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Abstract. The aim of this paper is to introduce a new class of hyper-
modules that may be called (M, N)-hypermodules over (R, S)-hyperrings.
Then, we investigate some properties of this new class of hyperstructures.
Since the main tools in the theory of hyperstructures are the fundamental
relations, we give some results about them with respect to the fundamen-
tal relations.

1 (M, N)-hypermodule over (R,S)-hyperring

One knows the construction of a hypergroup K having as core a fixed hyper-
group H. In [10], the aforesaid construction is generalized to a large class of
hypergroups obtained from a group and from a family of fixed sets, and its
properties are analyzed especially in the finite case. We recall the following
notions from [4, 10]. Let (M, @) be a hypergroup and (N, ) be a group with
a neutral element On. Also, let {AnJnen be a family of non-empty subsets in-
dexed in N such that for all x,y € N, x #y, AxNAy =0, and Ay, = M. We
set P = [J,en An and we define the hyperoperation @ in P in the following
way:
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(1) for every (x,y) € M?, xdy =x @y,
(2) for every (x,y) € An, X Ay, # H?, xfy = Aniwn, -

The hyperstructure (P, ®) is a hypergroup [4, 10]. In [14], Spartalis presented
a way to obtain new hyperrings, starting with other hyperrings. We recall the
following notions from [8, 14]. Let (S, T,-) be a hyperring and let {Bi}icg be a
family of non-empty sets such that:

(1) (R,+,*) is a ring,
(2) Bog =S,
(3) for every i #j, BinNB;j = 0.

Let T = [Uijcg Bi and define the following hyperoperations on T: for every
(x,y) € B; x Bj:

{ XJ[ya if (i>j) = (OR)OR)
xfy =
Biyj, if (i,j) # (Og,0r)

The structure (T, f,®) is a hyperring [8, 14].
Now, we introduce a way to obtain new hypermodules, starting with other
hypermodules.

XY, if (1)]) = (ORaOR)

and xOY = { o
Bi*j) if (1)]) 7é (OR)OR)-

Definition 1 Let (M, @, o) be a hypermodule over a hyperring (S, 1,-) and let
{Antnen and {Bilicr be two families of non-empty sets such that:

(1) (N,W, %) be a module over a ring (R,+,*),
(2) Aoy =M and By, =S,

(3) for every mym e N, m#n, Ay N A, =0 and for every 1,j € N, 1 # j,
BiﬂBj = 0.

Let P = Jpen An and T = ;g Bi. We define the hyperoperation © on P and
the hyperoperations I and © on T similar to the above mentioned definitions.
Also, we define a map ®: T x P — p*(P) as follows:

tex, if (i,n) = (Og,0m)
tex =
Ai*rn if (:L» TL) 7é (OR)OM))

for every (t,x) € By x Aq.
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Theorem 1 The structure (P, ®, ®) over the hyperring (T, 1, ®) is a hypermod-
ule.

Proof. According to [10, 14], (P, ®) is a hypergroup and (T, {, ®) is a hyperring.
We show that for every r,s € T and x,y € P:

(1) re(xdy) = rexdrex,
(2) (ris)ex = rexisex,
(3) (r® s)ex = re(sex).
First, we prove (1). Let r € T and x,y € P. Then, we have the following cases:

(i) r € Boy = S and x,y € Ag, = M. Then, we have re(xPy) =re(xBYy) =
Tex DT ex =rexdrex,

i) v € Bj, where Og € R, and x,y € Agy,. Then, we have re(xdy) =

ii B;, where 0 j € R, and x,y € Ap,. Th h (xdy)
To(Xx DY) = Ajson = Aoy and Texdrex = Aj.o DAjro = Aoy D Aoy =
Aoy~ So (1) is true.

(iii) r € By, and (x,y) € Aq x Ay, where (Og,0r) # (a,b). Then, it is not
difficult to see that re(xdy) = Ao, and rexdrex = Ag,,.

(iv) r € Bj, where Or #j € R, and (x,y) € Aq X Ap, where (On,0n) # (a,b).
Then, it is not difficult to see that e(xDy) = Aj,(qup) and rexdrex =
Ajsawjxb- Since (N, W, %) is a module over a ring (R, +, x), then j*(awb) =
j*xaWj=*band so (1) is true.

