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Abstract. The intent of this paper is to establish a common fixed
point theorem for two pairs of occasionally weakly compatible single
and set-valued maps satisfying a strict contractive condition in a non-
Archimedean fuzzy metric space.

1 Introduction

The concept of fuzzy sets was first coined by Zadeh [9] in 1965 to describe
the situation in which data are imprecise or vague or uncertain. Consequently,
the last three decades remained productive for various authors [1, 11, 13]
etc. and they have extensively developed the theory of fuzzy sets due to a
wide range of application in the field of population dynamics, chaos control,
computer programming, medicine, etc. Kramosil and Michalek [10] introduced
the concept of fuzzy metric spaces (briefly, FM-spaces) in 1975, which opened
a new avenue for further development of analysis in such spaces. Later on the
concept of FM-space is modified and a few concepts of mathematical analysis
have been developed in fuzzy metric space by George and Veeramani [1, 2]. In
fact, the concept of fixed point theorem have been developed in fuzzy metric
space in the paper [12].
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In recent years several fixed point theorems for single and set valued maps
were proved and have numerous applications and by now there exists a con-
siderable rich literature in this domain [4, 7].
Various authors [3, 7, 8] have discussed and studied extensively various

results on coincidence, existence and uniqueness of fixed and common fixed
points by using the concept of weak commutativity, compatibility, non-
compatibility and weak compatibility for single and set valued maps satis-
fying certain contractive conditions in different spaces and they have been
applied to diverse problems.
The intent of this paper is to establish a common fixed point theorem for two

pairs of occasionally weakly compatible single and set-valued maps satisfying
a strict contractive condition in a non-Archimedean fuzzy metric space.

2 Preliminaries

We quote some definitions and a few theorems which will be needed in the
sequel.

Definition 1 [5] A binary operation ∗ : [0, 1] × [0, 1] −→ [0, 1] is continuous
t-norm if it satisfies the following conditions:

(i) ∗ is commutative and associative,

(ii) ∗ is continuous,

(iii) a ∗ 1 = a ∀a ∈ [0, 1],

(iv) a ∗ b ≤ c ∗ d whenever a ≤ c, b ≤ d and a, b, c, d ∈ [0, 1].

Result 1 [6] (a) For any r1, r2 ∈ (0, 1) with r1 > r2, there exist r3 ∈ (0, 1)

such that r1 ∗ r3 > r2,
(b) For any r5 ∈ (0, 1), there exist r6 ∈ (0, 1) such that r6 ∗ r6 ≥ r5.

Definition 2 [1] The 3-tuple (X, µ, ∗) is called a fuzzy metric space if X is
an arbitrary non-empty set, ∗ is a continuous t-norm and µ is a fuzzy set in
X2 × (0,∞) satisfying the following conditions:

(i) µ(x, y, t) > 0;

(ii) µ(x, y, t) = 1 if and only if x = y

(iii) µ(x, y, t) = µ(y, x, t);
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(iv) µ(x, y, s) ∗ µ(y, z, t) ≤ µ(x, z, s+ t);

(v) µ(x, y, ·) : (0,∞) → (0, 1] is continuous;
for all x,y,z ∈ X and t, s > 0.

Note that µ(x, y, t) can be thought as the degree of nearness between x and y
with respect to t.

Example 1 Let X = [0,∞), a ∗ b = ab for every a, b ∈ [0, 1] and d be the

usual metric defined on X. Define µ(x, y, t) = e−
d(x,y)

t for all x, y, t ∈ X. Then
clearly (X, µ, ∗) is a fuzzy metric space.

Example 2 Let (X, d) be a metric space, and let a∗b = ab or a∗b = min{a, b}
for all a, b ∈ [0, 1]. Let µ(x, y, t) = t

t+d(x,y)
for all x, y ∈ X and t > 0. Then

(X, µ, ∗) is a fuzzy metric space and this fuzzy metric µ induced by d is called
the standard fuzzy metric [1].

Note 1 George and Veeramani [1] proved that every fuzzy metric space is a
metrizable topological space. In this paper, they also have proved, if (X, d) is
a metric space, then the topology generated by d coincides with the topology
generated by the fuzzy metric µ of Example 2. As a result, we can say that an
ordinary metric space is a special case of a fuzzy metric space.

