that the intensity is preserved during the motion. This 

result may then be used for other applications, such as three-dimensional (3-D) 

reconstruction, time interpolation of image sequences, video compression, 

motion segmentation, tracking, robot navigation, and time to collision 

estimation. There are several ways to recover 3-D information from two-
                                                           

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dimensional images (2-D) using various signals. In this article we will describe 

implementation of a motion flow system in real time, with low resource cost 

properties. Optical flow algorithms are widely covered in the specific literature. 

Some authors have undertaken a comparative study of the accuracy of different 

approaches with synthetic sequences [1]. We have focused on a model of 

classical gradient based method of Lucas & Kanade (L & K) [2]. Several 

authors have emphasized satisfactory balance between precision and efficiency 

in this model, which is an important factor in deciding which model is best 

suited for use as a real-time processing system. 

One of the most important choices at the design level of a vision system is 

the selection of the image acquisition hardware. For instance, there are 

alternatives to the cameras similar to vertebrate-like single-lens eyes, such as 

insect-like compound eyes [3, 4] that are developed by prestigious research 

groups. These offer a dynamically adaptable structure with panoramic field of 

view, low distortion and aberration, and good temporal resolution while 

yielding high spatial resolution alongside a reduced size. These properties are 

highly useful for visually-controlled navigation, specifically for tasks like take-

off, landing, collision avoidance and other optically driven responses, which do 

not require a high resolution image acquisition. The local sensory adaptation 

capabilities of insect compound eyes can compensate for significant changes in 

light intensity at the photoreceptor level and distribute information in a neuronal 

circuitry, resulting in fast and low-power integrated signal processing.  

The processing hardware support [5, 6, 7, 8, 9, 10] selection for implementing 

these artificial vision systems can be critical for a high value outcome [10, 11, 12, 

13]. Being at the center of group’s research activity, the new generations of 

SRAM-based FPGA devices are a proper choice for the implementation of 

reconfigurable computing platforms that need accelerated processing in real-time 

systems. On the other hand, the hardware-software co-design problem is more 

complex in system development because the components need to be more 

advanced. The requirements for runtime partial reconfiguration capability in 

embedded applications can be sustained by storing multiple bit-stream generation 

choices, including direct bit-stream manipulation for logic blocks and hybrid one-

dimensional and two-dimensional physical area relocation control modules. 

The main goal of the proposed project is to enhance a mobile robot with 

evolutionary optimization capabilities for tasks like ego motion estimation 

and/or obstacle avoidance. The robot will learn to navigate different 

environments and will adapt to changing conditions. Using the run-time 

reconfiguration properties of modern digital reconfigurable hardware-based 

(FPGA) platforms [12, 13, 14, 15], an otherwise days-long evolutionary cycle 

of a physical robot can be slashed to a matter of milliseconds. By implementing 

this technique, the most common issues that emerge when using evolutionary 
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simulation – modeling the real world environment [15, 16, 17] as accurately as 

possible and modeling only those characteristics of the robot that are relevant 

for achieving the desired behavior – are avoided. 

2. The developed method for resource-efficient optical flow extraction 

The first studies on optical flow computation date back to 1980 and there are 

many alternative methods offered. They can be based on gradient, correlation, 

energy and phase methods, creating well-defined groups [4]. Gradient methods 

are based on the evaluation of spatial-temporal derivatives. The first such 

methods are presented by Horn and Schunck [1], respectively Lucas and 

Kanade [2]. All these methods are difficult to implement in digital hardware, 

due to their high resource-cost. 

If we represent the image with a matrix A, its values will represent the gray 

level of a point in the image. When representing a grayscale pixel on 8 bits, 

these values will vary between 0 and 255. In Fig. 1 we can see a frame of test 

video sequence named GRID. The images corresponding to this and other 

sequences were used as inputs to the algorithm for calculating the Optical Flow 

(OF), developed using Visual C++. 

The gradient in an image is a vector indicating the direction of variation of 

image intensity (grayscale variation direction). This can be determined by 

calculating the value difference of adjacent image points. Consider a new matrix 

B which contains the gradient values of the matrix A. Using the values adjacent 

to the pixel p in the image in the calculation of the gradient, will result in a 

properly aligned gradient. Detection of outliers in this gradient will then lead to 

the detection of edges in images. This method, however, is sensitive to noise 

and luminance variations. The effect of noise can be reduced by calculating the 

average values of the gradient in the orthogonal direction, too. A horizontal 

gradient used so far is made by calculating the difference between values of two 

columns. 

