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Boróka OLTEAN-PÉTER
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Abstract. In 2020, due to the COVID−19 pandemic, various epidemio-
logical models appeared in major studies [16, 22, 21], which differ in terms
of complexity, type, etc. In accordance with the hypothesis, a complex
model is more accurate and gives more reliable results than a simpler one
because it takes into consideration more parameters.

In this paper we study three different epidemiological models: a SIR,
a SEIR and a SEIR− type model. Our aim is to set up differential equa-
tion models, which rely on similar parameters, however, the systems of
equation and number of parameters deviate from each other. A visual-
ization dashboard is implemented through this study, and thus, we are
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able not only to study the models but also to make users understand the
differences between the complexity of epidemiological models, and ulti-
mately, to share a more specific overview about these that are defined by
differential equations [24].

In order to validate our results, we make a comparison between the
three models and the empirical data from Northern Italy and Wuhan,
based on the infectious cases of COVID-19. To validate our results, we
calculate the values of the parameters using the Least Square optimiza-
tion algorithm.

1 Introduction

The COVID-19 pandemic has been responsible for over 24 million cases world-
wide according to WHO reports. Not only has it been causing one of the biggest
global health crises and the greatest challenge we have faced since World War
II., but will also turn global economic growth “sharply negative” this year,
based on a forecast by BBC.

Mathematical models have been employed to inform media, authorities and
researchers from different areas about the effect of the virus from different per-
spectives. In this study, we are going to discuss three different epidemiological
models, which are visualized by a reactive tool. As [24] says epidemiological
models are a key tool to guide public health measures. Without having experi-
ences in crises such as this one, modelling and simulations require assumptions
and different test scenarios. Therefore, visualizing three models with different
complexity and parameter numbers as well as, comparing them are crucial
to be well prepared for future events and to understand the roles of different
factors in this pandemic.

Our first goal is to minimize the gap between medical reports, statistics,
interoperability and public health information system [1, 6, 14, 3]. However,
[3] study also highlighted that the pressure from this gap has always been
particularly acute for the surveillance and management of infectious diseases
with pandemic or bioterrorism potential, we reckon that nowadays this issue
is one of the most pressing global problems.

We think that this tool is useful not only from the perspective of the public
health information system, but also from that of simulations. We use one of
the newest Javascript libraries, Svelte, to create a reactive tool. Secondary,
our aim is to validate our results with help of the Least Square optimization
algorithm. Truncated Newton method is suitable for solving large nonlinear
optimization problems [18].

https://www.bbc.com/news/business-52236936
https://svelte.dev/
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The novelty of this research is that even though there exist several tools
which visualize the results of mathematics models, which are presented in 3
section, we have no knowledge of tools which compare the models and validate
the results with empirical data.

2 Short overview of epidemiological models and vi-
sualization dashboards

Study [3] in 2014 made a systematic review about visualization and analyt-
ics tools used for infectious disease epidemiology. In this study 247 articles
were screened, and 88 articles were included in the review process. These ar-
ticles primarily included descriptive reports, qualitative (e.g. interviews, focus
groups) and usability studies. Although, public health workspace is extremely
diverse [19] and the need for rapid access to information to support critical
decisions in public health is inevitable, the public health information sources
are unstandardized [12]. As a result, the visualization and analytics tools are
various, especially in the case of COVID− 19 disease.

There are many studies which concentrate on the model proposal, such as
[16, 22, 21], but there is a lack of visualization of these models. To our knowl-
edge, the number of dashboards which project and simulate the population’s
exposure is very low, there is only one tool1 which is a reactive data visualiza-
tion based on an epidemiological model. However, the above mentioned visu-
alization dashboard uses a basic SEIR model which cannot provide sufficiently
accurate results from our point of view. We reckon that the demand for these
tools which predict cases would be much higher, especially because there are a
lot of different other software which visualize the empirical, measured cases in
different countries and regions, such as Covidvisualizer2, Gisanddata3 which
was presented in [9] study or Wolframcloud Visualization Dashboard4. Other
web pages which try to inform individuals and to minimize the COVID − 19
damages are rife, for instance, the ′plugandplaydiagnostics ′ software, pre-
sented in [25] study, which helps to prevent future epidemics or the COVID-19
Search Intensity Monitoring tool5. We also need to mention Epirisk dashboard6

