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Abstract. The present paper deals with a study of warped product
submanifolds of (LCS)n-manifolds and warped product semi-slant sub-
manifolds of (LCS)n-manifolds. It is shown that there exists no proper
warped product submanifolds of (LCS)n-manifolds. However we obtain
some results for the existence or non-existence of warped product semi-
slant submanifolds of (LCS)n-manifolds.

1 Introduction

The notion of warped product manifolds were introduced by Bishop and
O’Neill [3] and later it was studied by many mathematicians and physicists.
These manifolds are generalization of Riemannian product manifolds. The ex-
istence or non-existence of warped product manifolds plays some important
role in differential geometry as well as physics.

The notion of slant submanifolds in a complex manifold was introduced and
studied by Chen [7], which is a natural generalization of both invariant and
anti-invariant submanifolds. Chen [7] also found examples of slant submani-
folds of complex Euclidean space C2 and C4. Then Lotta [9] has defined and
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studied of slant immersions of a Riemannian manifold into an almost con-
tact metric manifold and proved some properties of such immersions. Also
Cabrerizo et. al ([5], [6]) studied slant immersions in Sasakian and K-contact
manifolds respectively. Again Gupta et. al [8] studied slant submanifolds of a
Kenmotsu manifolds and obtained a necessary and sufficient condition for a 3-
dimensional submanifold of a 5-dimensional Kenmotsu manifold to be minimal
proper slant submanifold.

In 1994 Papaghuic [13] introduced the notion of semi-slant submanifolds of
almost Hermitian manifolds. Then Cabrerizo et. al [4] defined and investigated
semi-slant submanifolds of Sasakian manifolds. In this connection, it may be
mentioned that Sahin [14] studied warped product semi-slant submanifolds of
Kaehler manifolds. Also in [1], Atceken studied warped product semi-slant sub-
manifolds in locally Riemannian product manifolds. Again Atceken [2] studied
warped product semi-slant submanifolds in Kenmotsu manifolds and he has
shown the non-existence cases of the warped product semi-slant submanifolds
in a Kenmotsu manifold [2].

Recently Shaikh [15] introduced the notion of Lorentzian concircular struc-
ture manifolds (briefly, (LCS)n-manifolds), with an example, which generalizes
the notion of LP-Sasakian manifolds introduced by Matsumoto [10] and also
by Mihai and Rosca [11]. Then Shaikh and Baishya ([17], [18]) investigated the
applications of (LCS)n-manifolds to the general theory of relativity and cos-
mology. The (LCS)n-manifolds is also studied by Sreenivasa et. al [21], Shaikh
[16], Shaikh and Binh [19], Shaikh and Hui [20] and others.

The object of the paper is to study warped product semi-slant submanifolds
of (LCS)n-manifolds. The paper is organized as follows. Section 2 is concerned
with some preliminaries. Section 3 deals with a study of warped product sub-
manifolds of (LCS)n-manifolds. It is shown that there do not exist proper
warped product submanifolds N = N1 ×f N2 of a (LCS)n-manifold M, where
N1 and N2 are submanifolds of M. In section 4, we investigate warped prod-
uct semi-slant submanifolds of (LCS)n-manifolds and obtain many interesting
results.

2 Preliminaries

An n-dimensional Lorentzian manifold M is a smooth connected paracompact
Hausdorff manifold with a Lorentzian metric g, that is, M admits a smooth
symmetric tensor field g of type (0,2) such that for each point p ∈ M, the
tensor gp : TpM × TpM → R is a non-degenerate inner product of signature
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(−,+, · · · ,+), where TpM denotes the tangent vector space of M at p and R

is the real number space. A non-zero vector v ∈ TpM is said to be timelike
(resp., non-spacelike, null, spacelike) if it satisfies gp(v, v) < 0 (resp, ≤ 0, =
0, > 0) [12].

Definition 1 [15] In a Lorentzian manifold (M,g) a vector field P defined by

g(X, P) = A(X),

for any X ∈ Γ(TM), is said to be a concircular vector field if

(∇̄XA)(Y) = α{g(X, Y) + ω(X)A(Y)}

where α is a non-zero scalar and ω is a closed 1-form and ∇̄ denotes the

operator of covariant differentiation with respect to the Lorentzian metric g.

