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Abstract. The present paper deals with a study of warped product
submanifolds of (LCS);,,-manifolds and warped product semi-slant sub-
manifolds of (LCS),-manifolds. It is shown that there exists no proper
warped product submanifolds of (LCS),,-manifolds. However we obtain
some results for the existence or non-existence of warped product semi-
slant submanifolds of (LCS),,-manifolds.

1 Introduction

The notion of warped product manifolds were introduced by Bishop and
O’Neill [3] and later it was studied by many mathematicians and physicists.
These manifolds are generalization of Riemannian product manifolds. The ex-
istence or non-existence of warped product manifolds plays some important

role in differential geometry as well as physics.

The notion of slant submanifolds in a complex manifold was introduced and
studied by Chen [7], which is a natural generalization of both invariant and
anti-invariant submanifolds. Chen [7] also found examples of slant submani-
folds of complex Euclidean space C? and C*. Then Lotta [9] has defined and
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studied of slant immersions of a Riemannian manifold into an almost con-
tact metric manifold and proved some properties of such immersions. Also
Cabrerizo et. al ([5], [6]) studied slant immersions in Sasakian and K-contact
manifolds respectively. Again Gupta et. al [8] studied slant submanifolds of a
Kenmotsu manifolds and obtained a necessary and sufficient condition for a 3-
dimensional submanifold of a 5-dimensional Kenmotsu manifold to be minimal
proper slant submanifold.

In 1994 Papaghuic [13] introduced the notion of semi-slant submanifolds of
almost Hermitian manifolds. Then Cabrerizo et. al [4] defined and investigated
semi-slant submanifolds of Sasakian manifolds. In this connection, it may be
mentioned that Sahin [14] studied warped product semi-slant submanifolds of
Kaehler manifolds. Also in [1], Atceken studied warped product semi-slant sub-
manifolds in locally Riemannian product manifolds. Again Atceken [2] studied
warped product semi-slant submanifolds in Kenmotsu manifolds and he has
shown the non-existence cases of the warped product semi-slant submanifolds
in a Kenmotsu manifold [2].

Recently Shaikh [15] introduced the notion of Lorentzian concircular struc-
ture manifolds (briefly, (LCS)n-manifolds), with an example, which generalizes
the notion of LP-Sasakian manifolds introduced by Matsumoto [10] and also
by Mihai and Rosca [11]. Then Shaikh and Baishya ([17], [18]) investigated the
applications of (LCS)y-manifolds to the general theory of relativity and cos-
mology. The (LCS)n-manifolds is also studied by Sreenivasa et. al [21], Shaikh
[16], Shaikh and Binh [19], Shaikh and Hui [20] and others.

The object of the paper is to study warped product semi-slant submanifolds
of (LCS)y-manifolds. The paper is organized as follows. Section 2 is concerned
with some preliminaries. Section 3 deals with a study of warped product sub-
manifolds of (LCS),,-manifolds. It is shown that there do not exist proper
warped product submanifolds N = N7 x¢ N> of a (LCS),,-manifold M, where
N7 and N, are submanifolds of M. In section 4, we investigate warped prod-
uct semi-slant submanifolds of (LCS),-manifolds and obtain many interesting
results.

2 Preliminaries

An n-dimensional Lorentzian manifold M is a smooth connected paracompact
Hausdorff manifold with a Lorentzian metric g, that is, M admits a smooth
symmetric tensor field g of type (0,2) such that for each point p € M, the
tensor gp : ToM x ToM — R is a non-degenerate inner product of signature
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(=, +,-+,+), where T,M denotes the tangent vector space of M at p and R
is the real number space. A non-zero vector v € T,M is said to be timelike
(resp., non-spacelike, null, spacelike) if it satisfies gp(v,v) < 0 (resp, < 0, =
0, > 0) [12].

Definition 1 [15] In a Lorentzian manifold (M, g) a vector field P defined by
9(X,P) = A(X),
for any X € T(TM), is said to be a concircular vector field if
(VXA)Y) = ofg(X,Y) + w(X)A(Y)}

where o is a non-zero scalar and w is a closed 1-form and V denotes the
operator of covariant differentiation with respect to the Lorentzian metric g.