B(j, k)=A(j, k+1) – A(j, k–1) (1) 

This can be represented as a filter matrix of the form 

–1 0 1 

where the values multiplied with the pixel gray-level values will determine the 

locations of sharp tone differences in the image. 

In order to reduce noise sensitivity of the method we have studied the 

possibilities of determining the average value of the gradient calculated from 

the video images. 
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Vertical edges are obtained by averaging the three rows in this matrix: 

–1 0 1 

–1 0 1 

–1 0 1 

Similarly, averaged horizontal edge values may be obtained using a vertical 

mask of the form:  

1 1 1 

0 0 0 

–1 –1 –1 

The result of these operations will be placed at the location indexed by the 

central element of these matrices. In fact, these 3×3 mask matrices are a basic 

form in these types of applications, but can have many variations by changing 

the weighting of the cells. We have experimented two of the well known mask 

matrices in the literature, with which we run experiments. The first option is the 

one developed by Roberts and Sobel’s is the second. These methods are 

effective, as demonstrated by the abundance of their applications in the 

literature. It is also important to mention, that these methods require fewer 

resources for implementation in digital hardware than other methods such as 

Canny, LoG (Laplacian of Gaussian), Prewitt, Frei-Chen. 

A. Optical flow computation experiments with different video sequences as input 

data 

In order to test and validate the algorithm developed and implemented at 

first in software, we chose three different video sequences. Two of them are real 

and the third video is an animation. 

In the top left corner of Fig. 1 we can see a frame from one of the video 

sequences used as test data, called Grid (31 frames with a resolution of 

320×240, with 8 bits/pixel). These images were used as inputs to the algorithm 

for calculating the optical flow (Optical Flow - OF). 

Examples of calculating the horizontal (top right) and vertical (bottom left) 

gradient of the Grid sequence of video frames can be seen in Fig. 1. The 

detection of horizontal and vertical edges is the next step performed, as the 

bottom right section of Fig. 1 shows. 

In Fig. 2 we can see one frame of the test video sequence called Anim (51 

frames with a resolution of 200×200, with 8 bits/pixel). 
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Figure 1: The GRID video sequence’s frame, with computed horizontal, vertical 

gradients and detected combined edges. 

 We also have implemented a feature of the program to calculate the gradient 

direction obtained with the following trigonometric relationship:   

ϕ = arctan 
𝐵𝑣(𝑗, 𝑘)

𝐵ℎ(𝑗, 𝑘)
                                                       (2) 

 After reading frames of the video sequence files, the first operation performed 

by the method’s testing program is a Gaussian filtering with a filter matrix of 

5×5 pixels. This first step is followed by the calculation of vertical, horizontal 

and combined gradients, with results stored separately. The algorithm continues 

with the positive and negative edge detection based on the frame 

intercorrelations, than it comes to determining the optical flow.  

The effort invested in writing this software without the use of existing 

function libraries for image processing, has paid off in the next phase of the 

project  presented in this paper  the FPGA hardware implementation of the 

method using hardware description language (VHDL) and Xilinx ISE 

development environment (Design Suite 14.7). 

B. Description of the system designed and built for parallelized implementation 

on FPGA 

In Fig. 3 polygons with green background symbolize BRAM modules 

(Block RAM) of the FPGA circuit. These were configured using IP Core 

Generator tool from Xilinx ISE development system Design Suite to store a 

selected video frame sequence (image grayscale, 8-bit resolution of 200×200 

pixels), using 10 of 38 Kbits of BRAM memory. 
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Figure 2: The ANIM video sequence’s frame, with computed horizontal, vertical 

gradients and detected combined edges. 

We developed a double pipe-line structure to parallelize execution of 

operations. The calculation steps determined in the C++ program were 

implemented here in separate modules that are synchronized by a finite state 

machine (FSM). Observe the two parallel pipe-lines, processing data from two 

consecutive frames of video. 

Each of these performs the following steps: 

 Scanning the image to determine the minimum, maximum and average 

values, data needed for subsequent calculations, scaling, etc. 

