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Abstract. The aim of this paper is to introduce a new class of hyper-
modules that may be called (M,N)-hypermodules over (R, S)-hyperrings.
Then, we investigate some properties of this new class of hyperstructures.
Since the main tools in the theory of hyperstructures are the fundamental
relations, we give some results about them with respect to the fundamen-
tal relations.

1 (M,N)-hypermodule over (R, S)-hyperring

One knows the construction of a hypergroup K having as core a fixed hyper-
group H. In [10], the aforesaid construction is generalized to a large class of
hypergroups obtained from a group and from a family of fixed sets, and its
properties are analyzed especially in the finite case. We recall the following
notions from [4, 10]. Let (M,⊕) be a hypergroup and (N,]) be a group with
a neutral element 0N. Also, let {An}n∈N be a family of non-empty subsets in-
dexed in N such that for all x, y ∈ N, x 6= y, Ax ∩Ay = ∅, and A0N =M. We
set P =

⋃
n∈NAn and we define the hyperoperation ⊕̄ in P in the following

way:
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(1) for every (x, y) ∈M2, x⊕̄y = x⊕ y,

(2) for every (x, y) ∈ An1
×An2

6= H2, x⊕̄y = An1]n2
.

The hyperstructure (P, ⊕̄) is a hypergroup [4, 10]. In [14], Spartalis presented
a way to obtain new hyperrings, starting with other hyperrings. We recall the
following notions from [8, 14]. Let (S, †, ·) be a hyperring and let {Bi}i∈R be a
family of non-empty sets such that:

(1) (R,+, ?) is a ring,

(2) B0R = S,

(3) for every i 6= j, Bi ∩ Bj = ∅.

Let T =
⋃
i∈R Bi and define the following hyperoperations on T : for every

(x, y) ∈ Bi × Bj:

x‡y =

{
x†y, if (i, j) = (0R, 0R)

Bi+j, if (i, j) 6= (0R, 0R)
and x�y =

{
x · y, if (i, j) = (0R, 0R)

Bi?j, if (i, j) 6= (0R, 0R).

The structure (T, ‡,�) is a hyperring [8, 14].
Now, we introduce a way to obtain new hypermodules, starting with other

hypermodules.

Definition 1 Let (M,⊕, •) be a hypermodule over a hyperring (S, †, ·) and let
{An}n∈N and {Bi}i∈R be two families of non-empty sets such that:

(1) (N,], ∗) be a module over a ring (R,+, ?),

(2) A0N =M and B0R = S,

(3) for every m,n ∈ N, m 6= n, Am ∩ An = ∅ and for every i, j ∈ N, i 6= j,
Bi ∩ Bj = ∅.

Let P =
⋃
n∈NAn and T =

⋃
i∈R Bi. We define the hyperoperation ⊕̄ on P and

the hyperoperations ‡ and � on T similar to the above mentioned definitions.
Also, we define a map •̄ : T × P → ℘∗(P) as follows:

t•̄x =

{
t • x, if (i, n) = (0R, 0M)

Ai∗n, if (i, n) 6= (0R, 0M),

for every (t, x) ∈ Bi ×An.
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Theorem 1 The structure (P, ⊕̄, •̄) over the hyperring (T, ‡,�) is a hypermod-
ule.

Proof. According to [10, 14], (P, ⊕̄) is a hypergroup and (T, ‡,�) is a hyperring.
We show that for every r, s ∈ T and x, y ∈ P:

(1) r•̄(x⊕̄y) = r•̄x⊕̄r•̄x,

(2) (r‡s)•̄x = r•̄x‡s•̄x,

(3) (r� s)•̄x = r•̄(s•̄x).

First, we prove (1). Let r ∈ T and x, y ∈ P. Then, we have the following cases:

(i) r ∈ B0R = S and x, y ∈ A0N =M. Then, we have r•̄(x⊕̄y) = r• (x⊕y) =
r • x⊕ r • x = r•̄x⊕̄r•̄x,

(ii) r ∈ Bj, where 0R 6= j ∈ R, and x, y ∈ A0N . Then, we have r•̄(x⊕̄y) =
r•̄(x ⊕ y) = Aj∗0N = A0N and r•̄x⊕̄r•̄x = Aj∗0N⊕̄Aj∗0N = A0N ⊕ A0N =
A0N . So (1) is true.