Therefore, we show that (1). Similarly, we can prove (2) and (3). O

Example 1 Let N = (Z3,+) be a module over the ring R = (Z3,+,-), M =
(Zy,®) be a hypermodule over a hyperring S = (Zy,®,-), where 0 & 0 = 0,
0@1=1@1=1and 101 ={0,1} and set Ag = By = Z,, A1 = By ={a, b}
and Ay = By ={c}. Now, we have P=T ={0,1,a,b,c,d,e}. Then, we obtain
@ =1 and @ = ©. Also, we have

081 =1, ada =bda=adb =bdb ={c}, cEc={a,b}
080 =0, 0®a =1%a =0Pb = 1db ={a, b}, 0Pc = 1dc ={c},
161 ={0,1}, c®a =cha=chHb =cEHb ={0,1}.
and
Oel1 =0, aea =bea = aeb =beb ={a,b}, cec ={a,bl,
0e0 =0, Oea =lea=0eb=1eb={0,1}, Osc =Tec={0,1},
1e1 =1, cea =cea = ceb =ceb=/{c},
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Let (H,+) be a hypergroup. We consider the fundamental relation 3 on H as
follows: xpy if and only if {x,y} C Y i, xi, for some x; € H. Let p* be the
transitive closure of 3. The fundamental relation 3* is the smallest equivalence
relation such that the quotient H/f* is a group. This relation introduced by
Koskas [12] and studied by others, for example see [3, 4, 5, 12, 16]. Also, we
recall the definition of the fundamental relation vy on a hypergroup H as fol-
lows: xyy if and only if x € } ' %4, Yy € > "1 X(1), X € H, 0 € Sp. Let
v* be the transitive closure of y. The fundamental relation y* is the smallest
equivalence relation such that the quotient H/y* is an abelian group [11], also
see [6, 7].

The fundamental relation ' on a hyperring was introduced by Vougiouk-
lis at the fourth AHA congress (1990) [15] as follows: xIy if and only if
In e N, I(ki,...,kn) € N, and [3 (xi1,...,%ik,) € R, (i = 1,...,n)] such
that {x,y} C Z?:](H}L xij). The fundamental relation I' on a hyperring is
defined as the smallest equivalence relation so that the quotient would be the
(fundamental) ring. Note that the commutativity with respect to both sum
and product in the fundamental ring are not assumed. In [9], Davvaz and Vou-
giouklis introduced a new strongly regular equivalence relation on a hyperring
such that the set of quotients is an ordinary commutative ring. We recall the
following definition from [9].

Definition 2 [9] Let R be a hyperring. We define the relation o« as follows: xoy
if and only if In € N, I(kq,...,ky) € N, Jo € Sp and B(xi1y ..., Xk, ) € R,
Jdoy € Sy, (i =1,...,n)] such that x € Z?:l(H}i] Xij) and y € Y} 1 Ag,
where Ay = ]_[f;] Xig; ()

If «* is the transitive closure of «, then &* is a strongly regular relation
both on (R,+) and (R,-), and the quotient R/a* is a commutative ring [9],

also see [13].
Now, consider Definition 1 and Theorem 1. Then:

Theorem 2 We have
(1) P/By =N (group isomorphism,).

(2) P/vp = N/vy (group isomorphism) and if N is commutative then P/vy§ =
N.

(3) T/Tf =R (ring isomorphism).

(4) T/oi = R/og (ring isomorphism) and if R is commutative (with respect
to the both operations) then T/o = R.
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Proof. (1) We define ¢ : P/Bp — N, with ¢(B3(an)) = n, where a, € Ay
and n € N. Since B} is a regular relation, so (Bp(an))(Bp(am)) = (Bplanam))
and ¢ is a homomorphism. Let (B5(an)) = On. Then, n = Oy and so Kerdp =
(B3(apy)). Hence, ¢ is one to one. Clearly, ¢ is onto.

(2) We define ¢ : P/y; — N/vy{, with P(yplan)) = yn(an), where
an € Ap andn € N. Since v} and vy, are regular relations, so (vp(an)) (v (am))
= (yN(m)y{(m)) = (v{(nm)) = (vp(anam)). Then, ¢ is a homomorphism.
Let (vplan)) = ON/V’{\, = vX(On). Then, n = On and so Kerp = (y§(agy)).
Hence, 1 is one to one. Clearly, 1 is onto.

(3) We define A : T/y; — R, with A(T§(b;)) =i, where b; € A; and i € N.
Since I is a regular relation, so (I3 (an))(Ip(am)) = (IF(anan,)) and A is a
homomorphism. Let (I'5(ai)) = Og. Then, i = Og and so KerA = (5 (ao,)).
Hence A is one to one. Clearly, A is onto.