 It runs matrix Gaussian filtering algorithm. 

 Reading consecutive pixel values, that are inserted into the pipe-line 

which runs several phases: 

 vertical and horizontal gradient computation, 

 positive and negative edge detection, 

 determining gradient direction. 

 After completing these calculations, the results are saved in separate 

BRAM modules. 

 Based on these partial results, which can be computed from two 

consecutive images in a synchronized manner, the method calculates their 

intercorrelation. 
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Figure 3: Block diagram and sequence of operations implemented on the FPGA. 

 This yields the corresponding OF values. 

 The OF values will be scaled and accumulated from several pairs of 

images in the sequence. 

 The end result is saved in the dedicated OF BRAM memory, from where 

it can be passed on to an application that will use it. 

The state-diagram of the finite-state-machine (FSM) controlling one thread 

of the pipe-line structure is shown in Fig. 4. Note the loop formed by the states 

1, 2, 3 and 5 corresponding to the data input phase from the BRAM memory 

(Frame Buffer in Fig. 4) and the image parameters computation. It then passes 

to the second loop (states 4, 5, 6, 7 and 8) where it performs the calculations of 

the gradient, edge detection, OF, etc. The last state saves the results. The 

novelty consists in a method able to detect the image parameters while running 

the filter algorithm, thus saving an entire image scanning cycle. 
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Figure 4: State-diagram of the FSM controlling one thread of the pipe-line structure. 

The new, resource-efficient motion estimation method developed by our 

team, uses an OF extraction algorithm consisting of the following steps: 

a) Based on the detections results of the previous stages, from each frame of 

the video sequence we have generated a flag matrix signaling the edge 

positions in the image. A flag value (logical 1 bit value) is placed on the x, y 

coordinates of the generated matrix in the vicinity of the locations where an 

edge is detected. While scanning the input images with the Sobel filter 

matrixes, for each output value a single bit of the flag matrix is generated, 

therefore reducing the size of the data to be processed in the next step. 

b) The next step consists in scanning the flag matrix pairs generated from two 

consecutive frames with a 5×5 pixel window to determine the local direction 

of travel (motion) of the existing edges.  

 

Figure 5: The introduced method for determining the local displacement of edges. 

As can be seen in the examples in Fig. 5, the evaluation windows are divided 

into four quadrants, and the resulting value of the direction of movement will be 

saved to coordinates that are at the intersection of these quadrants of 3×3 pixels. 

Fig. 5 - A1 shows a local displacement of the edges formed by 4 points. The 

number of points in each quadrant is then calculated (Fig. 1 - A2) for two 



 Hardware-Efficient Embedded Implementations of an Optical Flow Detection Method 13 

 

consecutive evaluated frames (i and i+1). An increase in the number of bits in a 

quadrant shows the direction of movement of the edge. The chosen quadrants 

will have an increased number of flag bits (Fig. 1 - A3). 

3. Test results of the developed embedded OF extraction system 

 Translation (synthesizing) programs of functional hardware description 

languages like VHDL to Verilog do not result in a series of instructions 

executed sequentially but in a draft of a digital logic circuit required to perform 

the algorithm described. 

In this respect, the test - debug - of these programs is achievable through 

circuit simulation techniques. However, in order to simulate a digital circuit, 

implemented using a hardware description language, we need a testbench 

module (also developed in VHDL or Verilog) that generates input signals for 

the unit under test (UUT). These will yield time-varying output signals of the 

UUT, that will reflect the behavior of the designed circuit, thus aiding the debug 

process.  

These VHDL simulation codes can check the outputs of the module under test 

(UUT - Unit Under Test) for the generated inputs, and returns status messages or 

error signals if detected. The Xilinx environment provides the ISIM simulation 

compiler that generates the graphical representation of the input signals, internal 

signals of the UUT and outputs in the form of timing diagrams. 

In this section of the paper we present a few of these diagrams, for the 

implemented OF extraction project. 

In Fig. 6 one can follow the partial simulation of one thread of the pipe-line 

structure in Fig. 3. Note the double addressing of the dual-port BRAM memory 

to get two values simultaneously in the same clock cycle. The finite state 

automaton executes the first loop (states s1, s2, s3 and s5) to control the 

sequential reading of BRAM and calculation of the image parameters. After 

reaching the highest memory address (0 ... 39 999, for an image of 200×200 

pixels) the FSM transitions to state s4, where the final values of the calculated 

parameters are available. It is important to note the time required for these 

operations, which is 800μs in accordance with the same timing diagram. 