1https://gabgoh.github.io/COVID/index.html
2https://www.covidvisualizer.com/
3https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#

/bda7594740fd40299423467b48e9ecf6
4https://www.wolframcloud.com/obj/examples/COVID19Dashboard
5https://covid19map.uptodate.com/
6https://epirisk.net/

https://gabgoh.github.io/COVID/index.html
https://www.covidvisualizer.com/
https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://www.wolframcloud.com/obj/examples/COVID19Dashboard
https://covid19map.uptodate.com/
https://epirisk.net/
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which is a computational platform estimating of the probability of exporting
infected individuals from sites affected by a disease outbreak to other areas in
the world through the airline transportation network and the daily commuting
patterns.

As it can be seen, the above listed tools do not concentrate on mathematical
models, and they do not contain a model comparison, even though different
mathematical models bring various results [13, 1].

There is no accepted consensus regarding the modelling approach is con-
sidered to be the most accurate. Cooper et al. [8] use an susceptible-infected-
removed (SIR) model and Wangping et al. [26] calculates with an extended SIR
model, where transmission can be changed through many interventions, such
as personal protective measures, community-level isolation, and city blockade.
A lot of studies use susceptible-infected-exposed-removed (SEIR) models and
their extended versions [29, 16, 22, 21, 23, 28, 17, 11].

In the above mentioned studies not only are the epidemiological models are
different, but also the results and the parameter values are various.

3 Mathematical background for epidemiological
models and optimization algorithm

Not only do we confirm that it is not possible to decide which model brings
the most accurate results, but we also reckon that users’ knowledge regarding
the COVID− 19 pandemic and mathematical modelling is very wide-ranging.
Even though we would accept the hypothesis according to which a more com-
plex model is more accurate than a simpler one, we are faced with challenges
regarding the user environment: users need to set up many parameters, which
is difficult to comprehend. As one of our aims is to minimize the gap between
general users and the public health information system, we reckon that by
choosing a too complex model we would lose a significant part of possible
users who we want to address.

For that, we have implemented three different models, with different com-
plexity and different parameter numbers, but they use same parameters, which
have the same meaning from a medical and environmental point of view.

3.1 SEIR-type model

The most complex model is a general SEIR-type model, which incorporates
biological, social, environmental processes, such as governmental actions, (e.g.
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school closing), weather conditions (temperature, humidity), and behavioral
responses. Taking into account the above factors, we propose for the visual-
ization the following SEIR-type model (see for more details see [10]):



S ′ = −(βc (t) + c (t)q (1− β))S (I+ θA) /N+ λSq

E ′ = βc (t) (1− q)S (I+ θA) /N− σE

I ′ = σρE− (δI + α+ γI) I

A ′ = σ (1− ρ)E− γAA

S ′q = (1− β) c (t)qS (I+ θA) /N− λS

E ′
q = βc (t)qS (I+ θA) /N− δqEq

H ′ = δII+ δqEq − (α+ γH)H

R ′ = (δI + α+ γI) I+ γAA+ γHH− γRR

where the functions S, E, I, A, Sq, Eq, H and R denote the proportion of the
population into eight groups: susceptible (S(t)), exposed (E(t)), infectious
(I(t)), pre-symptomatic (A(t)), hospitalized (H(t)), recovered (R(t)), quar-
antined susceptible (Sq(t)) and isolated exposed (Eq(t)) groups of population,
see Figure 1 for infection dynamics:

�

��

� �

�

�

�

���

(1 − �)��

��(1 − �)

�
�
�

(1
−

�)
�

��

��

��

��

��

�
�

� �

Figure 1: Model diagram for infection dynamics (SEIR-type model)
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3.2 SEIR model

The SEIR − type model’s simplified version is the SEIR model which uses
significantly less parameters. This model was developed from the SEIR− type
model: 

S ′ = −(βc (t) + c (t)q (1− β))SI/N

E ′ = (βc (t) + c (t)q (1− β))SI/N− σρE

I ′ = σρE− (δI + α+ γI) I

R ′ = (δI + α+ γI) I− γRR

where the functions denote the proportion of the population into four groups:
susceptible (S(t)), exposed (E(t)), infectious (I(t)) and recovered (R(t)), see
Figure 2.