(iii) r ∈ B0R and (x, y) ∈ Aa × Ab, where (0R, 0R) 6= (a, b). Then, it is not
difficult to see that r•̄(x⊕̄y) = A0N and r•̄x⊕̄r•̄x = A0N .

(iv) r ∈ Bj, where 0R 6= j ∈ R, and (x, y) ∈ Aa ×Ab, where (0N, 0N) 6= (a, b).
Then, it is not difficult to see that r•̄(x⊕̄y) = Aj∗(a]b) and r•̄x⊕̄r•̄x =
Aj∗a]j∗b. Since (N,], ∗) is a module over a ring (R,+, ?), then j∗(a]b) =
j ∗ a ] j ∗ b and so (1) is true.

Therefore, we show that (1). Similarly, we can prove (2) and (3). �

Example 1 Let N = (Z3,+) be a module over the ring R = (Z3,+, ·), M =
(Z2,⊕) be a hypermodule over a hyperring S = (Z2,⊕, ·), where 0 ⊕ 0 = 0,

0 ⊕ 1 = 1 ⊕ 1 = 1 and 1 ⊕ 1 = {0, 1} and set A0 = B0 = Z2, A1 = B1 = {a, b}

and A2 = B2 = {c}. Now, we have P = T = {0, 1, a, b, c, d, e}. Then, we obtain
⊕̄ = ‡ and •̄ = �. Also, we have

0⊕̄1 = 1, a⊕̄a = b⊕̄a = a⊕̄b = b⊕̄b = {c}, c⊕̄c = {a, b},

0⊕̄0 = 0, 0⊕̄a = 1⊕̄a = 0⊕̄b = 1⊕̄b = {a, b}, 0⊕̄c = 1⊕̄c = {c},

1⊕̄1 = {0, 1}, c⊕̄a = c⊕̄a = c⊕̄b = c⊕̄b = {0, 1}.

and

0•̄1 = 0, a•̄a = b•̄a = a•̄b = b•̄b = {a, b}, c•̄c = {a, b},

0•̄0 = 0, 0•̄a = 1•̄a = 0•̄b = 1•̄b = {0, 1}, 0•̄c = 1•̄c = {0, 1},

1•̄1 = 1, c•̄a = c•̄a = c•̄b = c•̄b = {c},
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Let (H,+) be a hypergroup. We consider the fundamental relation β on H as
follows: xβy if and only if {x, y} ⊆

∑n
i=1 xi, for some xi ∈ H. Let β∗ be the

transitive closure of β. The fundamental relation β∗ is the smallest equivalence
relation such that the quotient H/β∗ is a group. This relation introduced by
Koskas [12] and studied by others, for example see [3, 4, 5, 12, 16]. Also, we
recall the definition of the fundamental relation γ on a hypergroup H as fol-
lows: xγy if and only if x ∈

∑n
i=1 xi, y ∈

∑n
i=1 xσ(i), xi ∈ H, σ ∈ Sn. Let

γ∗ be the transitive closure of γ. The fundamental relation γ∗ is the smallest
equivalence relation such that the quotient H/γ∗ is an abelian group [11], also
see [6, 7].

The fundamental relation Γ on a hyperring was introduced by Vougiouk-
lis at the fourth AHA congress (1990) [15] as follows: xΓy if and only if
∃n ∈ N, ∃ (k1, . . . , kn) ∈ Nn, and [∃ (xi1, . . . , xiki) ∈ Rki , (i = 1, . . . , n)] such

that {x, y} ⊆
∑n
i=1(
∏ki
j=1 xij). The fundamental relation Γ on a hyperring is

defined as the smallest equivalence relation so that the quotient would be the
(fundamental) ring. Note that the commutativity with respect to both sum
and product in the fundamental ring are not assumed. In [9], Davvaz and Vou-
giouklis introduced a new strongly regular equivalence relation on a hyperring
such that the set of quotients is an ordinary commutative ring. We recall the
following definition from [9].

