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Abstract. The goal of this paper is to study the parametric vector
equilibrium problems governed by vector topologically pseudomonotone
maps. The main result gives sufficient conditions for closedness of the
solution map defined on the set of parameters.

1 Introduction

M. Bogdan and J. Kolumbán [3] gave sufficient conditions for closedness of
the solution map defined on the set of parameters. They considered the para-
metric equilibrium problems governed by topological pseudomonotone maps
depending on a parameter. In this paper we extend this result for parametric
vector equilibrium problems.

Let X be a Hausdorff topological space and let P (the set of parameters) be
another Hausdorff topological space. Let Z be a real topological vector space
with an ordering cone C, where C is a closed convex cone in Z with IntC 6= ∅

and C 6= Z.
We consider the following parametric vector equilibrium problem, in short

(VEP)p:
Find ap ∈ Dp, such that

fp (ap, b) /∈ −C\ {0} , ∀b ∈ Dp,
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where Dp is a nonempty subset of X and fp : X × X → Z is a given function.
It is well-known that VEP contains several problems as special cases, namely,

vector optimization problem, vector saddle point problem, vector variational
inequality problem, vector complementarity problem, etc.

Denote by S (p) the set of the solutions for a fixed p. Suppose that S (p) 6= ∅,
for all p ∈ P. For sufficient conditions for the existence of solutions see [8],
[13].

The paper is organized as follows. In Section 2, we introduce a new notion
of the vector topological pseudomonotonicity and we recall the notion of the
Mosco convergence of the sets. Section 3 is devoted to the closedness of the
solution map for parametric vector equilibrium problems.

2 Preliminaries

In this section, we will introduce a new definition of the vector topologically
pseudomonotone bifunctions with values in Z. First, the definition of the
suprema and the infima of subsets of Z are given. Following [1], for a subset
A of Z the suprema of A with respect to C is defined by:

SupA =
{
z ∈ Ā : A ∩ (z + Int C) = ∅

}
,

and the infima of A with respect to C is defined by:

Inf A =
{
z ∈ Ā : A ∩ (z − Int C) = ∅

}
.

Let (zi)i∈I be a net in Z. Let Ai = {zj : j ≥ i} for every i in the index set I.

The limit inferior of (zi) is given by:

Liminf zi = Sup

(

⋃

i∈I

Inf Ai

)

.

Similarly, the limit superior of (zi) can be defined as

Limsup zi = Inf

(

⋃

i∈I

SupAi

)

.

Theorem 1 ([7], Theorem 2.1) Let (zi)i∈I be a net in Z convergent to z,

and let Ai = {zj : j ≥ i}.

i) If there is an i0 such that, for every i ≥ i0, there exists j ≥ i with Inf Aj 6= ∅,
then z ∈ Liminf zi.
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ii) If there is an i0 such that, for every i ≥ i0, there exists j ≥ i with SupAj 6=

∅, then z ∈ Limsup zi.

We introduce the definition of vector topologically pseudomonotonicity, which
plays a central role in our main results.

Definition 1 Let (X, σ) be a Hausdorff topological space, and let D be a
nonempty subset of X. A function f : D × D → Z is called vector topolog-
ically pseudomonotone if for every b ∈ D, v ∈ C and for each net (ai)i∈I in

D satisfying ai
σ
→ a ∈ D and

Liminf f (ai, a) ∩ (− IntC) = ∅, (1)

then for every i in the index set I

{f (aj, b) : j ≥ i} ∩ [f (a, b) + v − C] 6= ∅.

In Definition 1, if Z = R, and if C is the set of all non-negative real numbers,
then we get back the well-known topological pseudomonotonicity introduced
by Brézis [4].

Let us consider σ and τ two topologies on X. Suppose that τ is stronger
than σ on X.

For the parametric domains in (VEP)p, we shall use a slight generalization
of Mosco’s convergence [14].

Definition 2 ([3], Definition 2.2.) Let Dp be subsets of X for all p ∈ P.