(4) We define p : T/af — R, with p(aj(bi)) = og(i), where by € A4
and i € N. Since of and o are regular relations, so (og(ai))(ap(a;)) =
(ox(D))(z(G)) = (og(ij)) = (ap(aia;)). Then, p is a homomorphism. Let
(op(ai)) = OR/cx’é‘ Then, i = Og and so Kerp = (ap(ao,)). Thus, p is one to
one. Clearly, u is onto. O

Now, we recall the definition of the fundamental relation € on M from
[16]. Let M be an R-hypermodule. Then xey if and only if {x,y} C > ', m/,
where m/ = m; or m{ = Z?;](HEL Xijk)mi, Ty € R. The fundamental
relation €* is defined to be the smallest equivalence relation such that the
quotient M/e* is a module over the ring R/T™*. Also, according to [1, 2] we
can consider the fundamental relation 8 on hypermodules as follows: x0y if
and only if 3 n € N, I(my,...,my) € M", 3(ki,ka,...,k,) € N Jo € Sy,
F(Xi1y Xi2y - - -y Xik) € Rki, do; € Snw 30'1]' € Skij’ such that x € 2?21 m{,
m{ =m;orm = Z]Ti] (HEZ] xijk)miand y € 3 Ly my o, where my ) = mg)
if m{ = my; m(;(i) = Bo-(i)mcm if m{ = Z]TL:H(H];;]] Xi]'k)‘m.i, such that B; =

Z]“:l] Aig,(j) and Ay = Ht‘:]] Xijoy;(k)- Then, the (abelian group) M/0* is an
R/a*- module, where R/a* is a commutative ring.

Theorem 3 (1) The module P/e} over the ring T/TT is isomorphic to the
module N over the ring R.

(2) The module P/0% over the ring T/t is isomorphic to the module N /6%
over the ring R/og.

Proof. (1) Let x € P. Then, there exists n € N such that x € A,,. If x € y, then
there exist 1y € T and my € P such that {x,y} C ZL:I my, where my = my
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or my = (3] rijx)mk. From the definition of the hyperoperations @, ®, { and
® it follows that Zi:] m| = Ap for some m € N. Hence, x € Ay N Ay and
so m =mn. Then, y € A,,. Now, if y € €*(x), then there exist z1,z,...,2z5 € P
such that x € z1 € z3...z5 € y. From x € z; and x € Ayn, we have z; € Ay, so
z; € A, and finally we obtain y € A,,. Therefore, €*(x) C A,.

Conversely, suppose that y € A,. If n =0 then set v e A,y and w € A,
where m € N —{0}. Then, {x,y} C Ay = vdw. Thus, y € €*(x). If n # 0, then
we consider v € A, and w € Ay, so {x,y} C A, = v&w. Therefore, y € €*(x)
and consequently A, C €*(x).

Finally, we consider the maps ¥ : P/e* — N by €*(x) — n, where x € A,
and{ : T/T* — Rby I'(r) — 1, where r € B;. Then, ¥ is a module isomorphism
and 1 is a ring isomorphism. O
The following theorem from [16] gives us a connection between the fundamen-
tal relations of 3* and e*.

Theorem 4 [16]. If for any a € T and p € P, there exists w € P such that
M(a).p*(p) € B*(u), then e = B.

Also, in a similar way we have:

Theorem 5 If for any a € T and p € P, there exists w € P such that
o (a).y*(p) € v*(u), then 0 =1.

Corollary 1 Let for any a € T and p € P, there exists w € P such that
M(a).p*(p) € B*(u).

(1) The module P/} over the ring T/TY is isomorphic to the module N over
the ring R.

(2) The module P/vy} over the ring T/ is isomorphic to the module N/6%
over the ring R/o.

By the proof of Theorem 3, we have:

Theorem 6 For every my,...,my € P and Ty € T where k > 1, one of the
following cases is verified.

(1) There exists t € N such that Z{; m{ = Ay, where m{ = my or
m{ = (2 Try)mu.