Let M be an n-dimensional Lorentzian manifold admitting a unit timelike
concircular vector field ξ, called the characteristic vector field of the manifold.
Then we have

g(ξ, ξ) = −1. (1)

Since ξ is a unit concircular vector field, it follows that there exists a non-zero
1-form η such that for

g(X, ξ) = η(X), (2)

the equation of the following form holds

(∇̄Xη)(Y) = α{g(X, Y) + η(X)η(Y)} (α 6= 0) (3)

for all vector fields X, Y, where ∇̄ denotes the operator of covariant differ-
entiation with respect to the Lorentzian metric g and α is a non-zero scalar
function satisfies

∇̄Xα = (Xα) = dα(X) = ρη(X), (4)

ρ being a certain scalar function given by ρ = −(ξα). Let us take

φX =
1

α
∇̄Xξ, (5)

then from (3) and (5) we have

φX = X + η(X)ξ, (6)

from which it follows that φ is a symmetric (1,1) tensor and called the structure
tensor of the manifold. Thus the Lorentzian manifold M together with the
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unit timelike concircular vector field ξ, its associated 1-form η and an (1,1)
tensor field φ is said to be a Lorentzian concircular structure manifold (briefly,
(LCS)n-manifold) [15]. Especially, if we take α = 1, then we can obtain the
LP-Sasakian structure of Matsumoto [10]. In a (LCS)n-manifold (n > 2), the
following relations hold [15]:

η(ξ) = −1, φξ = 0, η(φX) = 0, g(φX,φY) = g(X, Y) + η(X)η(Y), (7)

φ2X = X + η(X)ξ, (8)

S(X, ξ) = (n − 1)(α2 − ρ)η(X), (9)

R(X, Y)ξ = (α2 − ρ)[η(Y)X − η(X)Y], (10)

R(ξ, Y)Z = (α2 − ρ)[g(Y,Z)ξ − η(Z)Y], (11)

(∇̄Xφ)(Y) = α{g(X, Y)ξ + 2η(X)η(Y)ξ + η(Y)X}, (12)

(Xρ) = dρ(X) = βη(X), (13)

R(X, Y)Z = φR(X, Y)Z + (α2 − ρ){g(Y,Z)η(X) − g(X,Z)η(Y)}ξ, (14)

for all X, Y, Z ∈ Γ(TM) and β = −(ξρ) is a scalar function, where R is the
curvature tensor and S is the Ricci tensor of the manifold.

Let N be a submanifold of a (LCS)n-manifold M with induced metric g.
Also let ∇ and ∇⊥ are the induced connections on the tangent bundle TN and
the normal bundle T⊥N of N respectively. Then the Gauss and Weingarten
formulae are given by

∇̄XY = ∇XY + h(X, Y) (15)

and

∇̄XV = −AVX + ∇⊥

XV (16)

for all X, Y ∈ Γ(TN) and V ∈ Γ(T⊥N), where h and AV are second fundamental
form and the shape operator (corresponding to the normal vector field V)
respectively for the immersion of N into M. The second fundamental form h

and the shape operator AV are related by [22]

g(h(X, Y), V) = g(AVX, Y) (17)

for any X, Y ∈ Γ(TN) and V ∈ Γ(T⊥N).
For any X ∈ Γ(TN), we may write

φX = EX + FX, (18)
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where EX is the tangential component and FX is the normal component of φX.
Also for any V ∈ Γ(T⊥N), we have

φV = BV + CV, (19)

where BV and CV are the tangential and normal components of φV respec-
tively. From (18) and (19) we can derive the tensor fields E, F, B and C are
also symmetric. The covariant derivatives of the tensor fields of E and F are
defined as

(∇XE)(Y) = ∇XEY − E(∇XY), (20)

(∇̄XF)(Y) = ∇⊥

XFY − F(∇XY) (21)

for all X, Y ∈ Γ(TN). The canonical structures E and F on a submanifold N

are said to be parallel if ∇E = 0 and ∇̄F = 0 respectively.
Throughout the paper, we consider ξ to be tangent to N. The submanifold

N is said to be invariant if F is identically zero, i.e., φX ∈ Γ(TN) for any
X ∈ Γ(TN). Also N is said to anti-invariant if E is identically zero, that is
φX ∈ Γ(T⊥N) for any X ∈ Γ(TN).

Furthermore for submanifolds tangent to the structure vector field ξ, there
is another class of submanifolds which is called slant submanifold. For each
non-zero vector X tangent to N at x, the angle θ(x), 0 ≤ θ(x) ≤ π

2
between

φX and EX is called the slant angle or wirtinger angle. If the slant angle is
constant, then the submanifold is also called the slant submanifold. Invariant
and anti-invariant submanifolds are particular slant submanifolds with slant
angle θ = 0 and θ = π

2
respectively. A slant submanifold is said to be proper

slant if the slant angle θ lies strictly between 0 and π
2
, i.e., 0 < θ < π

2
[5].