Note 2 Consider the following condition:
(iv′) µ(x, y, s) ∗ µ(y, z, t) ≤ µ(x, z,max{s, t}).
If the condition (iv) in Definition 2 is replaced by the condition (iv′), the

fuzzy metric space (X, µ, ∗) is said to be a non-Archimedean fuzzy metric space.

Remark 1 In fuzzy metric space X, for all x, y ∈ X, µ(x, y, ·) is non-decreasing
with respect to the variable t. In fact, in a non-Archimedean fuzzy metric space,
µ(x, y, t) ≥ µ(x, z, t) ∗ µ(z, y, t) for x, y, z ∈ X, t > 0.
Every non-Archimedean fuzzy metric space is also a fuzzy metric space.

Throughout the paper X will represent the non-Archimedean fuzzy metric
space (X, µ, ∗) and CB(X), the set of all non-empty closed and bounded sub-
set of X. We recall these usual notations: for x ∈ X, A ⊆ X and for every
t > 0,

µ(x,A, t) = max{µ(x, y, t) : y ∈ A}

and let H be the associated Hausdorff fuzzy metric on CB(X): for every A,B
in CB(X),

H(A,B, t) = min

{
min
x∈A

µ(x, B, t),min
y∈B

µ(A,y, t)

}
.
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Definition 3 [4] A sequence {An} of subsets of X is said to be convergent to
a subset A of X if

(i) given a ∈ A, there is a sequence {an} in X such that an ∈ An for
n = 1, 2, · · · , and {an} converges to a.

(ii) given ϵ > 0, there exists a positive integer N such that An ⊆ Aϵ for
n > N, where Aϵ is the union of all open spheres with centers in A and
radius ϵ.

Definition 4 A point x ∈ X is called a coincidence point (resp. fixed point)
of A : X −→ X, B : X −→ CB(X) if Ax ∈ Bx (resp. x = Ax ∈ Bx).

Definition 5 Maps A : X −→ X and B : X −→ CB(X) are said to be compati-
ble if ABx ∈ CB(X) for all x ∈ X and

lim
n→∞

H(ABxn, BAxn, t) = 1

whenever {xn} is a sequence in X such that Bxn −→M ∈ CB(X) and Axn −→
x ∈M.

Definition 6 Maps A : X −→ Xand B : X −→ CB(X) are said to be weakly
compatible if they commute at coincidence points ie., if ABx = BAx whenever
Ax ∈ Bx.

Definition 7 Maps A : X −→ X and B : X −→ CB(X) are said to be occa-
sionally weakly compatible (owc) if there exists some point x ∈ X such that
Ax ∈ Bx and ABx ⊆ BAx.

Example 3 Let X = [1,∞[ with the usual metric. Define f : X −→ X and
F : X −→ CB(X), for all x ∈ X by

fx = x+ 1, Fx = [1, x+ 1],

fx = x+ 1 ∈ Fx and fFx = [2, x+ 2] ⊂ Ffx = [1, x+ 2].

Hence, f and F are occasionally weakly compatible but not weakly compatible.

Definition 8 Let F : X −→ 2X be a set-valued map on X. x ∈ X is a fixed
point of F if x ∈ Fx and is a strict fixed point of F if Fx = {x}.

Property 1 Let A and B ∈ CB(X), then for any a ∈ A, we have

µ(a, B, t) ≥ qH(A,B, t).

Proof. Obvious. �
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3 A strict fixed point theorem

Theorem 1 Let f, g : X −→ X be mappings and F,G : X −→ CB(X) be set-
valued mappings such that the pairs {f, F} and {g,G} are owc. Let φ : R6 −→ R

be a real valued map satisfying the following conditions

(φ1) : φ is increasing invariables t2, t5 and t6;

(φ2) : φ(u(t), u(t), 1, 1, u(t), u(t)) > 1 ∀u(t) ∈ [0, 1).

If for all x and y ∈ X for which

(⋆) φ(H(Fx,Gy, t), µ(fx, gy, t), µ(fx, Fx, t), µ(gy,Gy, t),

µ(fx,Gy, t), µ(gy, Fx, t)) < 1

then f, g, F and G have a unique fixed point which is a strict fixed point for F
and G.