Definition 2 [9] Let R be a hyperring. We define the relation α as follows: xαy
if and only if ∃n ∈ N, ∃(k1, . . . , kn) ∈ Nn, ∃σ ∈ Sn and [∃(xi1, . . . , xiki) ∈ Rki,
∃σi ∈ Ski , (i = 1, . . . , n)] such that x ∈

∑n
i=1(
∏ki
j=1 xij) and y ∈

∑n
i=1Aσ(i),

where Ai =
∏ki
j=1 xiσi(j).

If α∗ is the transitive closure of α, then α∗ is a strongly regular relation
both on (R,+) and (R, ·), and the quotient R/α∗ is a commutative ring [9],
also see [13].

Now, consider Definition 1 and Theorem 1. Then:

Theorem 2 We have

(1) P/β∗P
∼= N (group isomorphism).

(2) P/γ∗P
∼= N/γ∗N (group isomorphism) and if N is commutative then P/γ∗P

∼=
N.

(3) T/Γ∗T
∼= R (ring isomorphism).

(4) T/α∗T
∼= R/α∗R (ring isomorphism) and if R is commutative (with respect

to the both operations) then T/α∗T
∼= R.
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Proof. (1) We define φ : P/β∗P −→ N, with φ(β∗P(an)) = n, where an ∈ An
and n ∈ N. Since β∗P is a regular relation, so (β∗P(an))(β

∗
P(am)) = (β∗P(anam))

and φ is a homomorphism. Let (β∗P(an)) = 0N. Then, n = 0N and so Kerφ =
(β∗P(a0N)). Hence, φ is one to one. Clearly, φ is onto.

(2) We define ψ : P/γ∗P −→ N/γ∗N, with ψ(γ∗P(an)) = γN(an), where
an ∈ An and n ∈ N. Since γ∗P and γ∗N are regular relations, so (γ∗P(an))(γ

∗
P(am))

= (γ∗N(n)γ
∗
N(m)) = (γ∗N(nm)) = (γ∗P(anam)). Then, φ is a homomorphism.

Let (γ∗P(an)) = 0N/γ∗N = γ∗N(0N). Then, n = 0N and so Kerψ = (γ∗P(a0N)).
Hence, ψ is one to one. Clearly, ψ is onto.

(3) We define λ : T/γ∗T −→ R, with λ(Γ∗T (bi)) = i, where bi ∈ Ai and i ∈ N.
Since Γ∗T is a regular relation, so (Γ∗P (an))(Γ

∗
P (am)) = (Γ∗P (anam)) and λ is a

homomorphism. Let (Γ∗P (ai)) = 0R. Then, i = 0R and so Kerλ = (Γ∗P (a0R)).
Hence λ is one to one. Clearly, λ is onto.

(4) We define µ : T/α∗T −→ R, with µ(α∗T (bi)) = α∗R(i), where bi ∈ Ai
and i ∈ N. Since α∗T and α∗R are regular relations, so (α∗P(ai))(α

∗
P(aj)) =

(α∗R(i))(α
∗
R(j)) = (α∗R(ij)) = (α∗P(aiaj)). Then, µ is a homomorphism. Let

(α∗P(ai)) = 0R/α∗
R
. Then, i = 0R and so Kerµ = (α∗P(a0R)). Thus, µ is one to

one. Clearly, µ is onto. �

Now, we recall the definition of the fundamental relation ε on M from
[16]. Let M be an R-hypermodule. Then xεy if and only if {x, y} ⊆

∑n
i=1m

′
i,

where m ′i = mi or m ′i =
∑ni

j=1(
∏kij
k=1 xijk)mi, rijk ∈ R. The fundamental

relation ε∗ is defined to be the smallest equivalence relation such that the
quotient M/ε∗ is a module over the ring R/Γ∗. Also, according to [1, 2] we
can consider the fundamental relation θ on hypermodules as follows: xθy if
and only if ∃ n ∈ N, ∃(m1, . . . ,mn) ∈ Mn, ∃(k1, k2, . . . , kn) ∈ Nn, ∃σ ∈ Sn,
∃(xi1, xi2, . . . , xik) ∈ Rki , ∃σi ∈ Sni