Lemma 1 [5] Let N be a submanifold of a (LCS)n-manifold M such that ξ is

tangent to N. Then N is slant submanifold if and only if there exists a constant

λ ∈ [0, 1] such that

E2 = λ(I + η ⊗ ξ). (22)

Furthermore, if θ is the slant angle of N, then λ = cos2 θ.
Also from (22) we have

g(EX, EY) = cos2 θ[g(X, Y) + η(X)η(Y)], (23)

g(FX, FY) = sin2 θ[g(X, Y) + η(X)η(Y)] (24)

for any X, Y tangent to N.
The study of semi-slant submanifolds of almost Hermitian manifolds was

introduced by Papaghuic [13], which was extended to almost contact manifold
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by Cabrerizo et. al [4]. The submanifold N is called semi-slant submanifold of
M if there exist an orthogonal direct decomposition of TN as

TN = D1 ⊕ D2 ⊕ {ξ},

where D1 is an invariant distribution, i.e., φ(D1) = D1 and D2 is slant with
slant angle θ 6= 0. The orthogonal complement of FD2 in the normal bundle
T⊥N is an invariant subbundle of T⊥N and is denoted by µ. Thus we have

T⊥N = FD2 ⊕ µ.

Similarly N is called anti-slant subbundle of M if D1 is an anti-invariant
distribution of N, i.e., φD1 ⊂ T⊥N and D2 is slant with slant angle θ 6= 0.

3 Warped product submanifolds of (LCS)n-manifolds

The notion of warped product manifolds were introduced by Bishop and
O’Neill [3].

Definition 2 Let (N1, g1) and (N2, g2) be two Riemannian manifolds and f

be a positive definite smooth function on N1. The warped product of N1 and

N2 is the Riemannian manifold N1 ×f N2 = (N1 × N2, g), where

g = g1 + f2g2. (25)

A warped product manifold N1 ×f N2 is said to be trivial if the warping
function f is constant.
More explicitely, if the vector fields X and Y are tangent to N1×f N2 at (x, y)

then
g(X, Y) = g1(π1 ∗ X, π1 ∗ Y) + f2(x)g2(π2 ∗ X, π2 ∗ Y),

where πi (i = 1, 2) are the canonical projections of N1 × N2 onto N1 and N2

respectively and * stands for the derivative map.
Let N = N1 ×f N2 be warped product manifold, which means that N1 and

N2 are totally geodesic and totally umbilical submanifolds of N respectively.
For warped product manifolds, we have [3]

Proposition 1 Let N = N1 ×f N2 be a warped product manifold. Then

(I) ∇XY ∈ TN1 is the lift of ∇XY on N1

(II) ∇UX = ∇XU = (X ln f)U

(III) ∇UV = ∇′

UV − g(U,V)∇ ln f
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for any X, Y ∈ Γ(TN1) and U, V ∈ Γ(TN2), where ∇ and ∇′ denote the

Levi-Civita connections on N1 and N2 respectively.

We now prove the following:

Theorem 1 There exist no proper warped product submanifolds in the form

N = NT ×f N⊥ of a (LCS)n-manifold M such that ξ is tangent to NT, where

NT and N⊥ are invariant and anti-invariant submanifolds of M, respectively.

Proof. We suppose that N = NT ×f N⊥ is a warped product submanifold of
(LCS)n-manifold M. For any X ∈ Γ(TNT) and U,V ∈ Γ(TN⊥), from Proposi-
tion 1 we have

∇UX = ∇XU = (X ln f)U. (26)

On the other hand, by using (12) and (26) we have

(X ln f)g(U,V)= g(∇UX,V) = g(∇̄UX,V) = g(φ∇UX,φV)

= g(∇̄UφX−(∇̄Uφ)X,φV)=g(h(U,φX), φV)−αη(X)g(U,φV)

= g(h(U,φX), φV) = g(∇̄φXU,φV) = g(φ∇̄φXU,V)

= g(∇̄φXφU − (∇̄φXφ)U,V) = g(∇̄φXφU,V)

= −g(AφUφX,V) = −g(h(φX,V), φU) = −g(∇̄VφX,φU)

= −g(∇̄VX,U) = −g(∇VX,U) = −(X ln f)g(U,V).

It follows that X(ln f) = 0. So f is constant on NT. Hence we get our desired
assertion.