Proof. (i) We begin to show the existence of a common fixed point. Since
the pairs {f, F} and {g,G} are owc, there exist u, v in X such that fu ∈ Fu,
gv ∈ Gv, fFu ⊆ Ffu and gGv ⊆ Ggv. Also, using the triangle inequality and
Property 1, we obtain

µ(fu, gv, t) ≥ H(Fu,Gv, t) (1)

and
µ(f2u, gv, t) ≥ H(Ffu,Gv, t). (2)

First we show that gv = fu. The condition (⋆) implies that

φ(H(Fu,Gv, t), µ(fu, gv, t), µ(fu, Fu, t), µ(gv,Gv, t),

µ(fu,Gv, t), µ(gv, Fu, t)) < 1

=⇒ φ(H(Fu,Gv, t), µ(fu, gv, t), 1, 1, µ(fu,Gv, t), µ(gv, Fu, t)) < 1.

By (φ1) we have

φ(H(Fu,Gv, t), H(Fu,Gv, t), 1, 1,H(Fu,Gv, t), H(Fu,Gv, t)) < 1

which from (φ2) gives H(Fu,Gv, t) = 1.
So Fu = Gv and by (1), fu = gv. Again by (2), we have

µ(f2u, fu, t) ≥ H(Ffu,Gv, t).
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Next, we claim that f2u = fu. The condition (⋆) implies that

φ(H(Ffu,Gv, t), µ(f2u, gv, t), µ(f2u, Ffu, t), µ(gv,Gv, t),

µ(f2u,Gv, t), µ(gv, Ffu, t)) < 1

=⇒ φ(H(Ffu,Gv, t), µ(f2u, fu, t), 1, 1, µ(f2u,Gv, t), µ(fu, Ffu, t)) < 1.

By (φ1) we have

=⇒ φ(H(Ffu,Gv, t), H(Ffu,Gv, t), 1, 1,H(Ffu,Gv, t), H(Ffu,Gv, t)) < 1

which, from (φ2), gives H(Ffu,Gv, t) = 1.
By (2), we obtain f2u = fu. Since (f, F) and (g,G) have the same role, we

have gv = g2v. Therefore,

ffu = fu = gv = ggv = gfu

and
fu = f2u ∈ fFu ⊂ Ffu

So fu ∈ Ffu and fu = gfu ∈ Gfu. Then fu is common fixed point of f, g, F
and G.
(ii) Now, we show uniqueness of the common fixed point.
Put fu = w and let w

′

be another common fixed point of the four maps,
then we have

µ(w,w ′, t) = µ(fw, gw ′, t) ≥ H(Fw,Gw
′

, t) (3)

by (⋆) , we get

φ(H(Fw,Gw ′, t), µ(fw, gw ′, t), µ(fw, Fw, t), µ(gw ′, Gw ′, t),

µ(fw,Gw ′, t), µ(gw ′, Fw, t)) < 1

=⇒ φ(H(Fw,Gw ′, t), µ(fw, gw ′, t), 1, 1, µ(fw,Gw ′, t),

µ(gw ′, Fw, t)) < 1

By (φ1) we get

φ(H(Fw,Gw ′, t), H(Fw,Gw ′, t), 1, 1,H(Fw,Gw ′, t), H(Fw,Gw ′, t)) < 1

So, by (φ2), H(Fw,Gw
′, t) = 1 and from (3), we have

µ(fw, gw
′

, t) = µ(w,w ′, t) = 1 =⇒ w = w ′.
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(iii) Let w ∈ Ffu. Using the triangle inequality and Property (1), we have

µ(fu,w, t) ≥ µ(fu, Ffu, t) ∗H(Ffu,Gv, t) ∗ µ(w,Gv, t).

Since fu ∈ Ffu and H(Ffu,Gv, t) = 1,

µ(w, fu, t) ≥ µ(w,Gv, t) ≥ H(Ffu,Gv, t) = 1.

So w = fu and Ffu = {fu} = {gv} = Ggv.