, ∃σij ∈ Skij , such that x ∈
∑n
i=1m

′
i,

m ′i = mi orm ′i =
∑ni

j=1(
∏kij
k=1 xijk)mi and y ∈

∑n
i=1m

′
σ(i), wherem ′σ(i) = mσ(i)

if m ′i = mi; m
′
σ(i) = Bσ(i)mσ(i) if m ′i =

∑ni

j=1(
∏kij
k=1 xijk)mi, such that Bi =∑ni

j=1Aiσi(j) and Aij =
∏kij
k=1 xijσij(k). Then, the (abelian group) M/θ∗ is an

R/α∗- module, where R/α∗ is a commutative ring.

Theorem 3 (1) The module P/ε∗P over the ring T/Γ∗T is isomorphic to the
module N over the ring R.

(2) The module P/θ∗P over the ring T/α∗T is isomorphic to the module N/θ∗N
over the ring R/α∗R.

Proof. (1) Let x ∈ P. Then, there exists n ∈ N such that x ∈ An. If x ε y, then
there exist rijk ∈ T and mk ∈ P such that {x, y} ⊆

∑l
k=1m

′
k, where m ′k = mk
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or m ′k = (
∑∏

rijk)mk. From the definition of the hyperoperations ⊕̄, •̄, ‡ and

� it follows that
∑l
k=1m

′
k = Am for some m ∈ N. Hence, x ∈ An ∩ Am and

so m = n. Then, y ∈ An. Now, if y ∈ ε∗(x), then there exist z1, z2, . . . , zs ∈ P
such that x ε z1 ε z2 . . . zs ε y. From x ε z1 and x ∈ An, we have z1 ∈ An, so
z2 ∈ An and finally we obtain y ∈ An. Therefore, ε∗(x) ⊆ An.

Conversely, suppose that y ∈ An. If n = 0 then set v ∈ Am and w ∈ A−m,
where m ∈ N− {0}. Then, {x, y} ⊆ A0 = v⊕̄w. Thus, y ∈ ε∗(x). If n 6= 0, then
we consider v ∈ An and w ∈ A0, so {x, y} ⊆ An = v⊕̄w. Therefore, y ∈ ε∗(x)
and consequently An ⊆ ε∗(x).

Finally, we consider the maps Ψ : P/ε∗ → N by ε∗(x) → n, where x ∈ An,
and ψ : T/Γ∗ → R by Γ∗(r)→ i, where r ∈ Bi. Then, Ψ is a module isomorphism
and ψ is a ring isomorphism. �

The following theorem from [16] gives us a connection between the fundamen-
tal relations of β∗ and ε∗.

Theorem 4 [16]. If for any a ∈ T and p ∈ P, there exists u ∈ P such that
Γ∗(a).β∗(p) ⊆ β∗(u), then ε = β.

Also, in a similar way we have:

Theorem 5 If for any a ∈ T and p ∈ P, there exists u ∈ P such that
α∗(a).γ∗(p) ⊆ γ∗(u), then θ = γ.

Corollary 1 Let for any a ∈ T and p ∈ P, there exists u ∈ P such that
Γ∗(a).β∗(p) ⊆ β∗(u).

(1) The module P/β∗P over the ring T/Γ∗T is isomorphic to the module N over
the ring R.

(2) The module P/γ∗P over the ring T/α∗T is isomorphic to the module N/θ∗N
over the ring R/α∗R.

By the proof of Theorem 3, we have:

Theorem 6 For every m1, . . . ,mk ∈ P and rijk ∈ T where k ≥ 1, one of the
following cases is verified.

(1) There exists t ∈ N such that
∑k
l=1m

′
l = At, where m ′l = ml or

m ′l = (
∑∏

rijl)ml.

(2) There exists B ∈ ℘∗(M) such that
∑l
l=1m

′
l = B, where m ′l = ml or

m ′l = (
∑∏

rijl)ml.
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Proof. Let m1, . . . ,mk ∈ P and rijk ∈ T . Set m ′l = ml or m ′l = (
∑∏

rijl)ml.