S E

I

R

Figure 2: Model diagram for infection dynamics (SEIR model)

3.3 SIR model

By following the previous logic, we get the SIR model, if we exclude from the
SEIR model the exposed population:

S ′ = −βSI/N

I ′ = βSI/N− γII

R ′ = γII− γRR

where the population is split into 3 groups: susceptible (S(t)), infected (I(t))
and recovered (R(t)) proportions.

S I R

Figure 3: Model diagram for infection dynamics (SIR model)
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3.4 The meaning of the parameters

The above mentioned models use same parameters in order to be comparable.
These parameters are presented briefly, in case any additional information is
needed, read [10] study.

The parameters σ and λ describe the transition rate of exposed individuals
to the infected class and the rate at which the quarantined uninfected were
released into the wider community, while the parameter ρ represents the prob-
ability of having symptoms among infected individuals. The parameters δI and
δq denote the transition rate of symptomatic infected and quarantined exposed
to the quarantined infected class. The γI, γA and γH represent the recovery
rate of symptomatic, asymptomatic and quarantined infected individuals, and
finally γR is the rate at which immunity is lost and recovered individuals move
to the pre-symptomatic class (according to a recent NHK-World Japan report7

and [15]). The parameter θ represents the relative transmission probability of
pre-symptomatic individuals to infected individuals. Finally we assume that
natural birth and natural death rates are equal.

The motivation of such a choice is the following (see also [5, 28]): individuals
move from quarantined cases with 1− q proportion to Sq and with q propor-
tion to Eq. If the transmission probability is β and the contact rate is c, then,
the infected quarantined individuals move to Eq at rate of βcq and uninfected
quarantined individuals move to Sq at (1− β) cq rate. In case of not quar-
antined infected, they are going to move to E at a rate of βc (1− q). When
an epidemiological outbreak occurs, many preemptive actions can be taken to
mitigate the spreading. Once people become informed, they can change their
behavior, working from home, practicing social distancing, and take actions
like washing hands more often, wearing protective clothing, disinfecting etc.,
all of them contributing to the prevention of the spread. The media interacts
with the susceptible population, it starts influencing them to take appropriate
measures to minimize the chances of getting infected. This media influence is
initially low and increases as the infection increases. This observation suggests
the following contact rate function:

c(t) = ca +
3(c0 − ca)

1+ 2b−t
, t ≥ 0, (1)

where b < 1 and c0 denotes the initial contact rate, while ca denotes the
minimum contact rate under the current control strategies.

7https://www3.nhk.or.jp/nhkworld/en/news/20200315_13/

https://www3.nhk.or.jp/nhkworld/en/news/20200315_13/
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Obviously, not every parameter appears in all of three models. This descrip-
tion can be seen complete only in case of the SEIR− type model.

3.5 Least square optimization algorithm

Optimization algorithms can be classified into two major categories: line search
methods and trust region methods, as Ya-xinag Yuan confirms [30]. The trust
region approach associates with approximation, assuming that we have a cur-
rent guess and the model can be constructed near that point. This algorithm
is proposed to solve large-scale bound constrained minimization problems.
It solves trust-region subproblems iteratively, augmenting with trust-region
shape determined by the distance from the bounds and the direction of the
gradient and by a special diagonal quadratic term as it is formulated in Python
documentation8. The aim of this improvement is to iterate through the whole
space of variables and to avoid hitting directly the bounds.

The mathematical approach of Trust Region Reflective Algorithm was for-
mulated based on [“A subspace, interior and conjugate gradient method for
large-scale bound-constrained minimization problems”] paper by Nikolay May-
orov through article9. It is defined the following bound-constrained minimiza-
tion problem

min f (x) , x ∈ F = {x : l ≤ x ≤ u} ,

where l ∈ {R ∪ {−∞}}n and u ∈ {R ∪ {∞}}n and also the f function is a smooth
function [2]. The g (x) = ∇f (x) and H (x) = ∇2f (x). Defining the following
vector, we get

v (x)i =


ui − xi gi < 0, ui <∞,
xi − li gi > 0, li > −∞,
1 otherwise.

Defining a matrix D (x) = diag
(
v (x)

1
2

)
, we can formulate the first order

optimality as followed:
D2 (x)g (x) = 0.