2) There exists B € p*(M) such that S\ m/ = B, where m! = my or
1=1"" 1
“L{ =~ (ZIITW)””'
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Proof. Let my,.. S, Mg € P and Tijk € T. Set m{ = my or m{ = (Z Hriﬂ)ml.
Since P is a hypermodule so Zlf:] m{ € P. Let my € A, and 1y € By, -
If ny # On or tyj # Or then by definition of the (M, N)-hypermodule over
the (R,S)-hyperring, there exists t € N such that Z{; m{ = A¢. Else, for
every 1, i and j, we havemy € Ag, = M and my;1 € Bo, = S. Therefore,
Z{; m{ C Ag, = M and so there exists B € p*(M) such that Z{; m{ =B.0O

Theorem 7 (1) For every x € N and a € Ay, Cc(a) = A;.
(2) Wp = M.
Proof.

(1) By Theorem 6, it follows that for any i € N, A; is a complete part.
On the other hand for any i € N, there exists (y,z) € P? such that
ydz = Ayuz = Ay

(2) It obtains immediately from (1). .

Theorem 8 Let (P,®, ) be an (M, N)-hypermodule over an (R, S)-hyperring
(T,1,®). Then ® is commutative if and only if ® is commutative.

Proof. It is straightforward. O

Lemma 1 Let (P,®,e) be an (M, N)-hypermodule over an (R,S)-hyperring
(T,1,®). Let N has an element 1N such that for everyr € R, v+ 1y = 1. Then,
B C A, for everyr € R if and only if for everyt € T, t € tou, for allu € Aq.

Proof. If N has an element Ty such that r x 1y = 1, for every r € R, then
R C N andso By C Ap. Let r € R*, t € By and u € Aj. Then, toeu = A =
A DBy >t

Conversely, let T € R and t € B;. Then for every u € Aj we have t € teu =
Ars1y = Ar and so By C A, O
Let (M, +,0) be a hypermodule over a hyperring (R,+,-) such that M has
zero element 0. If A C M and B C R then we define the following notations:

(OrA)={reR|Vx €A, rox=0}=Anng(M),
B:m0)={xeM|VreB, rox=0}.

A faithful module M is one where the action of each r # Og in R on M is
non-trivial (i.e., rx # On for some x in M). Equivalently, the annihilator of
M(Anng(M)) is the zero hyperideal.
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Lemma 2 Let (M, +,0) be a hypermodule over a hyperring (R, 4+, -) such that
M has zero element 0.

(1) If A be a non-empty subset of M, then (0 :x A) is a hyperideal of R.

(2) If B be a non-empty subset of R, then (B :pm 0) is a subhypermodule of R.

Theorem 9 Let (P,®, ) be an (M, N)-hypermodule over an (R, S)-hyperring
(T1,©).

(1) Let N has an element 1N such that v+ 1N =1 for every v € R, t € teu
for everyt € T and u € Aj. Set E((P,8)) ={e € P |Vt e T t € teel}.
Then E((P);)) = UXG(RZNO) AX-‘r]N'

(2) Let R has an element 1g such that Tg * x = x for every x € N, and
E((T,8)) ={e € T|Vx P, ¢ € cox}. ThenE((T,8)) = UaeAmR(N) Batig-

Proof. (1) By Lemma 1, we have B, C A, for every r € R. For every t € T
there exists r € R such that t € B,.. Now, let u € UXG(R:NO) Ax+1n- Then, there
exists z € (R iy 0) such that u = A, 1. Thus, teu = BeA, 1 = Ar i1 =
A; D B; o t. Therefore, u € E((P, o)).

Conversely, suppose that e € E((P,®)). Then, for every t € T, t € tee. Let
te B]' and e € A;,. Then, t € Aj*n- Butt e t5A1N = A]‘*1N = Aj SO A]' = A]‘*n.
Therefore, j = j*n for every j € R. Thus, j(n—1yn) = Oy and n—1y € (R:Nn 0).
Therefore, there exists z € (R:n 0) such that n =z 4+ Ty.

(2) Let t € Biy4a, where a € (0:x A). For all x € P, if x € A, then tex =
Allgra)m = Allgintasn) = Anto = An 3 x. Hence, t € E((T,®)). Conversely,
suppose that b € E((T,e)). Then, there exists r € R*, such that b € B,. Let
z € By,. So, for every n € N and x € A, we have x € zex € Ay, *n = A,
and x € bex € A.n. Therefore, for every Ap N An # 0 and T xn = n for
every 1 € N. Therefore, (r—1Tg)*n =0and r—1g € (0:x A) and there exists
a € (0:x A) such that r = 1g + a. O

Corollary 2 Let (P,®,®) be an (M, N)-hypermodule over an (R, S)-hyperring
(T,1,®). If N has an element 1N such that t € tely for everyt € T and R is
a unitary ring, then E((P,®)) = Aq.

