

 Acta Universitatis Sapientiae
 Electrical and Mechanical Engineering, 1 (2009) 113-123

113

Certificate-Based Single Sign-on Mechanism for
Multi-Platform Distributed Systems

Attila MAGYARI1, Béla GENGE2, Piroska HALLER2

“Petru Maior” University of Tîrgu Mureş, Tîrgu Mureş, Romania,
e-mail:1 atti86@gmail.com, 2 {bgenge,phaller}@engineering.upm.ro

Manuscript received March 15, 2009; revised May 24, 2009.

Abstract: We propose a certificate-based single sign-on mechanism in distributed
systems. The proposed security protocols and authentication mechanisms are integrated
in a middleware. The novelty of our middleware lies on the use of XPCOM
components. This way we provide different services that can be used on every platform
where Mozilla is available. The component based architecture of the implemented
services allows using the authentication components separately.

Keywords: Single sign-on, authentication, security protocols, cryptography, multi-
platform.

1. Introduction

In this paper we propose a single sign-on mechanism based on certificates
generated on request for client applications. Single sign-on mechanisms ensure
the use of user credentials for accessing multiple resources where the user is
requested to enter its credentials only once. This ensures a reduction of the
number of passwords used which can significantly improve security of systems
by minimizing the likelihood of a password being compromised [1].
Communication between client applications and servers is done using secure
channels based on security protocols. In order to minimize the overhead needed
for accessing multiple servers, instead of using protocols such as SSL [2] or its
more recent version TLS [3], we designed a set of new protocols based on
Guttman’s authentication tests [4, 5]. The protocols have been implemented using
the existing security library OpenSSL [6], which, together with the protocol
descriptions, ensures the correct implementation of the designed protocols.

In order to provide a minimal effort for developing single sign-on
mechanisms in distributed systems, we developed a middleware that

114 A. Magyari, B. Genge, P. Haller

implements the proposed security protocols and single sign-on mechanism.
Existing single sign-on mechanisms are either implemented to function on a
single platform, such as Active Directory [7] for Microsoft Windows or
eDirectory [8] for Unix systems, or they rely on a centralized directory structure
such as LDAP [9], to which servers must be connected in order to authenticate
users. The novelty of our middleware lies on the use of XPCOM [10]
components provided by the Mozilla platform to encapsulate the
communication layer. This way, we do not only provide a single sign-on
mechanism for a single platform, but also a mechanism that can be used on
every platform where Mozilla is available.

The rest of the paper is structured as follows: in the next section we
describe the architecture of the middleware: the requirements, the software
stack and the security protocols.

2. Middleware architecture

2.1 Requirements

Network users typically maintain a set of authentication credentials (usually
a username/password pair) with every Service Provider (SP) they are registered
with. In the context of this paper, a service provider is any entity that provides
some kind of service or content to a user. Examples of SPs include web
services, messenger services, FTP/web sites, and streaming media providers.
The number of such SPs with which users usually interact has grown beyond
the point at which most users can memorize the required credentials. The most
common solution for users is to use the same password with every SP with
which they register — a tradeoff between security and usability in favor of the
latter. A solution for this security issue is Single Sign-On (SSO), a technique
whereby users authenticate themselves once only and are automatically logged
into SPs as necessary, without requiring further manual interaction [11].

There are several approaches to create a SSO network. The Kerberos based
[12] systems initially prompt the user for credentials, emitting a Kerberos ticket-
granting ticket (TGT). Drawbacks of the Kerberos based system include the
centralized architecture: when the Kerberos server is down, no one can log in.
Kerberos requires the clocks of the involved hosts to be synchronized, the
tickets have a time availability period, which is 10 minutes by default
configuration, and if the host clock is not synchronized with the Kerberos server
clock, the authentication will fail. Furthermore, the secret keys for all users are
stored on the central server, so a compromise of that server will compromise all
users' secret keys. Another approach would be a smart card based