If v (x)i = 0 the Jacobian of the left hand does not exists, so we can consider
that

v (x)i 6= 0,
8https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_

squares.html
9https://nmayorov.wordpress.com/2015/06/19/trust-region-reflective-algorithm/

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
https://nmayorov.wordpress.com/2015/06/19/trust-region-reflective-algorithm/
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for all i. This happens if x is not on the bound. In this case the Newton step
for this system is

(
D2H+ diag (g (x)) Jv

)
p = −D2g (x) ,

where Jv is the v (x) vector’s diagonal Jacobian matrix. Now the corresponding
trust-region problem can be formulated:

min
p
m (p) =

1

2
pTBp+ gTp, s.t. ||D−1p|| ≤ ∆,

where B = H + D−1CD−1 and C = diag (g) Jv. As it is formulated in [7]
study reflective algorithms are used to maintain feasibility by a piecewise lin-
ear function, which helps to avoid bounds. The following implementation (Al-
gorithm 3.5), which was developed by Nikolay Mayorov is mainly the same as
scipy.optimize.least_squares:

1 import numpy as np

2

3 def reflective_transformation(y,l,u):

4 if l is None:

5 l=np.full_like(y, -np.inf)

6 if u is None:

7 u=np.full_like(y,np.inf)

8 l_fin=np.isfinite(l)

9 u_fin=np.isfinite(u)

10 x=y.copy()

11 m=l_fin & ~u_fin

12 x[m] = np.maximum(y[m], 2*l[m]-y[m])

13 m=~l_fin & u_fin

14 x[m] = np.maximum(y[m], 2*u[m]-y[m])

15

16 m=l_fin & u_fin

17 d=u-l

18 t=np.remainder(y[m]-l[m], 2*d[m])

19 x[m]=l[m]+np.minimum(t,2*d[m]-t)

20

21 return x

22

Algorithm 1: Reflective transformation algorithm
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4 The overview of the visualization dashboard

Wekler at al. [27] defines dashboards as: “a visual display of data used to
monitor conditions and/or facilitate understanding”, our aims are to monitor
conditions and facilitate the understanding of the COVID − 19 pandemic
and similar infectious diseases. The presented tool is a functional genre of
dashboard which, as Sarikaya et al. [20] defines, means an interactive display
that enables real-time monitoring of dynamically updating data.

The dashboard is a reactive, interactive tool, which is going to be presented
trough the following types of interactivity [20]:

1. Construction and Composition,

2. Multipage,

3. Interactive Interface.

The role of this classification is that reactivity and interactivity can take place
at a number of different places in the dashboard lifecycle.

Reactive programming means a declarative programming paradigm where
variables are updated automatically whenever other values change, while the
re-execution of the statements is not necessary. Reactivity is programming
with asynchronous data streams10. The benefit of the reactivity is that the
dashboard becomes highly interactive with a multitude of UI events related
to data events. This benefit evolves real-time monitoring: modifying a single
value, such as a parameter, can automatically trigger other contents. Using
Svelte Javascript library reactivity is realized by techniques such as virtual
DOM which runs at built time, converting the components into a highly effi-
cient imperative code that updates the DOM11.

Due to the reactivity of the tool, the differential equation solver needs to
compute the model very efficiently in order to serve a reasonable re-computa-
tion time based on the current parameters. From data visualization’s perspec-
tive one of the most pressing issues was to find an implementation which is
accurate enough and does not cause lagging. For that, we have chosen the
classic Runge-Kutta IV (RK4) method. There are a lot of Javascript libraries
which implement Runge-Kutta methods, such as Runge-Kutta 4 library12, or
Cash-Karp implementation13 which is an adaptive Runge-Kutta method and

10https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
11https://svelte.dev/blog/svelte-3-rethinking-reactivity
12https://www.npmjs.com/package/runge-kutta-4
13https://www.npmjs.com/package/ode45-cash-karp

https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
https://svelte.dev/blog/svelte-3-rethinking-reactivity
https://www.npmjs.com/package/runge-kutta-4
https://www.npmjs.com/package/ode45-cash-karp
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is presented in [4] study. However, we chose almost the simplest library Runge-
Kutta library14, because this one can set up properly the interval and the step
size. Our issue with adaptive Runge-Kutta method is that it gave significantly
less efficiency than our final choice.

4.1 Construction and composition

These dashboards provide flexibility for the viewer to customize the placement
of views, modify the visual representations inside those views, or select the
particular dimensions and measures to visualize [20].