Corollary 3 Let (P,®,e) be an (M, N)-hypermodule over an (R, S)-hyperring
(T,1,®). If R has an element 1g such that 1g * x = x for every x € N, and N
is a faithful module over the ring R, then E((T,®)) = By,.
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Lemma 3 Let (M,+,0) be a hypermodule over a commutative hyperring
(Ry+,) and for every a € R set Q = ao M. Then Q is a subhypermodule.

Proof. We show that RoQ C Q and forallqe Q, Q+q=qg+ Q = Q. Let
T € R and q € Q. Then, there exists m € M such that q = a o m. Now, we
have rog=ro(aom)=(r-aJom=(a-r)om=ao(rom)CaoM=Q.
Also, Q+q=aoM+aom=ao(M+m)=aoM =Qand q+Q =
aom+aoM =ao(m+M) =aoM = Q. Therefore, Q is a subhypermodule
of M. O

Theorem 10 Let (P, ®,®) be an (M, N)-hypermodule over an (R, S)-hyperring
(T,1,®). Set Py = teP. If S is a commutative hyperring, then Py is a subhyper-
module of P. Also, for every r € R, P, =0, for everyt € (0:p t), Py =0.

Lemma 4 [8]. Let (R,+,-) be a hyperring and let x € R. Let 1 =K -x. Then
I is a left hyperideal of R if and only if for everyye [ 1.y=y-1=1

Corollary 4 Let (R,+,) be a commutative hyperring and let x € R. If we set
[ =K-x then I is a hyperideal of R if and only if for everyy € , I-y =L
Moreover, (1,4, 0) is a hyperring.

Theorem 11 [8] Let (T,1,®) be an (R,S)-hyperring and S be commutative.
Then Ty = TOt is a hyperideal of T and (Ti, §, ®) is a commutative hyperring.

Lemma 5 Let (M,+,0) be a hypermodule over a commutative hyperring
(R, 4+, ) and for every a,b € R set Mg =aoM and R, =R-b. Then My is a
hypermodule over a hyperring Ry if and only if for every x € Ry, Rp - x = Rp.

Theorem 12 Let (P,®,®) be an (M, N)-hypermodule over an (R, S)-hyperring
(T,1,®) and let a,b € T. If S is a commutative hyperring then (aeP, d,e) is a
hypermodule over a hyperring (T ® b, {,®).

Proof. It obtains from Theorems 10 and 11 and Lemma 5. O

Example 2 Let (M, +,0) be a hypermodule over a commutative hyperring
(Ry+,-) and for every a € R set Q = aoM, and Q + q # Q.

Lemma 6 Let (P,®,e) be an (M, N)-hypermodule over an (R,S)-hyperring
(T,1,®). Then S has a weak neutral element if and only if P has a weak neutral
element.
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Proof. Let e € P be a weak neutral element of P. So for every p € P we
have p € edp Npde. Let e € A,. We show that n = On. If n # Oy, then
e € ede = A, which implies that e € A, N A and Ay = Apn. Thus,
n+n =n and n = On. Therefore, e € Ao, = M.

Conversely, let e € M be a weak neutral element of M. Then, for every
p € An when n # Oy, we have pde € Ao, = An and so p € pde. In a
similar way, we obtain p € e®p. Therefore, e is a weak neutral element of P. [J

Theorem 13 Let (P, ®,®) be an (M, N)-hypermodule over an (R, S)-hyperring
(T,1,®). If R is a field and N is a unitary R-module, then P/e} is a hypervector
space over the field T/TT.

Proof. Since R is a field, T is a hyperfield. Since N is a unitary R-module,
P/e} is a unitary T/T7-module. Therefore, P/e} is a hypervector space over
the field T/Ty. O
Let us denote Pg and Ps, the sets of scalars of the (M, N)-hypermodule over the
(R, S)-hyperring with respect to the hyperoperations & and e, respectively, i.e.,
Pz ={u € P | card(u®x) =1, for all x € P} and Ps ={u € P | card(teu) =1,
for all t € T}.

Theorem 14 Let (P, ®,®) be an (M, N)-hypermodule over an (R, S)-hyperring
(T,1,®). Then:

(1) If PN (P—M) # 0 and PN (P—M) # 0, then & and ® are operations.
(2) If Py # 0 and Pz N (P—M) =0, then cardA, =1 for alln € N —{On}.