Let M be an n-dimensional Lorentzian manifold admitting a unit timelike
concircular vector field &, called the characteristic vector field of the manifold.
Then we have

9(&,&) =—1. (1)

Since & is a unit concircular vector field, it follows that there exists a non-zero
1-form n such that for

9(X, &) =n(X), (2)
the equation of the following form holds
(Vxn)(Y) = og(X,Y) +n(X)n(Y)} (e #0) (3)

for all vector fields X, Y, where V denotes the operator of covariant differ-
entiation with respect to the Lorentzian metric g and « is a non-zero scalar
function satisfies

Vxa = (Xa) = da(X) = pn(X), (4)
p being a certain scalar function given by p = —(&x). Let us take
1.
d)X - _VXE:) (5)
x

then from (3) and (5) we have
$X =X +n(X)¢, (6)

from which it follows that ¢ is a symmetric (1,1) tensor and called the structure
tensor of the manifold. Thus the Lorentzian manifold M together with the



Contact warped product semi-slant submanifolds of (LCS)n-manifolds 215

unit timelike concircular vector field &, its associated 1-form 1 and an (1,1)
tensor field ¢ is said to be a Lorentzian concircular structure manifold (briefly,
(LCS)n-manifold) [15]. Especially, if we take o« = 1, then we can obtain the
LP-Sasakian structure of Matsumoto [10]. In a (LCS),-manifold (n > 2), the
following relations hold [15]:

n(&)=—1, ¢£=0, n(eX)=0, g(dX,dY)=g(X,Y)+n(Xn(Y), (7)

$*X = X +n(X)E, (8)

S(X,8) = (n—1)(a — pm(X), 9)

R(X, Y)E = (& — p) (V)X —n(X)V], (10)

R(E,Y)Z = (& = p)lg(V, Z)E —n(Z)V], (11)

(Vxd)(Y) = ofg(X, V)& + 2n(X)n(Y)E +n(Y)X}, (12)

(Xp) = dp(X) = pn(X), (13)

R(X,Y)Z = dR(X,Y)Z + (o — p){g(V,Zn(X) — g(X, Zn(Y)}E,  (14)

for all X, Y, Z € I'(TM) and p = —(&p) is a scalar function, where R is the
curvature tensor and S is the Ricci tensor of the manifold.

Let N be a submanifold of a (LCS),-manifold M with induced metric g.
Also let V and V- are the induced connections on the tangent bundle TN and
the normal bundle T*N of N respectively. Then the Gauss and Weingarten
formulae are given by

VxY = VxY + h(X,Y) (15)

and
VxV = —AyX + VxV (16)

for all X, Y € T(TN) and V € I'(T+N), where h and Ay, are second fundamental
form and the shape operator (corresponding to the normal vector field V)
respectively for the immersion of N into M. The second fundamental form h
and the shape operator Ay are related by [22]

g(h(X,Y), V) = g(AvX,Y) (17)

for any X,Y € T(TN) and V € T(T+N).
For any X € I'(TN), we may write

dX = EX + FX, (18)
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where EX is the tangential component and FX is the normal component of ¢pX.
Also for any V € T'(TtN), we have

&V =BV +CV, (19)

where BV and CV are the tangential and normal components of ¢V respec-
tively. From (18) and (19) we can derive the tensor fields E,F,B and C are
also symmetric. The covariant derivatives of the tensor fields of E and F are
defined as

(VXE)(Y) = VXEY — E(VXY), (20)

(VxF)(Y) = VxFY — F(VxY) (21)

for all X, Y € T'(TN). The canonical structures E and F on a submanifold N
are said to be parallel if VE = 0 and VF = 0 respectively.

Throughout the paper, we consider & to be tangent to N. The submanifold
N is said to be invariant if F is identically zero, i.e., $X € T(TN) for any
X € T(TN). Also N is said to anti-invariant if E is identically zero, that is
¢X € T(TEN) for any X € I'(TN).

