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Counting (k,l)-sumsets in groups of prime
order

Vahe SARGSYAN

Moscow State University
email: vahe_sargsyan@ymail.com

Abstract. A subset A of a group G is called (k, 1)-sumset, if A = kB—1B
for some B C G, where kB —1B = {x7 + -+ + Xx — Xp1 — =+ — Xxp1 :
X1y...yXxt1 € B}. Upper and lower bounds for the number (k, 1)-sumsets
in groups of prime order are provided.

1 Introduction

Let p be a prime number and k, 1 be nonnegative integers with k+1 > 2. Write

Z,, for the group of residues modulo p. A subset A C Z,, is called (k, 1)-sumset,

if A = kB—1B for some B C Z,,, where kB—1B = {x1+- - - +-X—Xpq1— - " —Xiq1

X1y ..oy Xky1 € B}, Write SSy1(Z,,) for the collection of (k, 1)-sumsets in Zp.
B. Green and I. Ruzsa in [1] proved

p22r « SS20(Zp)| < 2p/3+6(p)

where 0(p)/p — 0 as p — oo and 0(p) < p(log log p)z/g'(logp)_v9 (hereafter
logarithms are to base two).

The aim of this work is to obtain bounds for the number [SSy(Z;)[. We
prove

Theorem 1 Let p be a prime number and k,l be nonnegative integers with
k+12> 2. Then there exists a positive constant Cy 1 such that

Ck l2‘p/(2(k+l)71) < |Sskl(Zp)| < 2(p/(k+l+1))+(k+172)+0(‘p). (1)
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2 Definitions and auxiliary results

Let R be the set of real numbers, f;: Z, = R,1=1,...,m, and x € Z,. We
set

(Fro- - fm)(x) =
=) Y i)l ) —x = —xm)  (2)

X1€Zp Xm— 1€Zp

and

:E: f any

YeZp
The function F(x) is called Fourier transform of f.

Lemma 2 We have

(F1 - ) (%) = F1(x) ... Fn (%) (3)

Proof. By definition

(fy *T'\*fm)(x) = Z (fy*---xf)(y)e 2
Yye€Zp

=y > ) f fin—1(Ym—1)x

YeZpyi1€Zp  Yym-1€Zp

LY1X Ym—1X% (Y—y1——Ym—1)
xfm(y—y1—---—ym_1)- e I v =
o2 2miYm=1%
Z f1lyr) - L Z fmf1(ymf1)'em pooX
Y1€Zp Ym-1€Zp
Y=y -y )x ~ —
2m—=1 ‘m-1'"
X mey Y= Ymo) e b — H1(x)...Tm(x).
O
Denote the characteristic function of a set A by xa(x). Let Aq,..., Ay be
non-empty subsets of Z,. Then (xa, * --- * Xa,,)(x) will be the number of
vectors (X1y...,Xm) € Ay X -+ X Ay such that x = %7+ -+ % (mod p). Set

Ar+- -+ An={xX1+ - +xn (mod p) : x1 € A1,...,xm € A }. We define

Shm(Aly. ooy Am) ={x € Zp : (XA, *- - *XA,,)(x) > h}, where h > 0. Further,

for any integer i and any A C Z, denote the set A +---+ A by 1A, and the
—_—

set {p —x:x € A} by —



Counting (k, 1)-sumsets in groups of prime order 35

Theorem 3 (Cauchy-Davenport, [2]). Let Aj,...,An be non-empty subsets
of Zy. Then |A1 4+ -+ + Ayl > min(p,|A1| 4+ - + [Ap] — (m —1)).

Theorem 4 (Pollard, [3]). Let A1, A, be non-empty subsets of Z,. Then
IS12(A1, AQ)l 4+ -+ +[Se2(A1, Az)| > tmin(p, [Aq] + [Ag] — t),
where t < min(|A4], |Az]).
Theorems 3, 4 imply the following two statements.
Lemma 5 Let Ay,...,Aqn non-empty subsets of Z,. Then
IStm (A1, A+ ISem(Ary oo AR 2>

> tmin(p, A+ + A —t—m + 2),
where t < min(|A1], ..., |Anl).

