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Abstract: The industrial implementation of advanced multivariable control 
techniques like Model Predictive Control (MPC) is complex, time consuming and 
therefore it is expensive. Nowdays it is a popular research area to reduce the complexity 
of the MPC algorithm while preserving the control performance. This problem could be 
solvable with implementation of the MPC solution in a distributed way. The main idea 
of this work is to develop simple software agents that can be easily implemented in low 
cost embedded systems. Each one of these software agents solves the problem of 
finding one of the control actions with parallel computational facilities. This paper 
presents at first some general and theoretical considerations about centralized and 
distributed model predictive algorithms. The comparison between these algorithms is 
made using numerical simulation of these methods for a multiple input and multiple 
output theoretical linear discrete-time system. The comparision is possible to be made 
from the point of wiew of the normalized absolute reference tracking error. There is 
described a possible implementation of the distributed MPC algorithm using Matlab 
Simulink environment. It is important to notice that the algorithm to be solved by each 
software agent while computing the control action is much simpler than the one to be 
solved by the centralized algorithm. 

 
Keywords: optimal control, cost function, model predictive control, distributed 

control, prediction horizon, control horizon, Jacobi over-relaxation method, linear 
constrained optimal programming problem. 
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1. Introduction 

The model predictive control (MPC), – also called receding horizon control 
(RHC) – is the most important advanced control technique which has been very 
successful in practical applications, where the control signal can be obtained by 
solving a discrete-time optimal control problem over a finite horizon. The most 
important advantage of the MPC algorithms is the fact that they have the unique 
ability to take into account constraints imposed on process inputs, process state 
variables and outputs, which usually determine the quality, the efficiency, and 
safety of production. Implementation of centralized state space (SS) MPC 
algorithms is becoming an important issue for different multivariable industrial 
processes. The main idea of our work is to develop a multi-agent software that 
can be implemented in low cost embedded systems, with parallel computational 
facilities. These software agents are valid for a default model and can be 
multiplied and customized according to the control horizon. Each one solves the 
problem of finding one of the control actions. This procedure is repeated several 
times before the control action values are delivered to the final control elements. 
An agent, as an executive, has to know general information about the system 
and some others which are specific of his own department. It is important to 
notice that the algorithm to be solved by each agent while computing its control 
action is much simpler than the one to be solved by the centralized solution. 

Previous works on distributed MPC [2], [3], [4], [6] use a wide variety of 
approaches, including multi-loop ideas, decentralized computation using 
standard coordination techniques, robustness to the actions of others, penalty 
functions, and partial grouping of computations. The key point is that, when 
decisions are made in a decentralized fashion, the actions of each subsystem 
must be consistent with those of the other subsystems, so that decisions taken 
independently do not lead to a violation of the coupling constraints. The 
decentralization of the control becomes more complex when disturbances act on 
the subsystems making the prediction of future behavior uncertain. 

We will analyze how the overall performance of a distributed system is 
influenced if one or more agents – except the coordinating agent –, fail or 
obviously underperforms from some reasons. The objective is to solve SS-MPC 
problems with locally relevant variables, costs, and constraints, but without 
solving a centralized SS-MPC problem. The coordinated distributed 
computations solve an equivalent centralized SS-MPC problem. This means 
that properties that can be proven for the equivalent centralized MPC problem 
(e.g., stability, robustness) are valid to the above distributed SS-MPC 
implementation. The significance of the proposed distributed control scheme is 
that it reduces the computational requirements in complex large-scale systems 
and it makes possible the development of fault tolerant control systems. 



 Comparative Analysis of Model Predictive Control Structures 7 
 

2. Centralized State Space Model Predictive Control  

All the MPC algorithms possess common elements and different options can 
be chosen for each one of these elements: prediction model, objective function 
and algorithms for obtaining the control law. In this paper the process model is 
a discrete input – state – output relationship: 
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where xk is the state vector (n x 1), uk is the input vector (m x 1), yk is the output 
vector (p x 1), and Φ, Γ  and C are the matrices of the system. If these matrices 
(parameters) are unknown, we have to implement a system identification 
module in the control algorithm.  