This completes the proof. �

4 A Gregus type fixed point theorem

Theorem 2 Let f, g : X −→ X be mappings and F,G : X −→ CB(X) be
set-valued mappings such that that the pairs {f, F} and {g,G} are owc. Let
ψ : R −→ R be a non-decreasing map such that, for every 0 ≤ l < 1, ψ(l) > l

and satisfies the following condition:

(⋆) Hp(Fx,Gy, t) ≥ ψ
[

aµp(fx, gy, t) + (1− a)µ
p
2 (gy, Fx, t)µ

p
2 (fx,Gy, t)

]

for all x and y ∈ X, where 0 < a ≤ 1 and p ≥ 1.
Then f, g, F and G have a unique fixed point which is a strict fixed point for

F and G.

Proof. Since {f, F} and {g,G} are owc, as in proof of Theorem 1, there exist
u, v ∈ X such that fu ∈ Fu, gv ∈ Gv, fFu ⊆ Ffu, gGv ⊆ Ggv and (1), (2)
holds.
(i) As in proof of Theorem 1, we begin to show the existence of a common
fixed point. We have,

Hp(Fu,Gv, t) ≥ ψ
[

aµp(fu, gv, t) + (1− a)µ
p
2 (gv, Fu, t)µ

p
2 (fu,Gv, t)

]

and by (1) and Property 1,

Hp(Fu,Gv, t) ≥ ψ [aHp(Fu,Gv, t) + (1− a)Hp(Gv, Fu, t)]

= ψ (Hp(Fu,Gv, t))

So, if 0 ≤ H(Fu,Gv, t) < 1, ψ(l) > l for 0 ≤ l < 1, we obtain

Hp(Fu,Gv, t) ≥ ψ[Hp(Fu,Gv, t)] > Hp(Fu,Gv, t)
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which is a contradiction, thus we have H(Fu,Gv, t) = 1 and hence fu = gv.

Again, if 0 ≤ H(Ffu,Gv, t) < 1 then by (2) and (⋆), we have

Hp(Ffu,Gv, t) ≥ ψ[aµp(f2u, gv, t) + (1− a)µ
p
2 (gv, Ffu, t)µ

p
2 (f2u,Gv, t)]

≥ ψ[aHp(Ffu,Gv, t) + (1− a)Hp(Ffu,Gv, t)]

= ψ(Hp(Ffu,Gv, t))

If 0 ≤ H(Ffu,Gv, t) < 1, we obtain

Hp(Ffu,Gv, t) ≥ ψ[Hp(Ffu,Gv, t)] > Hp(Ffu,Gv, t)

which is a contradiction, thus we have H(Ffu,Gv, t) = 1,

=⇒ Ffu = Gv =⇒ f2u = fu

Similarly, we can prove that g2v = gv.
Let fu = w then fw = w = gw, w ∈ Fw and w ∈ Gw, this completes the
proof of the existence.
(ii) For the uniqueness, let w

′

be a second common fixed point of f, g, F and
G. Then

µ(w,w ′, t) = µ(fw, gw ′, t) ≥ H(Fw,Gw ′, t)

and by assumption (⋆), we obtain

Hp(Fw,Gw ′, t) ≥ ψ
[

aµp(fw, gw ′, t) + (1− a)µ
p
2 (fw,Gw ′, t)µ

p
2 (gw ′, Fw, t)

]

≥ ψ(Hp(Fw,Gw ′, t)) > Hp(Fw,Gw ′, t)if0

≤ H(Fw,Gw ′, t) < 1

which is a contradiction. So, Fw = Gw
′

. Since w and w
′

are common fixed
point of f, g, F and G, we have

µ(fw, gw ′, t) ≥ µ(fw, Fw, t) ∗H(Fw,Gw ′, t) ∗µ(gw ′, Gw ′, t) ≥ H(Fw,Gw ′, t)

So, w = fw = gw ′ = w
′

and there exists a unique common fixed point of
f, g, F, and G.
(iii) The proof that the fixed point of F and G is a strict fixed point is identical
of that of theorem (1). �
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Theorem 3 Let f, g : X −→ X and F,G : X −→ CB(X) be single and set-valued
maps respectively such that the pairs {f, F} and {g,G} are owc and satisfy
inequality

(⋆) Hp(Fx,Gy, t) ≥ a(µ(fx, gy, t))[min{µ(fx, gy, t)µp−1(fx, Fx, t),

µ(fx, gy, t)µp−1(gy,Gy, t), µ(fx, Fx, t)µp−1

(gy,Gy, t), µp−1(fx,Gy, t)µ(gy, Fx, t)}]

for all x, y ∈ X, where p ≥ 2 and a : [0, 1] −→ [0,∞) is decreasing and satisfies
the condition

a(t) > 1 ∀ 0 ≤ t < 1 and a(t) = 1 if f · t = 1

Then f, g, F and G have a unique fixed point which is a strict fixed point for F
and G.