 One of the steps difficult to implement in hardware was the calculation of 

the image mean values, because it requires at least one division operation, 

which is only possible in a digital circuit to values which are equal to 2
n
. 

 To solve this problem and minimize the error introduced with divisions by 2
n
 

values closest to the current divider values, we used the following method: 

division was achieved by using shift registers, and the error was reduced by 

averaging two consecutive displacement values. 
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Figure 6: Simulation of reading the input values from BRAM memory (frame buffer). 

 The image in Fig. 7 shows a complete execution cycle of the developed 

algorithm by the FSM pipe-line control structure. One can observe in Fig. 7 the 

evolution of calculating the image minimum and maximum values, followed by 

the second loop, with the gradient computations and scaling. It should be noted 

in this case, that the total execution time is approximately 1.6 ms. As it results 

from the analysis of the time diagram in Fig. 7, each partial result obtained in 

state s8 is saved and sent to the next component, namely at the end is placed in a 

BRAM memory called Combined gradient memory image in Fig. 3. 

 

Figure 7: Simulation result showing the passage (vertical marking line) from the 

parameters calculation loop to calculating image gradients. 

 Since the hardware resources required to implement this computation flow 

occupies only about 1-2% of the capacity of the FPGA circuit used (a Xilinx 
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Virtex 5 FX30T) (Table 1), this structure should be instantiated more than 

twice, thus leading to a more efficient parallelized structure with the possibility 

of processing multiple frames of the video sequence simultaneously. This 

extension, however, is restricted by the number of available FPGA BRAM 

memories (68). In its current form, with only two parallel pipe-line structures 

(two frames processed simultaneously) the project uses at least 40 BRAM 

modules. 

Table 1: Device utilization summary for one thread of the implemented OF  

extraction pipe-line structure 

 

4. Validating the FPGA implementation of the new method using 

viciLAB 

 viciLab [8], [9] is a remote/local FPGA prototyping platform, with GUI 

console toolsuite support. It enables the user to create and implement a digital 

logic component application and GUI console. The viciLab tools perform 

automated creation of the remote/local design FPGA bitstream from a VHDL 

model description, and perform remote or local Digilent Nexys3 module Xilinx 

Spartan-6 FPGA configuration. The system also permits user-specific real-time 

FPGA application development with interactive control/visualization console. 

The viciLogic wrapper integrates the user design with the FPGA hardware core, 

and generates design metadata to aid automation and faster and easier GUI 

prototype development. The HDL parsing process also produces a machine 

readable description of the HDL design structure, which is used during course 

building and client GUI application creation to automate the creation of 

interactive animations. The wrapper auto-detects and connects the SDRAM 

interface, and clock and reset signals, and provides a user menu for defining 

signal connections to FPGA module display devices (LEDS and 7-segment 

displays). The DSPModule is the area where the application’s main processing 

elements are placed. The GUI written in Python retrieves the video feed from a 

PC’s webcam and saves the image frames into the cellular RAM memory of the 

Nexys 3 development board. The wrapper extracts the image data from the 

external RAM and drives the signals necessary for the DSPModule (dspBlock) 
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to perform the designed computation steps. The implemented computation 

processes of the dspBlock performs the following steps, also shown in Fig. 8: 

 The video feed from the webcam is converted by the Python GUI into the 

format with a resolution of 100×100 and 32 bits per pixel. 

 The video data is stored in the FPGA board’s SRAM in a grayscale 

format, but still in 32 bits/pixel. In the processing phase, though, only 8 

bit / pixel are used as input values. 

 Each frame of the webcam video signal is scanned with a 5×5 window in 

order to perform a Sobel edge detection, using a filter matrix. 

 The edges are stored in a 20×20 bit matrix, according to the local edge 

values found by the previous step. 

 This matrix is then processed using the previously presented method with 

5×5 local OF detection windows. The 16 resulting windows are 

processed in parallel by the dspBlock using as many separate VHDL 

processes. 

 

Figure 8: State diagram of the finite state machine controlling the image 

processing circuit. 