Since P is a hypermodule so
∑k
l=1m

′
l ⊆ P. Let ml ∈ Anl

and rijl ∈ Btijl .
If nl 6= 0N or tijl 6= 0R then by definition of the (M,N)-hypermodule over

the (R, S)-hyperring, there exists t ∈ N such that
∑k
l=1m

′
l = At. Else, for

every l, i and j, we haveml ∈ A0N = M and rijl ∈ B0R = S. Therefore,∑k
l=1m

′
l ⊆ A0N =M and so there exists B ∈ ℘∗(M) such that

∑k
l=1m

′
l = B. �

Theorem 7 (1) For every x ∈ N and a ∈ Ax, Cε(a) = Ai.

(2) wP =M.

Proof.

(1) By Theorem 6, it follows that for any i ∈ N, Ai is a complete part.
On the other hand for any i ∈ N, there exists (y, z) ∈ P2 such that
y⊕̄z = Ay]z = Ai.

(2) It obtains immediately from (1).
�

Theorem 8 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule over an (R, S)-hyperring
(T, ‡,�). Then ⊕̄ is commutative if and only if ⊕ is commutative.

Proof. It is straightforward. �

Lemma 1 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule over an (R, S)-hyperring
(T, ‡,�). Let N has an element 1N such that for every r ∈ R, r ∗ 1N = r. Then,
Br ⊆ Ar for every r ∈ R if and only if for every t ∈ T , t ∈ t•̄u, for all u ∈ A1N .

Proof. If N has an element 1N such that r ∗ 1N = r, for every r ∈ R, then
R ⊆ N and so B0 ⊆ A0. Let r ∈ R∗, t ∈ Br and u ∈ A1N . Then, t•̄u = Ar∗1N =
Ar ⊇ Br 3 t.

Conversely, let r ∈ R and t ∈ Br. Then for every u ∈ A1N we have t ∈ t•̄u =
Ar∗1N = Ar and so Br ⊆ Ar. �

Let (M,+, ◦) be a hypermodule over a hyperring (R,+, ·) such that M has
zero element 0. If A ⊆M and B ⊆ R then we define the following notations:

(0 :R A) = {r ∈ R | ∀x ∈ A, r ◦ x = 0} = AnnR(M),
(B :M 0) = {x ∈M | ∀r ∈ B, r ◦ x = 0}.

A faithful module M is one where the action of each r 6= 0R in R on M is
non-trivial (i.e., rx 6= 0N for some x in M). Equivalently, the annihilator of
M(AnnR(M)) is the zero hyperideal.
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Lemma 2 Let (M,+, ◦) be a hypermodule over a hyperring (R,+, ·) such that
M has zero element 0.

(1) If A be a non-empty subset of M, then (0 :R A) is a hyperideal of R.

(2) If B be a non-empty subset of R, then (B :M 0) is a subhypermodule of R.

Theorem 9 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule over an (R, S)-hyperring
(T, ‡,�).

(1) Let N has an element 1N such that r ∗ 1N = r for every r ∈ R, t ∈ t•̄u
for every t ∈ T and u ∈ A1N . Set E((P, •̄)) = {e ∈ P | ∀t ∈ T, t ∈ t•̄e}.
Then E((P, •̄)) =

⋃
x∈(R:N0)Ax+1N .

(2) Let R has an element 1R such that 1R ∗ x = x for every x ∈ N, and
E((T, •̄)) = {ε ∈ T | ∀x ∈ P, ε ∈ ε•̄x}. Then E((T, •̄)) =

⋃
a∈AnnR(N) Ba+1R .

Proof. (1) By Lemma 1, we have Br ⊆ Ar for every r ∈ R. For every t ∈ T
there exists r ∈ R such that t ∈ Br. Now, let u ∈

⋃
x∈(R:N0)Ax+1N . Then, there

exists z ∈ (R :N 0) such that u = Az+1N . Thus, t•̄u = Br•̄Az+1N = Ar∗(z+1N) =
Ar ⊇ Br 3 t. Therefore, u ∈ E((P, •̄)).

