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Abstract. We prove that for a triangulated plane graph it is NP-complete
to determine its domination number and its power domination number.

1 Introduction

Given a graph G = (V, E), for a subset of the vertices S ⊂ V, denote by Γ(S)
the closed neighborhood of S, i.e.,

Γ(S) = S ∪ {v ∈ V | ∃ s ∈ S such that (v, s) ∈ E}.

S is called a dominating set if V = Γ(S), i.e., every vertex from V \ S has a
neighbor in S. The size of the smallest dominating set is called the domination
number of G and is denoted by γ(G). A simple graph embedded in the plane
without crossing edges is called a triangulated plane graph if each of its faces
(including the other face) is triangular, i.e., its boundary consists of three
edges. We emphasize that in this paper we only consider undirected simple
graphs, i.e., multiple edges are not allowed. Garey and Johnson [5] have proved
that it is NP-hard to determine γ(G), already for planar graphs. We extend
this result to triangulated planar graphs.
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Theorem 1 For a triangulated plane graph G and integer n, it is NP-complete
to determine its domination number, that is, to decide whether γ(G) ≤ n.

Our method also works for the related parameter called power domination
number. This problem originates from monitoring electrical networks with so-
called Phasor Measurement Units; it was first formulated for graphs by Haynes
et al. [7], but we use the (somewhat different) definition given by Brueni and
Heath [3]. Given a graph G = (V, E), a set of vertices S, let S1 be the subset
of vertices from S that have exactly one neighbor outside S, i.e.,

S1 = {s ∈ S | ∃! v ∈ V \ S such that (s, v) ∈ E}.

The vertices of S1 can propagate to their neighbors, so we define

Γ1(S) = S ∪ Γ(S1).

The power domination process starts from any set of vertices S, in the first
steps applies the Γ operator, and then in each following step the Γ1 operator,
until Γ1 stops increasing the size of the set (which happens after finitely many
steps in a finite graph). The set of vertices obtained this way is denoted by

ΓP(S) = Γ1(. . . Γ1(Γ(S)) . . .).

If V = ΓP(S), then we say that S is a power dominating set and the size of
the smallest such set is the power domination number, γP(G), of the graph
G. Brueni and Heath [3] have proved that it is NP-hard to determine γP(G),
already for planar graphs. We extend this result to triangulated planar graphs.

Theorem 2 For a triangulated plane graph G and integer n, it is NP-complete
to determine its power domination number, that is, to decide whether γP(G) ≤
n.

In fact, our construction will be such that either there is an S with |S| = n
such that already V = Γ1(Γ(S)), or γP(G) > n.

For more related literature and background, see the recent works [1, 4].

2 Technical claims

Our reductions are from the Planar Monotone 3-sat problem, which was
defined and shown to be NP-complete in [2]. In this problem the goal is to



176 D. Pálvölgyi

x1 x2 x3 x4 x6x5

x1 ∨ x4 ∨ x6

x1 ∨ x2 ∨ x4

x2 ∨ x3 ∨ x4 x4 ∨ x5 ∨ x6

x̄4 ∨ x̄5 ∨ x̄6x̄1 ∨ x̄2 ∨ x̄3

x̄1 ∨ x̄4 ∨ x̄6

x̄3 ∨ x̄4

Figure 1: Example of a Planar Monotone 3-sat input. A satisfying assign-
ment: only x4 is true.

decide the satisfiability of a conjunctive normal form (CNF), where each clause
contains at most 3 literals, all of which are either negated, or all unnegated,
along with a planar embedding of the incidence structure in the following way.
(See Figure 1.)

• Each variable corresponds to an interval in the horizontal line y = 0;
these intervals are pairwise disjoint.

• Each clause corresponds to an axis-parallel rectangle; these rectangles
are pairwise disjoint.

• If a clause contains only negated (resp. unnegated) variables, then its
rectangle is entirely contained in the y < 0 (resp. y > 0) halfplane.

• Every rectangle is connected to (the intervals corresponding to) the vari-
ables contained in (the clause corresponding to) it by a vertical segment,
which does not pass through any other rectangles.