 Certificate-Based Single Sign-On Mechanism for Multi-Platform Distributed Systems 115

authentication: an integrated circuit, which can process data, is embedded in a
plastic card, which will be used to identify its owner. The necessity of this
hardware, which can be easily damaged, stolen or compromised, excluded the
smart card method from our list. Some other possibilities include the use of one-
time passwords (OTP) or the integrated windows authentication, but we have
chosen a client certificate based configuration for our model. First of all, the
X.509 certificates we have been using are ITU-T standardized, which widens
the possibilities of the implementations or further developing. These certificates
are based on the RSA encryption algorithm, providing the necessary security.
The certificates are relatively easily generated and due to their small size, their
storage and transport over the network is also easy. The X.509 certificates store
several predefined information about their owner, but can also contain custom
data. We use these fields to store each client’s permissions in the network. An
immediate disadvantage of such an approach is the support for a single
encryption algorithm at a time. It was shown that the algorithm can be broken if
there are enough resources used, but the use larger keys (1024 or 2048 bit)
makes this very hard, if not impossible, with existing technologies. Another
drawback of RSA encryption is its processing power and execution time,
compared to other algorithms, such as AES, 3DES, Blowfish or RC6. This is
why we try to minimize its usage, and – when possible –, replace it with a more
resource-friendly encryption algorithm.

Single sign-on mechanisms already exist, and they are widely used, for
instance the above-mentioned Active Directory for Microsoft Windows or
eDirectory for UNIX systems. However, they are platform-specific. Our goal
was to create a mechanism that runs on a wide variety of platforms, hence we
have chosen XPCOM. It stands for Cross Platform Component Object Model,
and it is a framework for writing multi-platform, modular software. The core of
the components is written using the NSPR (Netscape Portable Runtime [13])
libraries, as shown in Fig. 1 [14]. As an application, it uses a set of core
XPCOM libraries to selectively load and manipulate XPCOM components. It is
open source, and it supports just about any platform that hosts a C++ compiler,
including Microsoft Windows, Linux, HP-UX, AIX, Solaris, OpenVMS,
MacOS, and BSD.

116 A. Magyari, B. Genge, P. Haller

Figure 1: Top Level Conceptual Architecture of Mozilla Application Suite.

2.2 Software Stack

The middleware structure has four layers, as shown in Fig. 2.

Figure 2: Middleware structure.

2.2.1 NSPR

The NSPR layer of the middleware is implemented using various classes
and objects, such as threads, sockets, coders, parsers, timers, several data
structures, and other implementations, which altogether constitute the

 Certificate-Based Single Sign-On Mechanism for Multi-Platform Distributed Systems 117

foundation of the whole platform. These components were written using the
NSPR libraries. Netscape Portable Runtime (NSPR) provides platform
independence for non-GUI operating system facilities. These facilities include
threads, thread synchronization, normal file and network I/O, interval timing
and calendar time, basic memory management and shared library linking. The
current implementation supports Macintosh (PPC), WIN-32 (WinNT, Win9x)
and 20 versions of UNIX and is still expanding.

2.2.2 Communication Channels

The communication channels are built on top of the NSPR layer to create
more advanced data transportation mechanisms. The channels are created
dynamically and managed by channel handlers. They support customary,
predefined structured messages, but also raw data.

2.2.3 Single Sign-on

Single sign-on (SSO) is a mechanism whereby a single action of user
authentication and authorization allows access to all computers and systems
where authorization rights have been verified, without the need to enter multiple
passwords. Single sign-on reduces human error, a major component of systems
failure and is therefore highly desirable.