The centralized model predictive algorithm looks for the vector ∆Uk that 
minimizes a cost function represented by the scalar J, defined as: 
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where ref
kY  is the vector with the future references, kY  is the vector of the 

predictions of the controlled variables (output signals), kU∆  is a vector of 
future variations of the control signal, Q is a diagonal matrix with weights for 
set-point following enforcement, R is a diagonal matrix with weights for control 
action changes. If the prediction horizon is N and the control horizon is Nc these  
vectors and matrices are [1]: 
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An incremental state space model can be used if the model input is the 
control increment 1−−=∆ kkk uuu . The following representation is obtained for 
predictions: 
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kykkk UGuxY ∆ΓΦ ⋅+⋅+⋅= −1
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The cost function can be written as: 
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For problems without constraints the centralized model predictive control 
determines the vector ∆Uk that makes  
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It is to be mentioned that only the first control action is taken at each instant, 
and the procedure is repeated for the next control decision in a receding horizon 
fashion. 

3. Distributed State Space Model Predictive Control  

The implementation of distributed model predictive control needs to search 
for kNkkkkk c

uuu /1/1/ ,,, −++ ∆∆∆  [5], [7], that makes the  
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for 1−+≤≤ cNkgk . 
If the cost function is written as: 
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then the first order optimality condition can be determined in the following 
way: 

[ ]

[ ] [ ]

( )( )∑

∑
−

−≠
=

+++−+

=
+−

+−+−

+⋅⋅++⋅⋅+

+




 ⋅⋅⋅−

−⋅+⋅⋅⋅=
∂
∂

1

0
,1,1,1

1
1,

,1,1
/

][][

2

2
)(
)(

cN

kgi
i

kikigy
T
y

T
kgiy

T
y

N

i
ik

T
kgiy

kgkgkgy
T
y

kg

k

uRGQGRGQG

EGQ

uRGQG
u

UJ

∆

∆
∆
∆

   (12) 

The variation of input signal is 
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The first value of every ∆ug/k is only an approximation since it depends on 
the other ∆ui+k/k values ( kgi −≠ ). It should be noticed that the computation 
burden to obtain ∆ug/k is much smaller than the one needed to compute the 
whole vector ∆Uk. As already discussed, in this distributed approach, the vector 
∆Uk is determined by software agents using a combination of repeated 
computation of ∆ug/k and exchange of information.  

The equation (13) can be written in the following general form: 
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where 10 −≤≤ cNj , the matrices Ai,j have the dimension m × m and vector Bi 
has the dimension m × 1, where m is the number of inputs. Matrix Ai,i is zero. A 
centralized expression for ∆Uk using equation (14) can be written as: 
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which, in a compact form becomes 
BUAU n

k
n
k +⋅= −1∆∆ .        (16) 

The convergence of the ∆Uk vectors to their true values has to be assured for 
a reliable application. For unconstrained applications the results obtained in the 
field of distributed computation can be used [5]. The Jacobi over-relaxation 
approach is adopted here by recomputing ∆Uk as a linear combination of the 
value computed using equation (16) and the value obtained in the previous 
iteration, 
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where α is a vector of the filter parameters. Applying the filter according to 
equation (16), it results: 
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A sufficient condition for convergence of the iterative process is to have 
1)( <αA  for ( )1,0∈α . The search for a filter vector α which minimizes 

)(αA  can be reduced to a linear constrained optimal programming problem. 

4. Numerical simulation 

This section presents the application of the centralized and distributed model 
predictive algorithm to a multiple input and a multiple output theoretical system 
which is characterized by following state space model: 
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where  
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For both algorithms the Simulink models have been built and the following 
parameters were used for both simulations: 

22 101.0;3;4 IQIRNN c ⋅=⋅===                            (20) 
The Simulink diagram of the centralized predictive control is shown in  

Fig. 1, where the “Centralized_MPC_control” subsystem contains one complex 
S-function module for centralized control algorithm. The Simulink model of the 
distributed predictive algorithm is shown in Fig. 2.  

The “Distributed_MPC_control” subsystem is presented separately in Fig. 3, 
where the three interdependent modules for calculating kkk uuu /3/2/1 ,, ∆∆∆  
can be observed. The structure of these modules is one and the same, just the 
input signals and parameters are different. 
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Figure 1: Simulink diagram for numerical simulation of the  

centralized predictive control. 
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Figure 2: Simulink diagram for numerical simulation of the  

distributed predictive control. 
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Figure 3: Subsystem diagram for distributed predictive algorithms (Nc=3). 

 
The choice of alpha (α) provides all eigenvalues of matrix A(α) of equation 

(18) smaller than 1, which is sufficient to assure that the iterative method 
converges. These values were determined before the numerical simulation, and 
the one optimal constrained problem was solved in Matlab environment. It 
seems that the parameter tuning for the distributed algorithm does not need to 
be exactly the same as the one used for the centralized version. For the same 
amount of information exchange among agents, a faster reference filter 
improves the response. 