Note that clauses containing less than 3 literals are also allowed; we are not
aware of whether the problem remains NP-complete or not if we require that
every clause contains exactly 3 literals (this would slightly simplify our proof).
Note that without requiring monotonicity (and any other special structure)
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Planar Exact 3-sat is NP-complete [9], even if the planar incidence graph
is vertex 3-connected [8]. In our case, however, it seems more likely that the
problem always becomes solvable. This would also follow from a conjecture
of Goddard and Henning [6], according to which the vertices of any plane
triangulation can be 2-colored such that each vertex is adjacent to a vertex of
each color. (Here we do not go into details about why their conjecture would
imply our claim; it involves a triangulation similar to the one that can be
found in our main proof.)

We can, however, suppose that no clause contains exactly 1 literal, as in
this case the formula could be easily simplified. Moreover, we can also suppose
that if a clause contains exactly 2 literals, then there is no other clause that
would contain the same two literals (with the same negations); e.g., (xi∨xj)∧
(xi ∨ xj ∨ xk) is equivalent to (xi ∨ xj). Because of this, and the properties of
the embedding, we can suppose the following.

Observation 3 For any two literals there are at most two clauses that contain
both of them, and if two such clauses exist, both of them also contains a third
literal.

We will also use the following technical lemma about triangulating plane
graphs.

Lemma 4 Suppose that G = (V, E) is a plane graph and Z ⊂ V is a subset of
its vertices such that

(1) every vertex z ∈ Z has at least three neighbors,

(2) for a vertex z ∈ Z and two of the edges adjacent to it, (z, v) and (z, v ′),
that follow each other in the rotation around z in the embedding of G,
either (v, v ′) /∈ E or (v, v ′, z) forms a triangular face,

(3) if z, z ′ ∈ Z are neighbors, then they have exactly two common neighbors,
v, v ′ ∈ V, and (z, z ′, v) and (z, z ′, v ′) are two triangular faces of the
embedding,

(4) if two vertices v, v ′ ∈ V\Z have two common neighbors from Z, then they
have exactly two common neighbors from Z, z and z ′, and (v, z, v ′, z ′) is
a face of the embedding of G,

then G can be triangulated by adding only edges that are not adjacent to any
vertex in Z.
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Proof. We need to show that if for a vertex z ∈ Z two of the edges adjacent
to it, (z, v) and (z, v ′), follow each other in the embedding of G in the rotation
around z, then either (v, v ′) ∈ E and (v, v ′, z) forms a triangular face, or
(v, v ′) can be added as such. This way the faces around each z ∈ Z become
triangulated and we can triangulate the rest of the graph arbitrarily.

We handle the following cases separately.

• If (v, v ′) ∈ E, then because of condition (2) (v, v ′, z) forms a triangular
face.

• If v or v ′ is from Z, then because of condition (3) (v, v ′) ∈ E.

• If v and v ′ have no other common neighbor from Z, then connect them
by an edge in the vicinity of the curves of the edges (v, z) and (z, v ′).

• If v and v ′ have another common neighbor from Z, then because of
condition (4) they have exactly one, z ′ ∈ Z, and (v, z, v ′, z ′) is a face of
the embedding of G, thus we can divide it by adding the edge (v, v ′).

By repeatedly applying the above, the only condition we could violate is
condition (2) by adding the edge (v, v ′) such that (v, v ′, z) does not form a
triangular face. But we can add (v, v ′) to G only in the last two cases, when
v and v ′ have a common neighbor from Z, and in each case (v, v ′, z) forms a
triangular face after adding (v, v ′). This finishes the proof of Lemma 4. �

3 Proofs of Theorems 1 and 2

Proof. [of Theorem 1] The problem is trivially in NP, we only have to prove
its hardness.

Given an input Ψ to the Planar Monotone 3-sat problem on n variables,
we transform it into a plane triangulation G such that γ(G) ≤ n if and only
if Ψ is satisfiable. (See Figure 2 for the basic graph G obtained from Ψ and
Figure 3 for the plane triangulation.)