Furthermore for submanifolds tangent to the structure vector field &, there
is another class of submanifolds which is called slant submanifold. For each
non-zero vector X tangent to N at x, the angle 8(x), 0 < 8(x) < § between
X and EX is called the slant angle or wirtinger angle. If the slant angle is
constant, then the submanifold is also called the slant submanifold. Invariant
and anti-invariant submanifolds are particular slant submanifolds with slant
angle © = 0 and 6 = 7 respectively. A slant submanifold is said to be proper
slant if the slant angle 0 lies strictly between 0 and 7, i.e., 0 <0 < J [5].

Lemma 1 [5] Let N be a submanifold of a (LCS)n-manifold M such that & is
tangent to N. Then N is slant submanifold if and only if there exists a constant
A € [0,1] such that

E2=ANI+n®E). (22)

Furthermore, if 0 is the slant angle of N, then A = cos?6.
Also from (22) we have

9(EX,EY) = cos?0[g(X,Y) +n(X)n(Y)], (23)

g(FX, FY) =sin?0[g(X,Y) +n(X)n(Y)] (24)

for any X,Y tangent to N.
The study of semi-slant submanifolds of almost Hermitian manifolds was
introduced by Papaghuic [13], which was extended to almost contact manifold
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by Cabrerizo et. al [4]. The submanifold N is called semi-slant submanifold of
M if there exist an orthogonal direct decomposition of TN as

TN=D;®D,®{&},

where Dj is an invariant distribution, i.e., (D7) = Dy and D3 is slant with
slant angle 8 # 0. The orthogonal complement of FD, in the normal bundle
TLN is an invariant subbundle of T*N and is denoted by . Thus we have

TN =FD, @ p.

Similarly N is called anti-slant subbundle of M if Dy is an anti-invariant
distribution of N, i.e., $D7 C TN and D5 is slant with slant angle 8 # 0.

3 Warped product submanifolds of (LCS),-manifolds

The notion of warped product manifolds were introduced by Bishop and
O’Neill [3].

Definition 2 Let (N1,g1) and (N3, g2) be two Riemannian manifolds and f
be a positive definite smooth function on Ny. The warped product of N1 and
N> is the Riemannian manifold N7 x¢ Ny = (N7 x Na, g), where

g = g7+ f2go. (25)

A warped product manifold Ny x¢ Ny is said to be trivial if the warping
function f is constant.
More explicitely, if the vector fields X and Y are tangent to Nq x¢ N>y at (x,y)
then

g(X,Y) = gq(my * X, 71 % Y) + f2(x) g2 (12 * X, 12 % Y),

where 71; (1 = 1,2) are the canonical projections of N7 x N3 onto N7 and N,
respectively and * stands for the derivative map.

Let N = N; x¢ N> be warped product manifold, which means that N; and
N, are totally geodesic and totally umbilical submanifolds of N respectively.
For warped product manifolds, we have [3]

Proposition 1 Let N = Ny x¢ Ny be a warped product manifold. Then
(I)  VxY € TNy is the lift of VxY on N

(II) VX =VxU = (XInf)U
(III) VuV=V,V—glUV)VInf
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for any X, Y € T(TN7) and U, V € T(TNy), where V and V' denote the
Levi-Clivita connections on N1 and N2 respectively.

We now prove the following;:

Theorem 1 There exist no proper warped product submanifolds in the form
N = Nt x¢ Ny of a (LCS)-manifold M such that & is tangent to N1, where
Nt and N | are invariant and anti-invariant submanifolds of M, respectively.

Proof. We suppose that N = Nt x¢ N is a warped product submanifold of
(LCS)n-manifold M. For any X € T'(TNy) and U,V € T'(TN_), from Proposi-
tion 1 we have

VuX = VxU = (XIn f)U. (26)
On the other hand, by using (12) and (26) we have

(XInf)g(U, V)= g(VuX V) =g(VuX,V) = g(¢VuX, dpV)

(V —(Vud)X, dV)=g(h(U, $pX), dpV)—an(X)g(U, $pV)
(

(V

I
@

h(U dDX) dV) = g(VexU, dV) = g(dpVexU, V)

= g(VgxdU — (Voxd)U, V) = g(VxdU, V)

= —g(AgudX, V) = —g(h(dX, V), dU) = —g(VvoX, dpU)
= —g(?VX,U) =—g(VvX,U) = —(XInf)g(U, V).