Proof. Without loss of generality we assume |Aj| = min(|A;],...,|Anl). By
Theorem 4 we have

IS12(A1, (A + -+ A+ - + St 2(An, (A + -+ Al >

> tmin(p, A1+ A2+ -+ Anl — t), (4)

where t < |A;].
On the other hand by Theorem 3 we have

A2+ 4 Aml = min(p, [As[ + - + [An[ = (m —2)). ()
Substituting (5) in (4), we obtain
Stm(Ary o Al 4+ [Sem(Ady oy Al >

> S12(A1 (Ao 4+ +F A+ -+ IS 2(Ar, (Ao + oo+ An)) >
> tmin(p, |[A|+ -+ |Ap| —t—m+2).
O

Lemma 6 Let Aq,...,An be non-empty subsets of Z, andh < min (|Aql,...,|An|).
Then

Snm(Aty ey Am)l > min(p, |A7| + - 4+ Ap| — m+2) — 2(hp) /2.
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Proof. Note that [Si;(A1,...,An)l > [Sjm(A1,...,Ay)| for i < j. Choose
h <t <min(|A4],...,|Anl). By Lemma 5 we have

tmin(p)|A1|+"‘+|Am‘_t_m+2) <
< S1m(Ary o AR+ F Sem (A, AR <
< h-p + t|sh,m(A1)' . '3Am)|-
Putting t = (hp)”z, we get
min(p, |A1]+ - + [Am| —m+2) — 2(hp)'/2 <
< min(p, A1+ +[Am| —m — (hp)"/2 +2) — (hp)'/2 <
< |Sh,m(A1)---)Am)|-
0

Lemma 7 Set Tys(Z,) ={A C Z, : |A| < p/(r + 1)s}. Then there exists s
such that
| Tvs(Zp)] < 2P/, (6)

Proof. Let n,m be positive integers, T < m < n. Then (see Lemma 6.8, [4])

> (5= g

0<i<m

We choose s such that

es(r+1) <2% (8)
Then by (7) we have (putting n =p and m =p/(r+ 1)s)
|Tr,s(zp)| = Z <p> < (es(r+ ]))p/(rH)S < (zs)p/(rJr]]s — p/(r+1)
o<i<p/(r1)s N
O

Let L be a positive integer. For eachy € {0,...,p—1} we define a partition Ry 1
of Zy, on the intervals of the form J{ = {(iL+1+y) (mod p),...,((i+1)L+y)
(mod p)}, 0 <1< [p/L] — 1. All intervals are J of Ry have length L, and
the set Jy = Z, \ U, J{ has cardinality p — L|p/L] < L. The set Jy is called
remainder partition Ry 1. In what follows we fix y € {0,...,p—1} and consider
the corresponding partition Ry . For every A C Z,, and any integer d define
d*A ={da (mod p): a € A}. The set d x A is called dilation of A. The set
A C Zy is called L-granular (see [1]), if some dilation of A is a union of some
of the intervals J{ (other than remainder). We denote the family of L-granular
subsets of Z, by Gi(Z;).
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Lemma 8 We have
|GL(Z,)| < p2P/™. 9)

Proof. Denote the number of subsets of intervals (other than remainder) of
the partition Ry 1 of Z, by g(Ry 1), and the number of different partitions Ry 1
of Zy, by r(L). It is obvious that

IGL(Zp)| < g(RyL)r(L). (10)

Note that the number of intervals (other than remainder) of the partition Ry 1
of Z, is equal to |p/L], and the number of different partitions Ry 1 of Zj is
at most p. This and (10) imply the inequality (9). O

Lemma 9 Let A C Z, have size ap, and let €1, €3, €3 be positive real numbers
and L >0, k, 1 be nonnegative integers satisfying k + 1 > 2. Suppose that

P> ( S(k T l)L)42(k“)tx2[k“*‘)e?z(k“)agz[k“’”ag] ' (11)

Then there exists a set A’ C Z, with the following properties:
(1) A’ is L-granular;

(i) A\ A’ < e1p;

(iii) the set KA — 1A contains all x € Z, for which
(Xar 5 -k Xar X A% x X ar)(X) > (ep)<HH!

_ k 1
tions.

, with at most e3p excep-

Proof. Let h € {0,...,p — 1}, and Ry, be partition of Z,.