Proof. Since the pairs {f, F} and {g,G} are owc, then there exist two elements
u and v in X such that fu ∈ Fu, fFu ⊆ Ffu and gv ∈ Gv, gGv ⊆ Ggv.
First we prove that fu = gv. By property (1) and the triangle inequality we
have µ(fu, gv, t) ≥ H(Fu,Gv, t), µ(fu,Gv, t) ≥ H(Fu,Gv, t) and µ(Fu, gv, t) ≥
H(Fu,Gv, t).
Suppose that H(Fu,Gv, t) < 1. Then by inequality (⋆) we get

(⋆) Hp(Fu,Gv, t) ≥ a(µ(fu, gv, t))[min{µ(fu, gv, t)µp−1(fu, Fu, t),

µ(fu, gv, t)µp−1(gv,Gv, t), µ(fu, Fu, t)µp−1(gv,Gv, t),

µp−1(fu,Gv, t)µ(gv, Fu, t)}]

= a(µ(fu, gv, t))[min{µ(fu, gv, t), µ(fu, gv, t), 1,

µp−1(fu,Gv, t)µ(gv, Fu, t)}]

≥ a(H(Fu,Gv, t))[min{H(Fu,Gv, t), 1,Hp(Fu,Gv, t)}]

> Hp(Fu,Gv, t)

which is a contradiction. Hence H(Fu,Gv, t) = 1 which implies that fu = gv.

Again by property (1) and the triangle inequality we have

µ(f2u, fu, t) = µ(f2u, gv, t) ≥ H(Ffu,Gv, t)
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We prove that f2u = fu. Suppose H(Ffu,Gv, t) < 1 and by (⋆), property (1)
we obtain

Hp(Ffu,Gv, t) ≥ qa(µ(f2u, gv, t))[min{µ(f2u, gv, t)µp−1(f2u, Ffu, t),

µ(f2u, gv, t)µp−1(gv,Gv, t), µ(f2u, Ffu, t)µp−1(gv,Gv, t),

µp−1(f2u,Gv, t)µ(gv, Ffu, t)}]

= a(µ(f2u, gv, t))[min{µ(f2u, gv, t), µ(f2u, gv, t), 1,

µp−1(f2u,Gv, t)µ(gv, Ffu, t)}]

≥ qa(H(Ffu,Gv, t))[min{H(Ffu,Gv, t), Hp(Ffu,Gv, t)}]

> Hp(Ffu,Gv, t)

which is a contradiction. Hence H(Ffu,Gv, t) = 1 which implies that f2u =

gv = fu.

Similarly, we can prove that g2v = gv. Putting fu = gv = z, then fz = gz = z,
z ∈ Fz and z ∈ Gz. Therefore z is a common fixed point of maps f, g, F and G.
Now, suppose that f, g, F and G have another common fixed point z ′ ̸= qz.

Then, by property (1) and the triangle inequality we have

µ(z, z ′, t) = µ(fz, gz ′, t) ≥ H(Fz,Gz ′, t)

Assume that H(Fz,Gz ′, t) < 1. Then the use of inequality (⋆) gives

Hp(Fz,Gz ′, t) ≥ qa(µ(fz, gz ′, t))[min{µ(fz, gz ′, t)µp−1(fz, Fz, t), µ(fz, gz ′, t)

µp−1(gz ′, Gz ′, t), µ(fz, Fz, t)µp−1(gz ′, Gz ′, t),

µp−1(fz,Gz ′, t)µ(gz ′, Fz, t)}]

= a(µ(fz, gz ′, t))[min{µ(fz, gz ′, t), µ(f2z, gz ′, t), 1,

µp−1(f2z,Gz ′, t)µ(gz ′, Ffz, t)}]

≥ qa(H(Fz,Gz ′, t))[min{H(Fz,Gz ′, t), Hp(Fz,Gz ′, t)}]

> Hp(Fz,Gz ′, t)

which is a contradiction. Hence H(Fz,Gz ′, t) = 1 which implies that z ′ = z.