I
@

It follows that X(Inf) = 0. So f is constant on Nt. Hence we get our desired
assertion.

4 Warped product semi-slant submanifolds of
(LCS),-manifolds

Let us suppose that N = Ny x¢ N, be a warped product semi-slant subman-
ifold of a (LCS)y-manifold M. Such submanifolds are always tangent to the
structure vector field &. If the manifolds Ng and Nt (respectively N ) are slant
and invariant (respectively anti-invariant) submanifolds of a (LCS)y-manifold
M, then their warped product semi-slant submanifolds may be given by one
of the following forms:

(i) NT X £ Ne (ii) NJ_ X f Ne (iii) Ne X f NT (iV) Ne X NJ_.

However, the existence or non-existence of a structure on a manifold is very
important. Because the every structure of a manifold may not be admit. In
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this paper, we have researched cases that there exist no warped product semi-
slant submanifolds in a (LCS),-manifold. Therefore we now study each of the
above four cases and begin the following Theorem:

Theorem 2 There exist no proper warped product semi-slant submanifold in
the form N = N1 x¢Ng of a (LCS)n-manifold M such that &, is tangent to N,
where N1 and Ng are invariant and slant submanifolds of M, respectively.

Proof. Let us assume that N = Nt x¢ Ng is a proper warped product semi-
slant submanifolds of a (LCS),-manifold M such that & is tangent to Nt. Then
for any X,& € I'(TNt) and U € I'(TNg), from (5) and (15) we have

Vué = Vg +h(lU, &) = adpU. (27)
From the tangent and normal components of (27), respectively, we obtain
E(lnf)u=oEU and h(U, &) = «FU. (28)
On the other hand, by using (7) and (12), we have

(Vupl& = —dpVué
ol = ¢(&(Inf)U) + dh(U, &),

that is,
B(W,&) + E(Inf)EU = alU and &(Inf)FU + Ch(U, ) = 0. (29)

Since I'(1) and I'(F(TNg)) are orthogonal subspaces, we can derive &(Inf)FU =
0. So we conclude &(Inf) = 0 or FU = 0. Here we have to show that FU for
the proof. For this we assume that FU = 0.
Making use of (12), (15), (16) and (18), we obtain
(Vxd)U = VxdU—dVxU

h(X,EU) — ApuX + VxFU = X(Inf)FU + Bh(X,U) 4+ Ch(X,U). (30)
Taking into account that the tangent components of (30) and making the
necessary abbreviations, we get

ArpuX = —Bh(X,U). (31)
With similar thoughts, we have
(Vudp)X = VudX—oVuX
an(X)U = EX(Inf)U+ h(U, EX) — X(Inf)EU — X(In f)FU
— Bh(X,U) — Ch(X,U). (32)
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From the normal components of (32), we arrive at
X(Inf)FU = h(U, EX) — Ch(U, X). (33)
Thus by using (31) and (33), we conclude
X(Inf)g(FU,FU) = g(h(U,EX),FU) = g(AryEX,U) = —g(Bh(EX,U),U)

— _X(Inf)g(FU, FU).

This tell us that X(Inf) = 0, that is, f is a constant function Nt because FU
is a non-null vector field and Ng is a proper slant submanifold.

Theorem 3 There exist no proper warped product semi-slant submanifolds in
the form N = N} x¢ Ng of a (LCS)n-manifold M such that &, is tangent to
N, where N | and Ng are anti-invariant and proper slant submanifolds of M
respectively.

Proof. Let N = N | x¢Ng be a proper warped product semi-slant submanifold
of a (LCS)n-manifold M such that & is tangent to N. If & is tangent to I'(TNg),
then for any X € I'(TNg) and U € T(TN ), from (5) and (15), we have

Vug = Vg +h(l, &) = adl, (34)

which is equivalent to U(In f)& = 0 because & # 0. So f is a constant function
on Nl.
On the other hand, if & € I'(TN ), from (5) and (15), we reach

Vx& = Vx&+h(X§&)
apX = E(Inf)X+h(X,E),

that is,
aEX =¢&(Inf)X and oFX =h(X§). (35)
Furthermore, since ¢p& = 0, by direct calculations, we obtain

(Vxd)E, = —d(VxE)
aX = &(Inf)EX+ &(Inf)FX + Bh(X, &) + Ch(X,&).