(i) For given set A C Zy, we define A’ C Z, as the union of intervals H‘ of
the partition Ry 1, such that [A N ]{‘I > ¢1L/2. From the definition it follows
that A’ is L-granular. It is easy to see that (—A)’ = —(A’).

(ii) Let x € A\A’. Then either x € Jyorx € ANJY, (i=0,...,[p/L]—1),
and [A N H‘I < g1L/2. In the first case we have [J4| < L, and inequality (11)
implies L < ¢1p/2. Thus,

L
IA\A’IS%-%JJS&W-

(iii) Let xa(x) be the Fourier transform of the characteristic function xa

of A, so that
—~ 2miyx 2miyx
XAK) =) xaly)e™r =) v
Y€Zp yeA
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for all x € Zy. Take & = 4~ F0hlektl1 g l/20—(ct043/2 where €y, ¢, and €3
are from mequahty (11). Set D ={x # 0 : [xa(x)| > &p}. We define the function

f(x) as follows:
-1

1 2miiax
f(x):T__] Z e,

j=— (1)

In the future we will show that there exists q € Zp\{0} such that for all x € Z,
it holds

AT — 7 (x)] < 5p. (12)

The inequality (12) obviously holds for the case x = 0, since f(0) =1, as well

as for the case [xa(x)| < &p, since f(x) € [—1,1]. Thus, it remains to show

the existence of q such that the inequality (12) holds for all x € D. First we

estimate the value of 1—f(x). Denote by (x) the distance from x to the nearest
integer. We use the fact that 1 — cos(2mx) < 27t2(x)?. Then

L-1
2mjqx jqx
— < <
1= =5 1_]< >_2L—1Z< >—

) j=1

472 X 2L71, 2212 /ax \ 2
G
j=1

Recall that for |x| <1

T—x™=(1—x)(T4+x+x* 4+ +x™) <m(1 —x). (14)
From (13) and (14) it follows
AT — £ 0] < (k+ DI ()T = £(x)] < 8(k + LA (qx/p) Ixa (x)-

Note that if the inequality

(%)< e () )

holds for some q € Z, \ {0} and for all x € D then the inequality (12) also
holds. Now we will prove that such q exists. By definition, we have

(qx/p) = min{(qx (mod p))/p, (p —qx (mod p))/p}.
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Set [D| = d, D ={r1,...,Tq}. We denote a; = (1/1/8(k + UL)(5p/Ixa(r)]) /%
Then the inequality (15) can be rewritten as

min{qr; (mod p),p —qri (mod p)} <pai, where i=1,...,d. (16)

Denote the set {(x1,...,Xa) : X1,...,Xa € Zp} by Zg. We split Zg on disjoint

subsets
d
Z‘p = U Qi1 ,...,id)

(h v--»id)

where
Qihn-»id ={(x1y...,%q) :ijpaj <X < (ij + ])‘pa]',j =1,...,d}.

Let pq be number of different sets of Qy, _; . Using the fact that 0 < i <
1/a; —1,j=1,...,d, we have

Let us consider the following p — 1 elements of Zg:
(gqr1 (mod p)y...,qrq (mod p)), where 11,...,71q€D, q=1,...,p—1.

We show that if .

p> (17)
i=

then there exists g such that for all 1y € D, 1 = 1,...,d, the inequality (16)
holds. We consider two cases:
(A) If pg = p — 1, then we take q = qo, where qo € Zy \ {0} such that
(qor1 (mod p),...,qora (mod p)) € Qy o
(B) If pg < p—1T, then by pigeonhole principle, there are q1, q2 € Zp \ {0} such
that the vectors (qim (mod p),...,qirq (mod p)) and (g7 (mod p)y..., q2ra
(mod p)) belong to the same set of Q;, ;. Obviously, when q = q; — q; the
inequality (16) holds.

We now show that inequality (17) is a consequence of (11). Indeed, by the
Parseval’s identity, we have

1
)
&

p Y AP+ Y KA | = ) kaF =ap.  (18)

xeD X€Zp\D x€Zp
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From (18) it follows

Y AP < ap’. (19)
xeD

From (19) and the arithmetic and geometric mean inequality, we get

1/d 2
<1‘[ |>z;(x)|2> <Y KbP <

xeD xeD
l.e. a0
2
— foé
[T A< (g) : (20)
xeD

From (20) we get

A 1/2
(WL)‘(H X’ES”) < (VBk+ DL s 20V (2n)

xeD

It is easy to see that the right-hand side of (21) is an increasing function of d
in the range d < 64(k + 1)2L4oc/526.
On the other hand, from (19) we have d&%*p? < ap?. Hence, d < «/8%. Conse-

quently
2
(V8k + L4524 M < (VBk+ L) .