The sets Dp converge to Dp0
in the Mosco sense (Dp

M
→ Dp0

) as p → p0 if:

a) for every subnet (api
)i∈I with api

∈ Dpi
, pi → p0 and api

σ
→ a implies

a ∈ Dp0
;

b) for every a ∈ Dp0
, there exists ap ∈ Dp such that ap

τ
→ a as p → p0.

3 Closedness of the solution map

This section is devoted to prove the closedness of the solution map for para-
metric vector equilibrium problems.

Theorem 2 Let X be a Hausdorff topological space with σ and τ two topolo-
gies, where τ is stronger than σ. Let Dp be nonempty sets of X, and let p0 ∈ P

be fixed. Suppose that S (p) 6= ∅ for each p ∈ P and the following conditions
hold:
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i) Dp
M
→ Dp0

;

ii) For each net of elements (pi, api
) ∈ GraphS, if pi → p0, api

σ
→ a,

bpi
∈ Dpi

, b ∈ Dp0
,and bpi

τ
→ b, then

Liminf (fpi
(api

, bpi
) − fp0

(api
, b)) ∩ (− IntC) 6= ∅.

iii) fp0
: X × X → Z is vector topologically pseudomonotone.

Then the solution map p 7−→ S (p) is closed at p0, i.e. for each net of

elements (pi, api
) ∈ GraphS, pi → p0 and api

σ
→ a imply (p0, a) ∈ GraphS.

Proof. Let (pi, api
)i∈I be a net of elements (pi, api

) ∈ GraphS, i.e.

fpi
(api

, b) /∈ −C\ {0} , ∀b ∈ Dpi
, (2)

with pi → p0 and api

σ
→ a. By the Mosco convergence of the sets Dp, we get

a ∈ Dp0
. Moreover, there exists a net (bpi

)
i∈I

, bpi
∈ Dpi

such that bpi

τ
→ a.

From the assumption ii) we obtain that

Liminf (fpi
(api

, bpi
) − fp0

(api
, a)) ∩ (− Int C) 6= ∅. (3)

Since − Int C is an open cone, it follows that there exists a subnet (api
)

denoted by the same indexes such that

fpi
(api

, bpi
) − fp0

(api
, a) ∈ − IntC for all i ∈ I. (4)

By replacing b with bpi
in (2), we get

fpi
(api

, bpi
) /∈ −C\ {0} . (5)

From (5) and (4) we obtain that

fp0
(api

, a) ∈ (−C)c ⊂ (− Int C)c , for all i ∈ I,

since (− Int C)c is closed, it follows

Liminf fp0
(api

, a) ∩ (− IntC) = ∅.

Now, we can apply iii) and we obtain that for every b ∈ Dp0
, v ∈ C, and

for every i ∈ I we have

{
fp0

(

apj
, b
)

: j ≥ i
}
∩
[

fp
0

(a, b) + v − C
]

6= ∅. (6)
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We have to prove that

fp0
(a, b) /∈ −C\ {0} , ∀b ∈ Dp0

.

Assume the contrary, that there exists b ∈ Dp0
such that

fp0

(

a, b
)

∈ −C\ {0} .

Let be fp0

(

a, b
)

= −v, where v ∈ C\ {0} . From (6) we obtain that for every
i ∈ I we have {

fp0

(

apj
, b
)

: j ≥ i
}
∩ (−C) 6= ∅, (7)

i.e. there exists a subnet (api
) denoted by the same indexes such that

fp0

(

api
, b
)

∈ −C for all i ∈ I, (8)

or
fp0

(

api
, b
)

converges to a point in − ∂C. (9)

Since b ∈ Dp0
from the Mosco convergence of the sets Dp, we have that

there exists
(

bpi

)

i∈I
⊂ Dpi

such that bpi

τ
→ b. By using again the assumption

ii), it follows that there exists a subnet (api
) denoted by the same indexes,

for which

fpi

(

api
, bpi

)

− fp0

(

api
, b
)

∈ − IntC, for all i ∈ I. (10)

From (8), (9) and (10) it follows that there exists an index i0 ∈ I such that

fpi

(

api
, bpi

)

∈ − Int C, i ≥ i0, (11)

but on the other side (pi, api
) ∈ GraphS, and

fpi

(

api
, bpi

)

/∈ −C\ {0} ,

which is a contradiction. Hence (p0, a) ∈ GraphS. �

M. Bogdan and J. Kolumbán [3] showed that the topological pseudomono-
tonicity and the assumption ii) are essential in scalar case.