It follows that

oX = E(Inf)EX + Bh(X,&) and &(Inf)FX = —Ch(X, ). (36)
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By virtue of (36), we conclude
E(Inf)g(FX, FX) = sin?0(In f)g(X, X) = —g(Ch(X, &), FX) = 0,

which follows &(Inf) = 0 or sin?0g(X,X) = 0. Here if &£(Inf) # 0 and
sin?0g(X,X) = 0, the proof is obvious. Otherwise, making use of (36), we
conclude that

xg(X, X) = g(Bh(X, &), X) = 0.

Consequently, we can easily to see that o« = 0. This is a contradiction because
the ambient space M is a (LCS)n-manifold. Thus the proof is complete.

Theorem 4 There exist no proper warped product semi-slant submanifolds in
the form Ng x¢ Nt in (LCS)n-manifold M such that & tangent to N, where
Ng and Nt are proper slant and invariant submanifolds of M.

Proof. Let N = Ng x¢ N7 be warped product semi-slant submanifolds in a
(LCS)n-manifold M such that & is tangent to Nt. Then for any &, X € T(TN)
and U € T'(TNg), taking account of relations (12), (15), (16), (18) and (19)
and Proposition 1, we have

(Vup)X = VudX—¢VuX
an(X)U = h(U,EX) — Bh(U,X) — Ch(U,X),

which implies that
an(X)U = —Bh(U,X) and h(U,EX) = Ch(U,X). (37)
In the same way, we have

(Vxd)U = VxpU—pVxU
—AruX + VxFU +h(X,EU) = Bh(X,U) + Ch(X,U),

from here
Bh(X,U) = —-ApuX+ EU(In )X — U(Inf)EX (38)
and

VxFU = Ch(X,U) — h(X, EU). (39)
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Taking inner product both of sides of (37) with V € I'(TNg) and also using
(38), we arrive at

an(X)g(U,V) = —g(Bh(U,X),V)=—g(dh(U,X),V) =—g(h(U,X), dpV)
—g(h(U,X),FV) = —g(ApyX,U) = g(Bh(X, V), U)
= —an(X)g(U, V).

Here for X = &, we obtain ag(U, V) = 0. Because the ambient space M is a
(LCS)-manifold and Ng is a proper slant submanifold, this also tells us the
accuracy of the statement of the theorem.

Theorem 5 There exist no proper warped product semi-slant submanifolds
in the form N = Ng x¢ N in a (LCS)-manifold M such that & tangent to
Ng, where Ng and N are proper slant and anti-invariant submanifolds of M,
respectively.

Proof. Let us assume that N = Ng x¢ N be a proper warped product semi-
slant submanifold in the (LCS),-manifold M such that & is tangent to Ng.
Then for X € I'(TNg) and U € T(TN | ), we have

(Vxd)U = VxdU—pVxU
—ArX + VxFU = ¢$VxU + ph(X,U),

which follows that
AruX =—-Bh(X,U) and (VxF)U = Ch(X,U). (40)
In the same way, we have
(Vud)X = VudX — dVuX,
which also follow that
an(X)U = EX(In f)U — ApxU — Bh(X, U), (41)
ViFX = X(In f)FU + Ch(X, U) — h(U, EX). (42)

From (41), we can derive
g(h(U, X), FX) = g(h(U, X),FU) = 0. (43)

Taking X = & in (42), we have &(In f)FU = —Ch(X, &), that is, &(In f)FU = 0.
Let X =& be in (41), then we get

oll = Bh(U, &). (44)
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Taking the inner product of the both sides of (44) by U € I'(TN ), and using
(43) we conclude

xg(U,U) = g(Bh(U,&),U) = g(h(U, &), FU) =0, (45)

which implies that o« = 0. This is impossible because the ambient space is a
(LCS)n-manifold. Hence the proof is complete.
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