Conversely, suppose that e ∈ E((P, •̄)). Then, for every t ∈ T, t ∈ t•̄e. Let
t ∈ Bj and e ∈ An. Then, t ∈ Aj∗n. But t ∈ t•̄A1N = Aj∗1N = Aj so Aj = Aj∗n.
Therefore, j = j∗n for every j ∈ R. Thus, j(n−1N) = 0N and n−1N ∈ (R :N 0).
Therefore, there exists z ∈ (R :N 0) such that n = z+ 1N.

(2) Let t ∈ B1R+a, where a ∈ (0 :R A). For all x ∈ P, if x ∈ An, then t•̄x =
A(1R+a)∗n = A(1R∗n+a∗n) = An+0 = An 3 x. Hence, t ∈ E((T, •̄)). Conversely,
suppose that b ∈ E((T, •̄)). Then, there exists r ∈ R∗, such that b ∈ Br. Let
z ∈ B1R . So, for every n ∈ N and x ∈ An we have x ∈ z•̄x ∈ A1R ∗ n = An
and x ∈ b•̄x ∈ Ar∗n. Therefore, for every An ∩ Ar∗n 6= ∅ and r ∗ n = n for
every n ∈ N. Therefore, (r− 1R) ∗n = 0 and r− 1R ∈ (0 :R A) and there exists
a ∈ (0 :R A) such that r = 1R + a. �

Corollary 2 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule over an (R, S)-hyperring
(T, ‡,�). If N has an element 1N such that t ∈ t•̄1N for every t ∈ T and R is
a unitary ring, then E((P, •̄)) = A1N .

Corollary 3 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule over an (R, S)-hyperring
(T, ‡,�). If R has an element 1R such that 1R ∗ x = x for every x ∈ N, and N
is a faithful module over the ring R, then E((T, •̄)) = B1R .
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Lemma 3 Let (M,+, ◦) be a hypermodule over a commutative hyperring
(R,+, ·) and for every a ∈ R set Q = a ◦M. Then Q is a subhypermodule.

Proof. We show that R ◦Q ⊆ Q and for all q ∈ Q, Q+ q = q+Q = Q. Let
r ∈ R and q ∈ Q. Then, there exists m ∈ M such that q = a ◦m. Now, we
have r ◦ q = r ◦ (a ◦m) = (r · a) ◦m = (a · r) ◦m = a ◦ (r ◦m) ⊆ a ◦M = Q.
Also, Q + q = a ◦M + a ◦m = a ◦ (M +m) = a ◦M = Q and q + Q =
a ◦m+a ◦M = a ◦ (m+M) = a ◦M = Q. Therefore, Q is a subhypermodule
of M. �

Theorem 10 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule over an (R, S)-hyperring
(T, ‡,�). Set Pt = t•̄P. If S is a commutative hyperring, then Pt is a subhyper-
module of P. Also, for every r ∈ R, Pr = 0, for every t ∈ (0 :P t), Pt = 0.

Lemma 4 [8]. Let (R,+, ·) be a hyperring and let x ∈ R. Let I = K · x. Then
I is a left hyperideal of R if and only if for every y ∈ I, I · y = y · I = I.

Corollary 4 Let (R,+, ·) be a commutative hyperring and let x ∈ R. If we set
I = K · x then I is a hyperideal of R if and only if for every y ∈ I, I · y = I.

Moreover, (I,+, ◦) is a hyperring.

Theorem 11 [8] Let (T, ‡,�) be an (R, S)-hyperring and S be commutative.
Then Tt = T � t is a hyperideal of T and (Tt, ‡,�) is a commutative hyperring.

Lemma 5 Let (M,+, ◦) be a hypermodule over a commutative hyperring
(R,+, ·) and for every a, b ∈ R set Ma = a ◦M and Rb = R · b. Then Ma is a
hypermodule over a hyperring Rb if and only if for every x ∈ Rb, Rb · x = Rb.