Remark 1 The assigment ii) can not be replaced by

ii’) For each net of elements (pi, api
) ∈ GraphS, if pi → p0, api

σ
→ a,

bpi
∈ Dpi

, b ∈ Dp0
,and bpi

τ
→ b, then

Liminf (fpi
(api

, bpi
) − fp0

(api
, b)) ∩ (− IntC ∪ {0}) 6= ∅.

Therefore Theorem 2 does not imply Theorem 1 in [3].
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The following example confirms this statement.

Example 1 Let P = N ∪ {∞}, p0 = ∞ (∞ means +∞ from real analysis),
where we consider the topology induced by the metric given by d(m, n) =

|1/m − 1/n|, d(n, ∞) = d(∞, n) = 1/n, for m, n ∈ N, and d(∞, ∞) = 0. Let
X = [0, 1] where σ, τ are natural topologies, Z = R

2, Dp = [0, 1], p ∈ P, the
real vector functions fn : [0, 1] × [0, 1] → R

2. The ordering cone C is the third
quadrant, i.e. C =

{
(a, b) ∈ R

2 : a ≤ 0, b ≤ 0
}
.

Let fn(a, b) = (a − b − 2/n, 1 − 2a), n ∈ N and the function f∞ be defined
by

f∞(a, b) =

{
(a − b, 1 − a) if a > 0

(b, 1) if a = 0
.

The f∞ is vector topologically pseudomonotone. Indeed, for a > 0, f∞ is
continuous, therefore it is vector topologically pseudomonotone. Let us study
the case when a = 0.

We have to prove that for every b ∈ [0, 1], v ∈ C for each (an)n, an ∈ [0, 1]

with an → 0 satisfying

Liminf f∞ (an, 0) ∩ (− Int C) = ∅,

then for every m ∈ N we have

{f∞ (an, b) : n ≥ m} ∩ [f∞ (a, b) + v − C] 6= ∅.

If an = 0, for all n ∈ N, one has the obvious relation for every b ∈ [0, 1], v ∈ C

{f∞ (0, b) : n ≥ m} ∩ [f∞ (0, b) + v − C] 6= ∅, ∀m ∈ N.

If there exists a k ∈ N such that ak 6= 0, then one has that

f∞ (ak, 0) ∈ Liminf f∞ (an, 0) . (12)

Indeed, f∞ (ak, 0) is an inferior point, because otherwise it has to exist an
j > k such that

(aj, 1 − aj) ∈ (ak, 1 − ak) − Int C.

This implies that {
aj > ak

1 − aj > 1 − ak,

which is a contradiction. Similarly we can prove that f∞ (ak, 0) is a superior
point.
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Since f∞ (ak, 0) ∈ (− IntC), it follows from (12), that

Liminf f∞ (an, 0) ∩ (− Int C) 6= ∅,

so f∞ is vector topologically pseudomonotone.
If an = 1/n for all n ∈ N, the assumption ii′) holds. Indeed, from Theorem

1, it follows that

(0, 0) ∈ Liminf (fn (an, bn) − f∞ (an, b)) ,

where bn → b. We have (n, 1/n) ∈ GraphS for each n ∈ N, S (∞) = {1}, so
0 /∈ S(∞). Hence S is not closed at ∞.

If the (VEP)p is defined on constant domains, Dp = X for all p ∈ P, we can
omit the Mosco convergence. In this case condition ii) can be weakened.

Theorem 3 Let (X, σ) be a Hausdorff topological space, and let p0 ∈ P be
fixed. Suppose that S(p) 6= ∅, for each p ∈ P, and

i) For each net of elements (pi, api
) ∈ GraphS, if pi → p0, api

σ
→ a, and

b ∈ X, then

Liminf (fpi
(api

, b) − fp0
(api

, b)) ∩ (− IntC) 6= ∅.

ii) fp0
: X × X → Z is vector topologically pseudomonotone.

Then the solution map p 7−→ S(p) is closed at p0.
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