Our proposed system is composed of two types of participants: clients and
servers. Fig. 3 illustrates a simple network with 3 servers and two clients: one
already connected and another who is in the authentication process. The
communication lines between the nodes may be unstable and in most cases
unsafe, which exposes our messages to different threats like spoofing,
replicating or simple message loss. We designed the system to prevent any of
these attacks, and to be easy to implement and use. Each server can host many
and different services, but for our model we only need an authentication service
and a resource service. The services are of request-response type, and all the
data sent is confidential. The authentication service provides two types of
authentication mechanisms: the first one requires the use of a username and
password, while the second one requires the use of the generated certificates. In
order to gain access to a Service Provider (SP), a client first has to register at
one server called the home server. Each server can be a home server and
resource server at the same time; it is only relative to the client. The registration
can take any form; in our model we assume that there is a secure database,
where every client is already registered. The requester contacts its home server,
and sends over credentials (Step 1 in Fig. 3); this is the only time the user has to
manually log in. The home server will generate a certificate, containing user

118 A. Magyari, B. Genge, P. Haller

data (e.g. username, location, organization name, e-mail address, etc.),
expiration date, but also information about the issuer, to verify its genuineness.
The certificate also contains information about the user’s permissions,
following a role-based access control (RBAC) model. Since users are not
assigned permissions directly, but only acquire them through their role (or
roles), management of individual user rights becomes a matter of simply
assigning appropriate roles to the user. This simplifies common operations, such
as adding a user, or changing a user's department. In Step 2 (Fig. 3), the client
receives the certificate. The next two steps, 3 and 4 in Fig. 3, are to contact the
desired SP, sending the certificate, and exchanging a session key, which will be
used to encrypt data from that moment on. RSA encryption algorithms, which
we have used so far, require more processing power, so we will use the triple
DES algorithm, with a new key each session to maximize security and
performance. If the client wants to access a different SP, the certificate has to be
sent only once, and a new session key will be generated. As long as the
certificate is not expired, it can connect to every SP in the network, otherwise it
will have to repeat the first step and obtain a new certificate.

Figure 3: System setup.

 Certificate-Based Single Sign-On Mechanism for Multi-Platform Distributed Systems 119

2.3 Security Protocols

In the proposed middleware, there was a need for authentication protocols
that satisfied security requirements, such as confidentiality in an insecure
environment, supporting message loss, certificate and key generation. We
developed several security protocols, based on Guttman’s authentication tests.
The implementation of these protocols was done using the OpenSSL security
libraries. A combination of symmetric and asymmetric cryptographic
algorithms was used to achieve a balance between security and performance.
The authentication consists of two phases: acquiring the certificate from the
home server, and authentication at the resource server with the newly generated
credentials.

In order to achieve a valid certificate and key, the client (A) needs to
contact its home server (B). This is where the first phase of the authentication
protocol takes place (Fig. 4), initiated by the client who sends the username,
requesting a connection. If the server finds the username in its database, and the
system is capable of accepting a new connection, it generates a 1024 bit length
nonce (N, random). A hash function (h) is applied on this nonce, and is sent to
the client, together with a message informing the other participant that the next
step is allowed. Then the client sends the username and password, and a single
secret key is generated (KAB), which is used to encrypt the next message from
the server. The received hash of the nonce is hashed again, and together with the
username, password and the generated symmetric key, they are encrypted using
the server’s public key (pkB). Upon receiving the data from the client, the server
hashes the nonce once again and compares it to the previously saved data. If
they match, meaning the message is fresh, it verifies the username and password
and a new certificate will be generated, along with the RSA inverse keys. The
secret key (skA) will be encrypted with the key received from the client. The
keys, the certificate and the nonce are digitally signed, and sent back to the
client. This will verify the nonce and the signature, and if everything is valid,
the certificate and the secret key are decoded and decrypted, finalizing the first
phase of the authentication.

The second phase of the authentication (Fig. 4) starts after acquiring a
certificate. The client contacts the desired resource server, communicating his
intentions on getting access to the resources. If the server is willing to accept
new connections, it will generate and send a 1024 bit nonce (N), informing the
client about the connection being accepted. Receiving this message, the client
hashes and signs the received nonce with his own private key (skA), and
attaches the certificate to the message. The server can verify the signed nonce
with the received certificate, but this certificate will also be verified to ensure it

120 A. Magyari, B. Genge, P. Haller

was emitted by a trusted authority, in this case, the client’s home server. If no
problems occur, the server proceeds to generate a session key (KAB), which will
be used for further data encryption. This key and the nonce will be encrypted
with the client’s public key (pkA), and also signed by the server, to protect its
contents. The whole message is encrypted again with the server’s public key, to
prevent any modifications on the data.