Theorem 12 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule over an (R, S)-hyperring
(T, ‡,�) and let a, b ∈ T. If S is a commutative hyperring then (a•̄P, ⊕̄, •̄) is a
hypermodule over a hyperring (T � b, ‡,�).

Proof. It obtains from Theorems 10 and 11 and Lemma 5. �

Example 2 Let (M,+, ◦) be a hypermodule over a commutative hyperring
(R,+, ·) and for every a ∈ R set Q = a ◦M, and Q+ q 6= Q.

Lemma 6 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule over an (R, S)-hyperring
(T, ‡,�). Then S has a weak neutral element if and only if P has a weak neutral
element.
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Proof. Let e ∈ P be a weak neutral element of P. So for every p ∈ P we
have p ∈ e⊕̄p ∩ p⊕̄e. Let e ∈ An. We show that n = 0N. If n 6= 0N, then
e ∈ e⊕̄e = An+n which implies that e ∈ An ∩ An+n and An = An+n. Thus,
n+ n = n and n = 0N. Therefore, e ∈ A0N =M.

Conversely, let e ∈ M be a weak neutral element of M. Then, for every
p ∈ An when n 6= 0N, we have p⊕̄e ∈ An+0N = An and so p ∈ p⊕̄e. In a
similar way, we obtain p ∈ e⊕̄p. Therefore, e is a weak neutral element of P. �

Theorem 13 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule over an (R, S)-hyperring
(T, ‡,�). If R is a field and N is a unitary R-module, then P/ε∗P is a hypervector
space over the field T/Γ∗T .

Proof. Since R is a field, T is a hyperfield. Since N is a unitary R-module,
P/ε∗P is a unitary T/Γ∗T -module. Therefore, P/ε∗P is a hypervector space over
the field T/Γ∗T . �

Let us denote P⊕̄ and P•̄, the sets of scalars of the (M,N)-hypermodule over the
(R, S)-hyperring with respect to the hyperoperations ⊕̄ and •̄, respectively, i.e.,
P⊕̄ = {u ∈ P | card(u⊕̄x) = 1, for all x ∈ P} and P•̄ = {u ∈ P | card(t•̄u) = 1,
for all t ∈ T }.

Theorem 14 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule over an (R, S)-hyperring
(T, ‡,�). Then:

(1) If P⊕̄∩ (P−M) 6= ∅ and P⊕̄∩ (P−M) 6= ∅, then ⊕̄ and •̄ are operations.

(2) If P⊕̄ 6= ∅ and P⊕̄ ∩ (P−M) = ∅, then cardAn = 1 for all n ∈ N− {0N}.

Proof. (1) Let u ∈ P⊕̄ ∩ (P −M), i.e., u ∈ An 6= N. Then, for all m ∈ N, Am
is singleton, because by taking y ∈ Am−1N , we get the singleton u⊕̄y = Am.
Consequently, •̄ and ⊕̄ are operations.

(2) By hypothesis, we have P⊕̄ ⊆M. Moreover, if u ∈ P⊕̄, then u ∈ A0N . For
all n ∈ N−{0N}, we consider y ∈ An. Then, we get the singleton u⊕̄y = An. �

An (M,N)-hypermodule over an (R, S)-hyperring (T, ‡,�) is called a (0,N)-
hypermodule, when M is a singleton set.

Theorem 15 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule. We have

(1) P•̄ 6= ∅, if and only if P is a (0,N)-hypermodule.

(2) If P•̄ ∩An 6= ∅, for some n ∈ N, then An ⊆ P•̄ and we have cardAk = 1
and Ak ⊆ P•̄, for all k ∈ R ∗ n.
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Proof. (1) Let y ∈ P•̄. If y ∈ M, then for t ∈ Bi 6= S we have M = t•̄y is a
singleton set. If y ∈ P−M, then for s ∈ S = B0R , we have M = A0N = t•̄y is a
singleton set. Hence, P is a (0,N)-hypermodule. Conversely, if M is a singleton
set, then P•̄ 6= ∅.