Recall that § = 4~ (U gktlehttl 5;/ 2o (k+U+3/2 From this it follows that there
exists q such that the inequality (12) holds. Moreover, without loss of gener-
ality we can assume q = 1 (this can be achieved by selecting an appropriate
dilation of the set A).

Define two functions x1(x) and x2(x) as follows:

xi(x) = fﬂ(x/\ fx7) (),

1

x2(x) = m(X—A *X7)(x),

where J ={—(L—1),...,L—1}. From (2) it follows that

1

= mlAm(jer)l, (22)

x1(x)
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1
x2(x) = ﬁH_A)

N (T +x)l,

(23)

and from (3) we have x3j(x) = Xa(x)f(x) and x2(x) = X_a(x)f(x). Hence, by

Parseval’s identity and from (3) we get

2
D fxar e rxaxx oAtk x A)(X) = (xaxxx X2k kX)) ()| =
XEZp K l k !
2
-1 — _—
=p 1Y (XA R AR A kX A) () (X ke kXK ek x) (X)
XE€Zp k l k l
o k(o1 kot |
—p Y [GH oA ) — X0 )| =
XEZp
2
=p7 Y RO RCARIM T = )| <
x€Zp
§p1<sup A () A ) ‘1 L (x D > IXalx (24)
XEZp XEZyp
We have
A (x Z xaly zm% _ Zezm% Sz’ebf x| (25)
YeEZyp yeA yeA
K AXI=]) x-aly je? ™| = > e | < > ’ezmyvl =ap. (26)
Ye€Zyp ye—A ye—-A
From (12), (18), (24), (25) and (26) it follows
2
D fxar e rxaxx akexx a)(X) = (ke xx xxax e xxa)(X)| <
XE€Zp k l k 1

X€Zp

2
‘1 _ R )D OCZ(k+l)73p2(k+l)f3 <
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< “2(k+l)*3 62p2(k+1)*1 ) (27)

Suppose that x € A’ (x € —A’). Then there exists an interval Z of length L
such that Z C {x — (L —1),...,x+ (L—1)} and x € Z. From definition of A’
(—A’) it follows that [ZNA| > ¢1L/2 (IZN(—A)| > ¢1L/2). From the definition
of x1(x) (x2(x)) it follows that x1(x) > €1/4 (x2(x) > €1/4). Observe, that
x1(x) > e1xar(x)/4 and x2(x) > e1xX-as(x)/4 hold for all x € Z;, . From this
and (2) it follows that

(X7 % - kX1 RX2 % xX2)(x) >

k 1
> e (A % -k XA XA K kXA ) (x) /4R (28)
k 1
for all x € Zp. In the case
(XA7 % - % Xar ¥ Xoar * - % X_ar)(X) > (e2p)TH, (29)
k 1
by (28) we have
(X1 %% X1 %X2 % - % X2) (x) > &% (egp) < Akt (30)
k 1

Now we show that the number of elements x € Z, such that satisfying (29)
and (XA * - - *x XA *X_A *---*X_A)(x) =0, does not exceed e3p. Denote the

k 1l
set of such elements by F. Observe, that for every x € F

(XA % - % XA ¥ XA %X A)(X) = (X1 - % x7 % X2 % - % X2) ()] >

k 1 k 1
2(k+1) o 2(k+1=1) 1, 2(k+1-1)
€1 (%) P
= 42(k+1) ’ (31)
By (27) and (31)
Ocz(k+l)f362p2(k+1)f1 >

> ) XAk ExaRXAx kX A)X) = (ke kxR Rk xa)(X)| =
X€Zyp k 1 k l
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2

=) J(xasrxarx-axxx A (X)—(xa ke ex e ke kX)) (X)|
xeF k 1 k 13

+ Y A rxaxxeax X A) ()= (X x kxR xe ek Xa) (%)
XE(Zp\F) ¥ Y X i

€12(k+1) 822(k+1—1 )pZ(k+l—1)

+

> [F| 42(k+1)

+ Y Ak rxaxxoax X A) ()= (X xR xa ek Xa) (%)
x€(Zp\F) k 1 k 1

This implies
42(k+1) o 2(k+1) 352

20 g, 2(kH-T) P < &3p.