 As Fig. 8 shows, the finite state machine (FSM) controlling the OF 

computation circuits contains a module that is responsible for the display of the 

OF result values. In order to ease the evaluation of the outputs, a color code has 

been assigned to each of the eight possible (45, 90, 135, 180, 225, 270, 315 or 

360 degrees) optical flow direction values yielded by the circuit.  

 These colors will fill a square, as Fig. 9 presents, (overlaying the displayed 

edges) corresponding to the 5×5 bit windows of the edge bit matrix used as 

inputs to the displacement computation phase. These will show the OF direction 
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in the respective areas of the image, yielding the local OF values. Averaging 

these gives the overall OF value. 

 

   

Figure 9: State diagram of the finite state machine controlling the image  

processing circuit. 

 Measurements have shown that one complete cycle for local OF and overall 

OF determination computes in under 25 microseconds, well within real-time 

requirements.  

5. Raspberry Pi implementation of the developed OF method 

 In order to test the performance of the method on a different embedded 

platform we have implemented it on a Raspberry Pi compact computer. 

 To achieve real-time video processing of captured frames from a 30 fps 

640×480 PX resolution camera, the platform was chosen to be a Raspberry PI 2 

model B. The credit card sized computer contains a Broadcom SoC consisting 

of a 900 MHz Quad-core ARM CortexA7 CPU, a 250MHz Broadcom Video 

Core IV GPU, with 1 GB memory. It is also capable of sending data with a 

speed of 2 Gbps through the CSI-2 connector from a dedicated 5 megapixel 

camera directly to the GPU. 

 RGB frames from the camera module can be received with chosen resolution 

and speed defined in software. The maximum video recording features are 

1920×1080 pixel on 30 fps, 1280×720 pixel on 60 fps and 640×480 pixel on 

60/90 fps.  For the application, 640×480 pixel sized frames where received on 

30 fps.  

 Using OpenCv API to easily process images and to show the results, the 

procedure begins with transforming the three channel RGB frames received 

from the camera to one channel grayscale frames. The transformed pixel values 

were stored in the memory with 8 bit unsigned char values, varying the intensity 

of the grey value from 0 to 255. Edge detection in the frames is done by the 

Sobel operator, with 5×5 pixel kernels. 
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6. Results and conclusions 

 The designed OF extraction system implemented on a FPGA circuit is 

functional, operating in real-time. The precision of the OF computation is 

influenced by the sensitivity of the edge detection phase to the lighting 

conditions of the environment. One way to overcome this issue is to increase 

the framerate of the input video signal by using a dedicated camera directly 

attached to the FPGA development board. We have experimented with the use 

of an Omniview OF7670 sensor to replace the PC webcam, and found that the 

framerate would be increased tenfold. This is currently at about 3-5 fps due to 

the latency of the data communication via the wrapper core between the dspBlk 

and the webcam. By using the dedicated camera we can reach up to 30 fps with 

the same dspBlk structure. The limitation in this case proved to be the resources 

of the Spartan 6 FPGA on the Digilent Nexys 3 board supported by viciLab.  

There is room for expansion in this type of project, but with certain 

limitations. The alternative is, however, the use of the dedicated processor 

module (PowerPC440 core) of the FPGA used for the execution of those tasks 

that require sequential steps. On the other hand, by introducing this component 

into the system, other problems can be solved, such as accessing the external 

DDR-2 RAM modules of the used OPUS FPGA development platform, as well 

as real-time image acquisition as input, using peripheral interfaces attached to it. 

 All these avenues of development will be studied and, if favorable feasibility 

is found, will be exploited in later stages of the research project. 

 The viability of the implementation results will need to be validated by 

demonstrating the method with a mobile robot. The final demonstration will 

show the collision-free, (semi-)autonomous drive of a mobile robot or even of a 

group of collaborating robots in a highly-cluttered environment. The 

implemented systems will yield a new class of artificially intelligent robots that 

can adapt their hardware structure in order to behave better in a changing 

environment. Individual or collaborating groups of robots with these abilities 

could be used in a variety of reconnaissance or monitoring tasks. For instance 

the capability to assimilate and share acquired knowledge about its environment 

can be useful in scenarios where hazardous spaces need to be explored and 

mapped fast (ex. search in earthquake-damaged buildings). 
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