(2) Let P•̄∩An 6= ∅, n ∈ N. If n = 0N, then because of (1), M is a singleton
set and so (2) is valid. We prove (2) for n ∈ N− {0n}. Since, for all x, y ∈ An,
t ∈ T , t•̄x = t•̄y, this implies that An ⊆ P•̄. Moreover, if x ∈ P•̄ ∩ An, then
for all r ∈ R, we consider an arbitrary t ∈ Br and we have that Ar∗n = t•̄x
is a singleton set. Hence, cardAk = 1, for all k ∈ R ∗ n. Finally, let Ak = {x},
when k ∈ R ∗ n. Then, for all t ∈ Br 6= S, t•̄x = Ar∗k is a singleton set,
because r ∗ k ∈ R ∗n. Also, by (1), M is a singleton set and so Ak ⊆ P•̄, when
k ∈ R ∗ n. �

Now, let T•̄ = {t ∈ T | card(t•̄u) = 1, for all u ∈ P.} Then, similar to Theorem
15, we have:

Theorem 16 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule. Then:

(1) T•̄ 6= ∅, if and only if P is a (0,N)-hypermodule.

(2) If T•̄ ∩ Br 6= ∅, for some r ∈ R, then Br ⊆ T•̄ and for all k ∈ r ∗ N, we
have cardAk = 1.

2 Quotient of an (M,N)-hypermodule over an (R, S)-
hyperring

Proposition 1 Let (P, ⊕̄, •̄) be a canonical (M,N)-hypermodule over the Kras-
ner (R, S)-hyperring (T, ‡,�) and ∅ 6= q ⊆ P, ∅ 6= I ⊆ T . Then:

(1) q is a subhypermodule of P if and only if q =
⋃
n∈QAn, where Q is a

submodule of (N,], ∗).

(2) h is a hyperideal of P if and only if h =
⋃
r∈H Br, where H is an ideal of

(S, †, ·).

Proof. (1) Let q be a subhypermodule of P. Then, 0 ∈ q and r ∈ R∗ which
implies that A0 = r•̄0 ⊆ q, so M ⊆ q. Let there exists n ∈ N∗ such that
q∩An 6= ∅ and x ∈ q∩An. Then −x ∈ g and −x ∈ A−n so we have A−n ∈ q.
Consequently, from the closure of ⊕̄ in q, it follows q =

⋃
n∈QAn, where Q

is a subgroup of (N,], ∗). Now, let r ∈ R. Then, Br•̄An = Ar∗n ⊆ q. Hence,
r∗n ∈ Q and Q is a submodule of N. The converse is verified in a simple way.

(2) It obtains similar to the part (i) of Proposition 4.1 [14]. �
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Proposition 2 Let (P, ⊕̄, •̄) be a canonical (M,N)-hypermodule over the Kras-
ner (R, S)-hyperring (T, ‡,�). Suppose that G be a submodule of (N,], ∗) and
H be an ideal of (R,+, ?). If g =

⋃
n∈GAn and h =

⋃
j∈H Bj, then [P : g∗] ∼=

[N : G∗] and [T : h∗] ∼= [R : H∗]. In addition, the module [P : g∗] over the ring
[T : h∗] is isomorphic to the module [M : G∗] over the ring [R : H∗].

Proof. According to [17], [P : g∗] is a hypermodule over the hyperring [T : h∗]
and Spartalis in [14], proved that [T : h∗] ∼= [R : H∗] and ϕ : [T : h∗]→ [R : H∗]
by ϕ(h + t) = H + r, is an isomorphism, where t ∈ Ar. Define the map
φ : [P : g∗] −→ [N : G∗] by g⊕̄ai 7→ G + i. Then, φ is one to one and onto.
Moreover, for every m,n ∈ N, r, s ∈ R, x ∈ Am, y ∈ An, t ∈ Br, we have
φ((g⊕̄x) + (g⊕̄y)) = G +m + n = φ(g⊕̄x) + φ(g⊕̄y) and for any tr ∈ T we
have φ((h + t) ◦ (g + x)) = φ(g + t•̄x) = G + rm = (H + r) ◦ (G + m) =
ϕ(h+ t) ◦ φ(g+ x). �
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