The results obtained by numerical simulation for the centralized control 
algorithm using a variable reference signal are shown in Fig. 4. and results of 
numerical simulation of the distributed algorithm after 500 iterations are shown 
in Fig. 5. 
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Figure 4: Time variation of the control signals (a) and outputs signals (b) in case of the 
centralized algorithm. 
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Figure 5: Time variation of the control signals (a) and outputs signals (b) in case of  
distributed algorithm after 500 iterations. 

 
It is noticeable that control signal obtained with the distributed algorithm is 

smoother than the control signal obtained with the centralized algorithm.  
In order to have an idea on the number of information interchange iterations 

between agents needed for a certain performance, an analysis has been made 
based on the error betveen the outputs and reference signals. For both outputs 
(i=1,2) it was computed the error at every sample time k =1,…, Nt: 
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A normalized absolute reference tracking error was computed using 
following relationship: 
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There was estimated also the simulation time using the Matlab functions 
clock and etime for different numbers of iteration in case of the distributed 
model predictive control algorithms. Fig. 6.a presents the variation of the 
average errors and Fig. 6.b presents the estimated simulation time versus the 
number of iterations in case of the distributed algorithms. The simulation time is 
more important to be calculated for both algorithms (centralized version and 
distributed version) with different prediction horizon (N) values. This 
comparision is presented at Fig. 7 in case of a fixed control horizon (Nc=3). 
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Figure 6: Variation of the reference tracking error (a) and of the simulation time (b) 
versus the number of iterations in case of the distributed algorithm. 

 

 
Figure 7: Comparison of the simulation times represented in function of the prediction 
horizon (N), obtained in case of the centralized respectively in case of the distributed 

algorithm. 

5. Conclusion 

The performance of the distributed control applied for the example 
discussed in the paper is comparable to that obtained with the centralized model 
predictive control. The computation power needed to solve the distributed 
problem is smaller than that is needed for the centralized case. This fact may 
allow the utilization of the model predictive control executed in distributed 
hardware with low computational power. The size of the centralized problem 
grows considerably with the number of inputs/outputs while the size of the 
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distributed problem remains the same for the same control horizon. One point to 
mention is that unlike in the case of the presented example, most of the 
multivariable problems do not have a complete interaction. In case of the 
distributed algorithms the problem is to choose the convenient sample time and 
the correct filter parameters’ vector. The choice of the filter should be done off-
line and the condition presented is enough to ensure the convergence of the 
algorithm. Future developments are needed to provide the best filter option 
(assuring the fastest convergence with robustness) and to introduce some 
constraints in the model predictive applications. The main benefit expected in 
case of the distributed MPC control is the improvement of the system’s 
maitainability and the ’apparent’ simplicity to the user. 

References 

[1] Camacho, E. F., “Model Predictive Control”, Springer Verlag, 2004. 
[2] Camponogara, E., Jia, D., Krogh, B. H.  and Talukdar, S. N., “Distributed model predictive 

control”, IEEE Control Systems Magazine, vol. 22, no. 1, pp. 44–52, February 2002. 
[3] Venkat, A. N., Rawlings, J. B.  and Wright, S. J., “Implementable distributed model 

predictive control with guaranteed performance properties”, American Control Conference 
Minneapolis, Minnesota, USA, June 14-16, 2006, pp. 613-618. 

[4] Mercangoz, M. and Doyle, F. J, “Distributed model predictive control of an experimental 
four tank system”, Journal of Process Control, vol. 17, no. 3, pp. 297–308, 2007. 

[5] Plucenio, A., Pagano, D. J., Camponogara, E., Sherer, H. F. and Lima, M., “A simple 
distributed MPC algorithm”, Rio de Janerio, Brasil. 

[6] Maestre, J. M., Munoz de la Pena, D. and Camacho, E. F., “Distributed MPC: a supply 
chain case study”, IEEE Conference on Decision and Control, Shanghai, China, December 
16-18, 2009, pp. 7099 – 7104. 

[7] Venkat, A. N., Hiskens, I. A., Rawlings, J. B. and Wright, S. J. “Distributed MPC 
Strategies With Application to Power System Automatic Generation Control”, IEEE 
Transactions on Control Systems Technology, vol. 16, no. 6, pp. 1192-1206, November, 
2008. 