4 Warped product semi-slant submanifolds of

(LCS)n-manifolds

Let us suppose that N = N1 ×f N2 be a warped product semi-slant subman-
ifold of a (LCS)n-manifold M. Such submanifolds are always tangent to the
structure vector field ξ. If the manifolds Nθ and NT (respectively N⊥) are slant
and invariant (respectively anti-invariant) submanifolds of a (LCS)n-manifold
M, then their warped product semi-slant submanifolds may be given by one
of the following forms:
(i) NT ×f Nθ (ii) N⊥ ×f Nθ (iii) Nθ ×f NT (iv) Nθ ×f N⊥.

However, the existence or non-existence of a structure on a manifold is very
important. Because the every structure of a manifold may not be admit. In
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this paper, we have researched cases that there exist no warped product semi-
slant submanifolds in a (LCS)n-manifold. Therefore we now study each of the
above four cases and begin the following Theorem:

Theorem 2 There exist no proper warped product semi-slant submanifold in

the form N = NT ×fNθ of a (LCS)n-manifold M such that ξ is tangent to NT,

where NT and Nθ are invariant and slant submanifolds of M, respectively.

Proof. Let us assume that N = NT ×f Nθ is a proper warped product semi-
slant submanifolds of a (LCS)n-manifold M such that ξ is tangent to NT. Then
for any X, ξ ∈ Γ(TNT) and U ∈ Γ(TNθ), from (5) and (15) we have

∇̄Uξ = ∇Uξ + h(U, ξ) = αφU. (27)

From the tangent and normal components of (27), respectively, we obtain

ξ(ln f)U = αEU and h(U, ξ) = αFU. (28)

On the other hand, by using (7) and (12), we have

(∇̄Uφ)ξ = −φ∇̄Uξ

αU = φ(ξ(ln f)U) + φh(U, ξ),

that is,

B(U, ξ) + ξ(ln f)EU = αU and ξ(ln f)FU + Ch(U, ξ) = 0. (29)

Since Γ(µ) and Γ(F(TNθ)) are orthogonal subspaces, we can derive ξ(ln f)FU =

0. So we conclude ξ(ln f) = 0 or FU = 0. Here we have to show that FU for
the proof. For this we assume that FU 6= 0.

Making use of (12), (15), (16) and (18), we obtain

(∇̄Xφ)U = ∇̄XφU − φ∇̄XU

h(X, EU) − AFUX + ∇⊥

XFU = X(ln f)FU + Bh(X,U) + Ch(X,U). (30)

Taking into account that the tangent components of (30) and making the
necessary abbreviations, we get

AFUX = −Bh(X,U). (31)

With similar thoughts, we have

(∇̄Uφ)X = ∇̄UφX − φ∇̄UX

αη(X)U = EX(ln f)U + h(U,EX) − X(ln f)EU − X(ln f)FU

− Bh(X,U) − Ch(X,U). (32)
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From the normal components of (32), we arrive at

X(ln f)FU = h(U,EX) − Ch(U,X). (33)

Thus by using (31) and (33), we conclude

X(ln f)g(FU, FU) = g(h(U,EX), FU) = g(AFUEX,U) = −g(Bh(EX,U), U)

= −g(φh(EX,U), U) = −g(h(U,EX), FU)

= −X(ln f)g(FU, FU).

This tell us that X(ln f) = 0, that is, f is a constant function NT because FU

is a non-null vector field and Nθ is a proper slant submanifold.

Theorem 3 There exist no proper warped product semi-slant submanifolds in

the form N = N⊥ ×f Nθ of a (LCS)n-manifold M such that ξ is tangent to

N, where N⊥ and Nθ are anti-invariant and proper slant submanifolds of M

respectively.

Proof. Let N = N⊥×fNθ be a proper warped product semi-slant submanifold
of a (LCS)n-manifold M such that ξ is tangent to N. If ξ is tangent to Γ(TNθ),
then for any X ∈ Γ(TNθ) and U ∈ Γ(TN⊥), from (5) and (15), we have

∇̄Uξ = ∇Uξ + h(U, ξ) = αφU, (34)

which is equivalent to U(ln f)ξ = 0 because ξ 6= 0. So f is a constant function
on N⊥.

On the other hand, if ξ ∈ Γ(TN⊥), from (5) and (15), we reach

∇̄Xξ = ∇Xξ + h(X, ξ)

αφX = ξ(ln f)X + h(X, ξ),

that is,

αEX = ξ(ln f)X and αFX = h(X, ξ). (35)

Furthermore, since φξ = 0, by direct calculations, we obtain

(∇̄Xφ)ξ = −φ(∇̄Xξ)

αX = ξ(ln f)EX + ξ(ln f)FX + Bh(X, ξ) + Ch(X, ξ).