As we presented in Section 3, we visualize values of three different mathe-
matical compartment models. As a result, users can modify the visual repre-
sentations of the models. Users can choose the following three major represen-
tations:

� SIR model representation

� SEIR model representation

� SEIR− type model representation

� Overall trend.

As we discussed in section 1, different parameter lists help the user to find
the model which is consistent with their knowledge. For instance, if the most
complex model, 17 parameters and 8 initial values of functions appear (Figure
5). In case of selecting SEIR representation, the number of parameters is 11,
4 initial values are needed. For the least complex model only 5 parameters, 3
initial values are needed. These options modify drastically the user experience,
because as long as the most complex representation gives a scientific view of
the topic, the simplest representation can be understood by general users.

14https://www.npmjs.com/package/runge-kutta

https://www.npmjs.com/package/runge-kutta
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Figure 4: SIR model, SEIR model, SEIR-type models’ representation, and over-
all trend
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Figure 5: SEIR-plus model’s parameter list and initial value condition
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4.2 Multipage

Usually dashboards are monopages, but some of them support tabbed layouts.
These dashboards allow viewers to switch between pages, which may have
visualizations that relate to a different component of decision-making or help
to provide the necessary context [20].

Regarding the presented dashboard, multipage and constraction-composition
relate closely. The user can navigate between the three model representations
and the comparison of three models. However, the dashboard has multi-level
structure, meaning that a single page, such as Overall trend page, is divided
to more than one components. The user can compare the tree models based
on each basic proportion of population. As it can seen on 6, the comparison
of models is visualized based on Recovered (R(t)) cases.

Figure 6: The user can choose which function to be visualized: S(t), I(t) or
R(t)). Here, the S(t) function is displayed.

4.3 Interactive interface

Obviously, drop-down menus (Figure 7), slicers (Figure 5) appear on the dash-
board which improve user-experience. But, due to the reactivity of the tool,
the differential equation solver was needed the model to be computed very
efficiently in order to serve a reasonable re-computation time based on the
current parameters. From data visualization one of the most pressing issues
was to find an implementation which is accurate enough and does not cause
lagging. For that, we have chosen the classic Runge-Kutta IV (RK4) method.
There are a lot of Javascript libraries which implement Runge-Kutta meth-
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ods, such as Runge-Kutta 4 library15, or Cash-Karp implementation16 which
is an adaptive Runge-Kutta method and is presented in [4] study. However, we
chose one of the simplest libraries Runga Kutta library17, because the adaptive
Runge-Kutta method gave significantly less efficiency than our final choice.

Figure 7: Drop-down list where the user can choose the country or area data
the data of which they want to be set up.

5 Results

We reckon that we accomplished our aims formulated in Section 1. Our pri-
marily one with visualization dashboard was to reduce the gap between general
user’s knowledge regarding mathematical modelling and public health informa-
tion system which helps to make correct decisions. For that, we implemented
different informative labelling and description (as shown Figure 8) regarding

15https://www.npmjs.com/package/runge-kutta-4
16https://www.npmjs.com/package/ode45-cash-karp
17https://www.npmjs.com/package/runge-kutta

https://www.npmjs.com/package/runge-kutta-4
https://www.npmjs.com/package/ode45-cash-karp
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the models, the parameters and initial conditions, which change dynamically
after modifying of the models. The fact, that parameters can be modified
only in predefined intervals serves the same purpose. We would like to suggest
values which reflect the reality. Because of it, when the dashboard is loaded
for the first time, the parameters are predefined based on Least-Square opti-
mization algorithm and empirical data of Northern Italy which can be seen in
SEIR-type column of Table 2.

Figure 8: Model description and informative labelling

However, based on our results, we reckon that choosing the proper model and
parameters’ values presumes prior knowledge from users. For that, we think
all visualization dashboards based on mathematical models mostly targeted
users who are mathematicians investigating the discussed models, and these
tools might be providing them with important insights.

5.1 Visualization dashboard

The functionalities of the visualization dashboard’s presented in this study
accomplish the aims formulated in 1 Section. The following functionalities
serve the demands of general lay users but they also help the work of practised
ones by the following components.