Figure 4: Authentication protocol.

3. Experimental Results

The tests were performed on a Microsoft Windows machine, 2800 MHz
dual core CPU. As you can see in Fig. 5, the RSA key generations use the most
resources. When the number of clients is lower than 10, the delay could vary
between 150 to 1200 milliseconds, but if more than 10 clients try to request
certificates simultaneously, the waiting time can go over 1-2 seconds, as you
can see in Fig. 7. This wouldn’t be a problem, but in a populated network, we
cannot limit the number of clients to 10, there could be hundreds or even
thousands of requests at the same time, and could create a bottleneck in the
servers. To improve performance, and to avoid complications, we could add
more servers, distributing the load across the system. The key generating time is
directly proportional with the processing power of the CPU, so upgrading our

 Certificate-Based Single Sign-On Mechanism for Multi-Platform Distributed Systems 121

hardware can speed up the acquiring process. There are several other ways to
improve the overall performance of the system:

 Using a dedicated processor for RSA key generation, optimized
only for this algorithm;

 Developing either a new library algorithm, or improving the
current one;

 Introducing a new type of server in our system, this could analyze
each server’s load and balance the system by sending clients to
less busy servers.

Figure 5: RSA key generation in time.

122 A. Magyari, B. Genge, P. Haller

Figure 6: Authentication time, with busy and idle servers.

Figure 7: Certificate acquiring time by client.

 Certificate-Based Single Sign-On Mechanism for Multi-Platform Distributed Systems 123

4. Conclusions

We have implemented a middleware platform based on XPCOM
components to assure different services for platform independent distributed
application. The proposed authentication protocol as part of the middleware was
designed to work in an insecure environment, supporting message loss,
certificate and key generation. The implemented protocols have high
computational requirements, but the proposed distributed architecture of the
services can guarantee this.

References

[1] Lampson, B., Abadi, M., Burrows, M., Wobber, E., “Authentication in distributed

systems: Theory and practice”, ACM Trans. Computer Systems 10, 4, pp. 265-310, Nov.
1992.

[2] Freier, A., Karlton, P., Kocher, P., “The SSL protocol, Version 3.0, draft-ietf-tls-
sslversion3-00.txt, Internet-draft”, Transport Layer Security Working Group, Nov. 1996.

[3] Dierks, T., Allen, C., “The TLS protocol, Version 1.0, Request for comments: 2246”,
Network Working Group, Jan. 1999.

[4] Guttman, J. D., Javier, F., Fabrega, T., “Authentication tests and the structure of bundles”,
Theoretical Computer Science, Vol. 283, No. 2, pp. 333-380, June 2002.

[5] Guttman, J. D., “Security protocol design via authentication tests”, in Proc. of the 15th
IEEE Computer Security Foundations Workshop, IEEE CS Press, June 2002, pp. 92..

[6] “OpenSSL Project, version 0.9.8h”, available at http://www.openssl.org/, 2008.
[7] Hunter, L., “Active directory user guide”, Springer-Verlag, 2005.
[8] Killpack, R., “eDirectory field guide”, Springer-Verlag, 2006.
[9] “OpenLDAP, version 2.4.15”, http://www.openldap.org/, 2008.
[10] “Mozilla Corporation, XPCOM, Cross platform component model”,

http://www.mozilla.org/projects/xpcom/, 2008.
[11] Pashalidis, A., Mitchell, C. J., “A taxonomy of single sign-on systems”, Vol. 2727/2003,

Springer Berlin / Heidelberg, 2003.
[12] The Kerberos Network Authentication Service, http://www.kerberos.info/
[13] Mozilla Corporation, NSPR, Netscape Portable Runtime,

http://www.mozilla.org/projects/nspr/, 2008.
[14] D’souza, A., Hildebrand, K., Israeli, G., “Conceptual architecture of Mozilla”, Sept. 30,

2004.