F| <
€1

3 The proof of Theorem 1

3.1 The upper bound

Let k,1 be nonnegative integers with k+1 > 2. Suppose that s satisfies es(k +
L+ 1) < 2°%. We divide a partition of SSy;(Z;) into two parts:

SSi1(Zp) = SSi15(Zp) USSK5(Zp), (32)
where
SS{1(Zp) ={B € SS\1(Zp) : B=KA —1A and |A| <p/(k+1+1)s},

SS{14(Zp) = (B € SSk1(Zp) : B = kA —1A and |A| > p/(k+1+1)s}.

It is obvious that
1SS11(Zp)] < 1SSL1(Zp)| +ISS o (Zp)l- (33)
Since every set A C Z,, generates one set of the form kA — LA we obtain

1SS 16(Zp)] < [Tiss(Zp)l. (34)
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By (7) and (34) we have
|SS} 14(Zp)] < 2v/0HHHD), (35)

Now we prove an upper bound for ISS,Z 1,s(Zp)|. Suppose that the cardinality
of A C Z, is larger than p/(k + 1+ 1)s. Let p be a prime number such that
for some nonnegative integers k,1,L > 0 and positive real numbers €7, €, and
¢3 the condition (11) is fulfilled. By Lemma 9 there exists a subset A’ with
properties (i) — (iii). We estimate the number of (k,1)-sumsets kA — 1A by
counting pairs (A’, kA —1A).

Now let A’ € G(Zp) be given. For any subset C C Z, we denote by C the
complement of the subset C in Z,.

If [A/| > p/(k+ 1+ 1), then from (iii) of Lemma 9 we obtain that kA — 1A
is a subset of the union of the set S(Ezp)kﬂq’kﬂ(XA/, ey XAy XAy ey X—AY)

k 1
and a set of cardinality not exceeding e3p. By Lemma 6 we have

|S(Ezp)k+1*"k+1(XA/v sy XA X—Aly e aX—A’)| >
k 3

> min(p, (k+ VIA/[ = (k+1) +2) — 2((e2p)*" 'p) /2.
If |A'] > p/(k+ 1+ 1), we obtain

|S(52p)k+l’1,k+1(XA/’ sy XA X—ATy e )X—A’)| =
k l

=P ‘S(Ezp]k+l*‘,k+1(XAU ey XAHX—Aly e - aX—A’)| <
k 1
<p/(k4 1+ 1) 4 26, FN25040/2 () 1 2)),
It is obvious that for any subset B C Z, the set kB —1B uniquely determines

the set kB — IB. From above it follows that the number of choices kA — LA for
given A’ of cardinality exceeding p/(k + 1+ 1), is at most

2P/ (kL D)+ (ke 1=2) (2 (1 2p (L2 2 e (36)

If Al < p/(k+1+1), then by (i) of Lemma 9 we have [A\ A’| < g;p . This
implies that |A| < |A’|+¢e1p. Since every set A C Z, generates exactly one set
of form kA — LA, we obtain that the number of choices kA — LA for given A’
of cardinality not exceeding p/(k + 1+ 1), is at most

2p/(k+l+1)+€1p' (37)
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From (36), (37), Lemma 8 by applying Lemma 9 with parameters ¢; = €3 = ¢,
L=1+|1/e] and ¢; = e¥/(F=Np=k=U/(k+1=1) " we obtain

|SS{</,1’S (Zp )| < 2(p/(k+l+1 ))+(k+1-2)4o0(p) . (38)

From (33), (35) and (38) it follows that

|Ssk,l(zp)| < 2p/(k+1+1) _|_2(p/(k+1+1))+(k+1—2)+0(p) _ 2(p/(k+1+1))+(k+l—2)+0(p).