For each variable xi, G will contain a K4 (a complete graph on 4 vertices),
whose vertices we denote by vi, v̄i, ui, wi. The vertexwi has no other neighbors,
which already shows that γ(G) ≥ n, as we must select a vertex from each K4.

For each clause Ch we introduce a vertex, zh, that is connected only to one
vertex for each literal it contains; if xi ∈ Ch, then we connect zh to vi, while
if x̄i ∈ Ch, then we connect zh to v̄i.

The graph obtained so-far is obviously planar, now we need the following
bound on its domination number.
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Figure 2: Example of graph G used for hardness of domination obtained
from Planar Monotone 3-sat input. A dominating set of size 6:
{v4, v̄1, v̄2, v̄3, v̄5, v̄6}.

Claim 5 γ(G) = n if and only if Ψ is satisfiable.

Proof. Suppose that Ψ is satisfiable and fix a satisfying assignment. If xi is
true, we can let vi ∈ S, and if xi is false, we can let v̄i ∈ S. This way we
have picked a vertex from each K4 corresponding to the variables and since
the assignment satisfies Ψ, every vertex zh corresponding to a clause is also
dominated.

Suppose that γ(G) = n and fix a dominating set S of size n. As wi needs
to be dominated for each i, |S ∩ {vi, v̄i, ui, wi}| = 1. If vi ∈ S, we can let xi be
true, if v̄i ∈ S, we can let xi be false, and otherwise we can choose its truth
value arbitrarily. This way each clause is satisfied, as the corresponding vertex
zh had to be dominated. �

This already establishes the hardness of the problem for plane graphs; to
finish the proof of Theorem 1, we only need to show that we can triangulate G
without introducing any new neighbors to the zh vertices. If each clause of Ψ
contains exactly three literals, then this follows by taking the (not necessarily
straight-line) “natural embedding” of G obtained from the embedding of Ψ,
and applying Lemma 4 with Z containing the zh vertices that correspond to
the clauses (it is straight-forward to check that the conditions of Lemma 4
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Figure 3: Triangulation of G (with vertex v ′7 added to the only clause with two
variables).

hold using Observation 3).
If Ψ also contains clauses with only two literals, we need to introduce extra

vertices to G in the following way. For each clause with two literals, e.g.,
Ch = (xi ∨ xj), we add one extra vertex, v ′h, that we connect to xi, xj and zh.
Note that this does not change the domination number of G, as v ′h is connected
to exactly the same vertices as zh, and they are also connected to each other.
But now the conditions of Lemma 4 hold with Z containing the zh vertices,
thus we can obtain a triangulation, finishing the proof of Theorem 1. �

Proof. [of Theorem 2] As in the case of Theorem 1, the problem is trivially
in NP, we only have to prove its hardness.

Given an input Ψ to the Planar Monotone 3-sat problem on n variables,
we transform it into a plane triangulation G such that γP(G) ≤ n if and only
if Ψ is satisfiable. (See Figure 4.)

For each variable xi, G will contain six vertices, vi, v̄i, ui, v
′
i, v̄

′
i, u

′
i, such

that they all have edges between them except (vi, v
′
i), (v̄i, v̄

′
i) and (ui, u

′
i).

The vertices v ′i, v̄
′
i, u

′
i have no other neighbors among the other vertices of
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Figure 4: Example of graph G used for hardness of power domination obtained
from Planar Monotone 3-sat input. A power dominating set of size 6:
{v4, v̄1, v̄2, v̄3, v̄5, v̄6}. This graph can be triangulated similarly as on Figure 3.

the graph, thus their degrees are 4. This already shows that γ(G) ≥ n, as
we must select a vertex from each such sextuple1, otherwise we could not
propagate to v ′i, v̄

′
i, u

′
i, as each of their neighbors is adjacent to at least two

of them. If, however, we choose any of vi, v̄i, ui to our initial set S, we have
{vi, v̄i, ui, v

′
i, v̄

′
i, u

′
i} ⊂ Γ1(Γ(S)) ⊂ ΓP(S).