Proof. (1) Let wu e Pz N (P —M), i.e., u € Ay # N. Then, for all m € N, A,
is singleton, because by taking y € Am_1,, we get the singleton u®y = An,.
Consequently, ® and @ are operations.

(2) By hypothesis, we have Pz C M. Moreover, if u € Pg, then u € Ay,,. For
alln € N—{On}, we consider y € Ay,. Then, we get the singleton udy = A,,. O
An (M, N)-hypermodule over an (R,S)-hyperring (T, §,®) is called a (0, N)-
hypermodule, when M is a singleton set.

Theorem 15 Let (P, &®,e) be an (M, N)-hypermodule. We have
(1) Ps #£0, if and only if P is a (0, N)-hypermodule.

(2) If PsN Ay #0, for somen € N, then Ay, C Ps and we have cardAy =1
and Ay C Ps, for allk € Rxn.
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Proof. (1) Let y € Ps. If y € M, then for t € B; # S we have M = tey is a
singleton set. If y € P—M, then for s € S = By, we have M = Ay, =tey is a
singleton set. Hence, P is a (0, N)-hypermodule. Conversely, if M is a singleton
set, then Pg # (.

(2) Let PsN Ay # 0, n € N. If n = Oy, then because of (1), M is a singleton
set and so (2) is valid. We prove (2) for n € N —{0,}. Since, for all x,y € Ay,
t € T, tex = tey, this implies that Ay C Ps. Moreover, if x € Ps N A;, then
for all r € R, we consider an arbitrary t € B, and we have that Ay, = tex
is a singleton set. Hence, cardAy = 1, for all k € R * n. Finally, let Ay = {x},
when k € R+ n. Then, for all t € B, # S, tex = A, is a singleton set,
because T* k € Rxn. Also, by (1), M is a singleton set and so Ay C Ps, when
k € Rxn. O
Now, let T ={t € T | card(teu) = 1, for all u € P.} Then, similar to Theorem
15, we have:

Theorem 16 Let (P, ®,e) be an (M, N)-hypermodule. Then:
(1) Te #0, if and only if P is a (0, N)-hypermodule.

(2) If Ts N By #£ 0, for some v € R, then B, C Tg and for all k € v x N, we
have cardAy = 1.

2 Quotient of an (M, N)-hypermodule over an (R, S)-
hyperring

Proposition 1 Let (P, ®,e) be a canonical (M, N)-hypermodule over the Kras-
ner (R, S)-hyperring (T,1,®) and 0 #q C P, 0 A1 C T. Then:

(1) q is a subhypermodule of P if and only if q = UneQ Ay, where Q is a
submodule of (N, W, x).

(2) his a hyperideal of P if and only if h = |J,cy Br, where H is an ideal of
(S» T) )

Proof. (1) Let q be a subhypermodule of P. Then, 0 € q and v € R* which
implies that Ay = re0 C g, so M C q. Let there exists n € N* such that
qNA, #0and x € qNA;. Then —x € g and —x € A_,, so we have A_,, € q.
Consequently, from the closure of & in ¢, it follows q = [J,cq An, where Q
is a subgroup of (N, W, *). Now, let r € R. Then, B;eA,, = A;.n C . Hence,
r*n € Q and Q is a submodule of N. The converse is verified in a simple way.

(2) It obtains similar to the part (i) of Proposition 4.1 [14]. O
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Proposition 2 Let (P, ®, ®) be a canonical (M, N)-hypermodule over the Kras-
ner (R, S)-hyperring (T,1,®). Suppose that G be a submodule of (N, W, x) and
H be an ideal of (R,+,%). If g = UpegAn and h = U;gyy By, then [P: g*] =
[N : G*] and [T : h*] = [R: H*]. In addition, the module [P : g*] over the ring
[T : h*] is isomorphic to the module [M : G*] over the ring [R : H*].

Proof. According to [17], [P : g*] is a hypermodule over the hyperring [T : h*]
and Spartalis in [14], proved that [T : h*] = [R: H*] and ¢ : [T : h*] — [R: H*]
by @(h+t) = H+ r, is an isomorphism, where t € A;. Define the map
¢ :[P:g*] — [N:G*] by gba; — G + i. Then, ¢ is one to one and onto.
Moreover, for every myn € Ny r,s € R, x € A, y € An, t € B;, we have
d((gox) + (g@y)) = G+ m+n = d(gdx) + $(gDy) and for any t, € T we
have d((h+t)o(g+x)) = d(g+tex) =G+m™m = (H+1)o (G+m) =
@(h+t)od(g+x). O
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