3.2 The lower bound
Set SSk)L(Zp,]P)) ={A:PC A, A€ SSk)l(Zp)} and L = Lp/(Z(k—i—l) —])J —1.

Lemma 10 Let k,l be nonnegative integers with k+1> 2, and let P C Z, be
arbitrary arithmetic progression of length (k+1)(L—1) 4+ 1. Then there exists
a positive constant Cy such that

1881 (Zy, P)| > Ck,lzp/(z(kﬂ)f]).

Proof. Without loss of generality we assume P = {k — 1L,..., kL — 1}. All of
our sets will be of the form

A=A(B)=k(BU{—(2L+1),2L + 1}) — (BU{—(2L +1),2L + 1}),

where B C{—I,—L+1,...,L} and —B = B. It is easy to see that different sets
B C{-L,—L+1,...,L} generate different sets A(B).
Set Ny = [log (8(k +1)?)/log (4/3)] and

k+1-1
X=1{0,1,...,Ni3U | ([A+ DL/ (k+ 1] = Nigpyooo, [+ DL/ (k+ D).

i=1
We define the set B C {—L,—L+1,...,L} as follows:
B=B(C)=—CUCUXU-=X,

where elements of the set C are picked from the set {1,...,L}\ X randomly,
independently, with probability 1/2. Set

k+1-1
Y={0bu{k+1...,(k+ UN}U | {@+ DL = (k+UNgy,..., (i + DL

i=1
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It is obvious that —=YUY C kB —1B. If x ¢ kB — 1B, then in the representation
x in the form x = x4+ -+ + X — Xpp1 — - - — X1, there exists at least one x;
(ie{l1,...,k+1}) such that x; ¢ B. Set

k+1

K
Q) ={(x1y -y Xas)) 1X =D Xi— Y XjyX1y..oy X €{-L,..., L},

j=k-+1

and suppose that |Q(x)| = q.
We say that the vectors (x1,...,Xks1) and (y1,...,Yks1) do not intersect, if

{Xh---)xk—&-l}m{y])-'-»yk-&-l}:@
Set Ro = {(k+ Ny +1,...,L} We show that for every x € —Ro U Ry the

following inequality

Ix|

Pr(x ¢ kB—1B) < <i> S (39)

holds. We have
Pr(x € kB—1B) =

=Pr((x] +-4+x —xp — - —xi £ kB—1B)&...
L& =X = = KB —1B)) <
<Pr((q'+-+x! —xb = —x £ kB 1B)&...
& g =X ¢ KB —1B)) =
:Pr(( BV Vxl ¢B)&... &xM¢BV - \/Xk+1¢B)):

:Pr((ngB)v \/(kagéB)) .-Pr<( ngB)V .. \/(kagéB)):

— Pr ((XP €B)&... &1 € B)) x

xPr (" eB)&. . &[T €B)) =
= (1 —Pr (( €B)&... & € B)>>

x(]—Pr(( "eB)&.. &(kaeB))), (40)

where the vectors (Xi], . >X}<+L) € 9(x),i=1,...,q, and the vectors (X}j, ceey
Xy +l) j=1,...,n < q, are pairwise disjoint.
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Note that the vectors (x—i(k+1—1),i,...,1,—1,...,—1) are pairwise disjoint
k—1 1
for every x € —Ry, where —[[x|/(k+1)] < i < —1, and x € Ry, where
1 <i<|x/(k+1)|. From this and (40) we obtain the inequality (39).
Set L ={L+1,...,G+1)L—(k+UN—1}j=1,...,k+1—1. Similarly

to the inequality (39) we have

(+DL—|x|

3 L k+1 J
Pr(x ¢ kB—1B) < <4) , (41)

where x € —L;UL;,j=1,...,k+1—1.
From (39) and (41) it is easy to see that
3\ L)
Pr(PZkB—1B) < (k+1) > <4> . (42)
x> (k+1 Ny 1+1

Note that if Ny > log (8(k + 1)?)/ log (4/3), the right-hand side of (42) does
not exceed 1/2. This leads that there exists at least 28~ +UNi=T gubgets
B C{-L,—L+1,...,L}such that P C kB — 1B. O
Let k,l be nonnegative integers with k +1 > 2, and let P C Z,, be arbitrary
arithmetic progression of length (k 4+ 1)(L — 1) + 1. By Lemma 10 we have

1SSk1(Zp)| > 1SSk 1(Zp, P)| > Cy 2P/ 12KFU=1),
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