(iii) The proof that the fixed point of F and G is a strict fixed point is identical
of that of theorem (1) �

5 Another type fixed point theorem

Theorem 4 Let f, g : X −→ X be mappings and F,G : X −→ CB(X) be set-
valued maps and ϕ be non-decreasing function of [0, 1] into itself such that
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ϕ(t) = 1 iff t = 1 and for all t ∈ [0, 1), ϕ satisfies the following inequality

(⋆) ϕ(H(Fx,Gy, t)) ≥ a(µ(fx, gy, t))ϕ(µ(fx, gy, t))

+ b(µ(fx, gy, t))min{ϕ(µ(fx,Gy, t)), ϕ(µ(gy, Fx, t))}

for all x and y in X, where a, b : [0, 1] −→ [0, 1] are satisfying the conditions

a(t) + b(t) > 1 ∀t > 0

and
a(t) + b(t) = 1 iff.t = 1

If the pairs {f, F} and {g,G} are owc, then f, g, F and G have a unique common
fixed point in X which is a strict fixed point for F and G.

Proof. Since {f, F} and {g,G} are owc, as in proof of theorem(1), there exist
u, v in X such that fu ∈ Fu, gv ∈ Gv, fFu ⊆ Ffu, gGv ⊆ Ggv,

µ(fu, gv, t) ≥ H(Fu,Gv, t) (1)

and

µ(f2u, gv, t) ≥ H(Ffu,Gv, t) (2)

(i) First we prove that fu = gv. Suppose H(Fu,Gv, t) < 1. By (⋆), Property
(1), we have

ϕ(H(Fu,Gv, t)) ≥ a(µ(fu, gv, t))ϕ(µ(fu, gv, t))

+ b(µ(fu, gv, t))min{ϕ(µ(fu,Gv, t)), ϕ(µ(gv, Fu, t))}

≥ [a(µ(fu, gv, t)) + b(µ(fu, gv, t)]ϕ(H(Fu,Gv, t))

> ϕ(H(Fu,Gv, t))

which is a contradiction. Hence H(Fu,Gv, t) = 1 and thus fu = gv. Now we
prove that f2u = fu. Suppose H(Ffu,Gv, t) < 1. By (⋆) and Property 1, we
have

ϕ(H(Ffu,Gv, t)) ≥ qa(µ(f2u, gv, t))ϕ(µ(f2u, gv, t))

+b(µ(f2u, gv, t))min{ϕ(µ(f2u,Gv, t)), ϕ(µ(gv, Ffu, t))}

≥ [a(µ(f2u, fu, t)) + b(µ(f2u, fu, t)]ϕ(H(Ffu,Gv, t))

> ϕ(H(Ffu,Gv, t))
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which is a contradiction. Hence H(Ffu,Gv, t) = 1 and this implies that f2u =

fu. Similarly, we can prove that g2v = gv. So, if w = fu = gv then fw = w =

gw, w ∈ Fw and w ∈ Gw. Existence of a common fixed point is proved.

(ii) Assume that there exists a second common fixed point w ′ of f, g, F and
G. We see that

µ(w,w ′, t) = µ(fw, gw ′, t) ≥ H(Fw,Gw ′, t)

If H(Fw,Gw ′, t) < 1, by inequality (⋆) we obtain

ϕ(H(Fw,Gw ′, t)) ≥ a(µ(fw, gw ′, t))ϕ(µ(fw, gw ′, t))

+ b(µ(fw, gw ′, t))min{ϕ(µ(fw,Gw ′, t)), ϕ(µ(gw ′, Fw, t))}

≥ [a(µ(w,w ′, t)) + b(µ(w,w ′, t)]ϕ(H(Fw,Gw ′, t))

> ϕ(H(Fw,Gw ′, t))

this contradiction implies that H(Fw,Gw ′, t) = 1, hence w ′ = w

(iii) This part of the proof is analogous of that of Theorem 1. �
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