It follows that

αX = ξ(ln f)EX + Bh(X, ξ) and ξ(ln f)FX = −Ch(X, ξ). (36)
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By virtue of (36), we conclude

ξ(ln f)g(FX, FX) = sin2θξ(ln f)g(X,X) = −g(Ch(X, ξ), FX) = 0,

which follows ξ(ln f) = 0 or sin2θg(X,X) = 0. Here if ξ(ln f) 6= 0 and
sin2θg(X,X) = 0, the proof is obvious. Otherwise, making use of (36), we
conclude that

αg(X,X) = g(Bh(X, ξ), X) = 0.

Consequently, we can easily to see that α = 0. This is a contradiction because
the ambient space M is a (LCS)n-manifold. Thus the proof is complete.

Theorem 4 There exist no proper warped product semi-slant submanifolds in

the form Nθ ×f NT in (LCS)n-manifold M such that ξ tangent to NT, where

Nθ and NT are proper slant and invariant submanifolds of M.

Proof. Let N = Nθ ×f NT be warped product semi-slant submanifolds in a
(LCS)n-manifold M such that ξ is tangent to NT. Then for any ξ, X ∈ Γ(TNT)

and U ∈ Γ(TNθ), taking account of relations (12), (15), (16), (18) and (19)
and Proposition 1, we have

(∇̄Uφ)X = ∇̄UφX − φ∇̄UX

αη(X)U = h(U,EX) − Bh(U,X) − Ch(U,X),

which implies that

αη(X)U = −Bh(U,X) and h(U,EX) = Ch(U,X). (37)

In the same way, we have

(∇̄Xφ)U = ∇̄XφU − φ∇̄XU

−AFUX + ∇⊥

XFU + h(X, EU) = Bh(X,U) + Ch(X,U),

from here

Bh(X,U) = −AFUX + EU(ln f)X − U(ln f)EX (38)

and

∇⊥

XFU = Ch(X,U) − h(X, EU). (39)
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Taking inner product both of sides of (37) with V ∈ Γ(TNθ) and also using
(38), we arrive at

αη(X)g(U,V) = −g(Bh(U,X), V) = −g(φh(U,X), V) = −g(h(U,X), φV)

= −g(h(U,X), FV) = −g(AFVX,U) = g(Bh(X,V), U)

= −αη(X)g(U,V).

Here for X = ξ, we obtain αg(U,V) = 0. Because the ambient space M is a
(LCS)n-manifold and Nθ is a proper slant submanifold, this also tells us the
accuracy of the statement of the theorem.

Theorem 5 There exist no proper warped product semi-slant submanifolds

in the form N = Nθ ×f N⊥ in a (LCS)n-manifold M such that ξ tangent to

Nθ, where Nθ and N⊥ are proper slant and anti-invariant submanifolds of M,

respectively.

Proof. Let us assume that N = Nθ×f N⊥ be a proper warped product semi-
slant submanifold in the (LCS)n-manifold M such that ξ is tangent to Nθ.
Then for X ∈ Γ(TNθ) and U ∈ Γ(TN⊥), we have

(∇̄Xφ)U = ∇̄XφU − φ∇̄XU

−AFUX + ∇⊥

XFU = φ∇XU + φh(X,U),

which follows that

AFUX = −Bh(X,U) and (∇XF)U = Ch(X,U). (40)

In the same way, we have

(∇̄Uφ)X = ∇̄UφX − φ∇̄UX,

which also follow that

αη(X)U = EX(ln f)U − AFXU − Bh(X,U), (41)

∇⊥

UFX = X(ln f)FU + Ch(X,U) − h(U,EX). (42)

From (41), we can derive

g(h(U,X), FX) = g(h(U,X), FU) = 0. (43)

Taking X = ξ in (42), we have ξ(ln f)FU = −Ch(X, ξ), that is, ξ(ln f)FU = 0.
Let X = ξ be in (41), then we get

αU = Bh(U, ξ). (44)



Contact warped product semi-slant submanifolds of (LCS)n-manifolds 223

Taking the inner product of the both sides of (44) by U ∈ Γ(TN⊥), and using
(43) we conclude

αg(U,U) = g(Bh(U, ξ), U) = g(h(U, ξ), FU) = 0, (45)

which implies that α = 0. This is impossible because the ambient space is a
(LCS)n-manifold. Hence the proof is complete.
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