For each clause with three literals, e.g., Ch = (xi ∨ xj ∨ xk), we introduce
three degree 4 vertices, zh,i, zh,j, zh,k, that are connected to each other and to
two of the literals each; zh,i is connected to vj and vk, zh,j is connected to vi and
vk, and zh,k is connected to vi and vj. (If Ch contained negated literals, than
instead of the vi, vj, vk we would use v̄i, v̄j, v̄k.) Notice that we must select

1The six titles won by Barcelona in 2009 (Copa del Rey, La Liga, UEFA Champions
League, Supercopa de España, UEFA Super Cup and FIFA Club World Cup) have been
described as a ‘sextuple’. This achievement, however, took place over the course of two
different Spanish seasons, including a treble in the 2008-09 season. Despite occurring in two
seasons, the six titles are still counted as a ‘sextuple’ by many people, because the three
added trophies (during the 2009-2010 season) were extra matches of the 2008-2009 treble
and all six titles were won in the same calendar year.
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at least one of vi, vj, vk, zh,i, zh,j, zh,k, otherwise we could not propagate to
zh,i, zh,j, zh,k, as each of their neighbors is adjacent to at least two of them. If,
however, we choose any of vi, vj, vk to our initial set S, we have {zh,i, zh,j, zh,k} ⊂
Γ1(Γ(S)) ⊂ ΓP(S).

For each clause with two literals, e.g., Ch = (xi ∨ xj), we introduce four
degree 4 vertices, zh,i, zh,j, zh,h, vh,h, that are connected to each other and two
additional vertices each: zh,i is connected to vj and vh,h, zh,j is connected to
vi and vh,h, and zh,h and vh,h are connected to vi and vj. (If Ch contained
negated literals, than instead of the vi and vj we would use v̄i and v̄j.) Notice
that we must select at least one of vi, vj, zh,i, zh,j, zh,h, vh,h, otherwise we could
not propagate to zh,i, zh,j, zh,k, as each of their neighbors is adjacent to at least
two of them. If, however, we choose any of vi or vj to our initial set S, we have
{zh,i, zh,j, zh,h, vh,h} ⊂ Γ1(Γ(S)) ⊂ ΓP(S).

The graph obtained so-far is obviously planar, now we need the following
bound on its domination number.

Claim 6 γP(G) = n if and only if Ψ is satisfiable.

Proof. Suppose that Ψ is satisfiable and fix a satisfying assignment. If xi is
true, we can let vi ∈ S, and if xi is false, we can let v̄i ∈ S. This way we have
picked a vertex from each sextuple corresponding to the variables and since
the assignment satisfies Ψ, every vertex corresponding to a clause is power
dominated by S.

Suppose that γ(G) = n and fix a power dominating set S of size n. As we
need to pick a vertex from each sextuple for each i, |S∩{vi, v̄i, ui, v ′i, v̄ ′i, u ′

i}| = 1.
If vi ∈ S, we can let xi be true, if v̄i ∈ S, we can let xi be false, and otherwise
we can choose its truth value arbitrarily. This way each clause is satisfied, as
the corresponding zh,. vertices had to be power dominated. �

This already establishes the hardness of the problem for plane graphs; to
finish the proof of Theorem 2, we only need to show that we can triangulate
G without introducing any new neighbors to the zh vertices. This follows by
taking the “natural embedding” of G obtained from the embedding of Ψ, and
applying Lemma 4 with Z containing the zh,. vertices that correspond to the
clauses (it is straight-forward to check that the conditions of Lemma 4 hold
using Observation 3). �
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Hungarian Academy of Sciences (MTA), under grant number LP2017-19/2017.

References

[1] A. Aazami, Domination in graphs with bounded propagation: algorithms, for-
mulations and hardness results, J. Comb. Optim., 19, 4 (2010) 429–456. ⇒
175

[2] M. de Berg and A. Khosravi, Optimal binary space partitions for segments in
the plane, Int. J. Computational Geometry & Applications 22 (2012) 187–206.⇒175

[3] D. J. Brueni and L. S. Heath, The PMU placement problem, SIAM Journal on
Discrete Mathematics 19, 3 (2005) 744–761. ⇒175
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