As it is presented on Figure 9, the web page has different components.
When the user enters the web page, they see a predefined parameter settings,
ebpagehich we calculated based on the cases of infection as measured in the
region of Northern Italy and the parameters were obtained with the help of the
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Least−Square algorithm. The user can start to change parameters manually
or can import new parameter setup via a JSON file. It is given the oppor-
tunity to set up some parameters manually after importing the parameters,
and the other way around, they can import some parameters after setting
up the parameter manually as well. After setting up the parameters, they
can be exported, resulting a JSON file with the current parameter setup, or
can directly display data visualization. If the user changes a parameter, the
differential equation solver automatically recalculates the result. After data
visualization, the charts can be exported in the PDF format as well.

Due to reactivity, these steps are not detached strictly, they can be inverted,
and other steps will respond to these changes directly and instantly.
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Figure 9: The stucture of visualization dashboard, the yellow segment
represents the parameter setup part, the green component represents
the differential equation solver and the grey one represents data

visualization.

5.2 Models comparison

As we expected, the tree models usually bring slightly different results (Figures
10, 11). These figures present results with different parameter setup and initial
value conditions.

We can observe that the SIR epidemiological model presented in Section 3
is not complex enough to model COVID− 19 pandemic.

The comparison of models can be performed from various perspectives. We
have studied the models based on the comparison of empirical data. For that,
we have used Least-Square optimization algorithm to estimate the parameters
for models. To see more about this optimization algorithm, see [10].
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Figure 10: Model comparison (first fig. S(t), second fig. I(t), third fig. R(t))
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Figure 11: SEIR − type and SEIR models comparison based on parameter
estimation
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As long as the SEIR−type and SEIR model perform quite similarly, the SIR
model fails from different perspectives. As shown in Table 1, the cumulative
errors between measured and estimated values are similar in case of the SEIR−
type model and the SEIR model. The algorithm was run for multiple dataset,
and the errors move approximately in the same interval in case of SEIR and
SEIR− type models. The algorithm could not fit to measured data in case of
the SIR model, as the error values suggest.

Empirical data SIR SEIR SEIR-type

North-Italy 160968187 1209142 1113692

Hubei 149720737 103984 127389

Germany 215503664 1446547 1336592

Table 1: Models comparison based on error bounds

As long as the error bounds of the SEIR and the SEIR-type models are
approximately similar, the parameter lists based on the estimation are various.
And even tough, the estimations seem to be very close to each other, as shown
Figures 11, these results were gotten from strongly dissimilar parameter lists
(see Table 2).

6 Discussion

The phenomenon, which was presented at Subsection 5.2 can have multiple
reasons. We need to emphasize that running an optimization algorithm does
not necessarily mean that parameters from Table 2 are the most optimal pa-
rameters for the presented models.

These approaches can be further aims, but our primarily goal with this study
was not parameter optimization. In accordance with the previously formulated
hypothesis, we cannot decide unequivocally that a more complex model is more
accurate than a simpler one. This study highlights the fact that neither the
complexity of the model, nor parameter number are crucial in mathematical
models. If we do not interpret the values of parameters from medical and
epidemiological point of view, almost every model can fit properly to empirical
values.

We also need to emphasize that these models divide the population in dif-
ferent groups. For instance, as long as the SEIR-type model defines 8 different
proportions, associating exposed, isolated exposed, etc., the SIR model does
not even take into account the exposed proportion of the population. This dif-
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ference obviously comes up in the values and in the visualization as well. Based
on this study we confirm that mathematical epidemiological models provide a
certain way to understand infectious diseases and pandemics, but without a
medical perspective it is not possible to conclude clear conclusions regarding
the future-events.

Based on the above formulated affirmations, we think that this visualization
dashboard is the most useful, when the user knows some parameter values
and wants to check different test scenarios based on their knowledge, and not
inversely.

Name of variables SEIR-type SEIR

S 60461744 60461744

E 194 195.656

I 10 10

A 96.69 −

Sq 151.86 −

Eq 158.28 −

H 2 −

R 0 0

c0 33.74 33.34

ca 10.95 2.49

q1 0.29 0.20

β0 0.11 0.38

ε 0.46 0.57

σ 0.17 0.17

λ 0.071 0.071

δI 0.0028 0.999

δq 0.16 −

γI 0.219 0.333

γR 0.219 0.023

γA 0.197 −

γH 0.326 −

θ 0.502 −

α 0.838 0.999

Table 2: Optimal parameter lists
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