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Abstract. Since the first book in dynamic programming was published
in 1957, this algorithm design strategy has become a current problem
solving method in several fields of science. The dynamic programming
problem solving process can be divided into two steps. Firstly, we estab-
lish the functional equation of the problem, a recursive formula that im-
plements the principle of the optimality (mathematical part). Secondly,
a computer program is elaborated that processes the recursive formula
in bottom-up way (programming part). In this paper we are going to
present a method and a software tool that automates the programming
part of the dynamic programming process in case of several problems.

1 Introduction

Dynamic programming as optimizing method was proposed by Richard Bell-
man. Since the first book [1] in dynamic programming was published in 1957,
this algorithm design strategy has become a current problem solving method
in several fields of science (Applied mathematics [2], Computer sciences [3],
Artificial Intelligence [5], Bioinformatics [4], Macroeconomics [9], etc.). The
dynamic programming problem solving process can be divided into two steps.
Firstly, we establish the functional equation of the problem, a recursive for-
mula that implements the principle of the optimality. Secondly, a computer
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program is elaborated that processes the recursive formula in bottom-up way.
We will refer to these two steps as mathematical and programming parts of the
dynamic programming. Numerous researchers in the above mentioned various
fields of applications are not experts in programming. In this paper we are go-
ing to present a method and a software tool that automates the programming
part of the dynamic programming process in case of several problems.

2 The mathematical part

Dynamic programming is often used to solve optimizing problems. The prob-
lem usually consists of a target function, which has to be optimized through
an optimal sequence of decisions. The dynamic programming is built on the
principle of optimality: the optimal solution is built by optimal sub-solutions.
This principle is expressed by a recursive formula (functional equation), which
describes mathematically the way the more and more complex optimal sub-
solutions are built from the simpler ones. Obviously, this is a formula where
the way of the optimal (minimum or maximum) decision making has been built
in. Once the functional equation is established, the problem can be considered
mathematically solved.

We assume that the recursive branches of the functional equation have the
following general form: c(A) = min/max{fa(c(Bi))i = 1,2,...,n}, where ¢
denotes the target function. c(A) represents the optimum value attached to
sub-problem A. This optimum directly depends on the optimum value of the
one of sub-problems B;i. More exactly, it depends on c¢(Bi), which optimizes
(minimizes or maximizes) function fa. Function fo depends on the problem
to be solved.

3 The programming part

The programming part of the problem solving process is built on another
principle of the dynamic programming: the optimal values of the target func-
tion concerning the already solved sub-problems are stored (often in an array
that we denote by C). According to the principle of the optimality we are
interested only in the optimal solutions of the sub-problems. This technique,
often called memoization or result catching, makes it possible to avoid the
repeating computation for overlapped sub-problems, which are also character-
istic for dynamic programming problems. The core of the computer program
that implements the dynamic programming algorithm consists in computing
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Figure 1: Array A associated to Triangle problem.

the corresponding elements of the array C in bottom-up way according to the
strategy given by the recursive formula. An efficient strategy solves each sub-
problem before its optimum value is needed by any other sub-problem. The
complexity of this programming task varies from problem to problem. It is
often nontrivial to write a code that evaluates the sub-problems in the most
efficient order.

In [7] we presented three examples; since the computer program works on
the elements of the array C, the recursive formula is generally drafted for these
elements:

1. Triangle (International Olympiad in Informatics, Sweden, 1994): On
and under the main diagonal of a square matrix with n rows there are natural
numbers. We assume that the matrix is stored in the bi-dimensional array A.
Determine the longest path from peak (element aj7) to the base (n-th row),
considering the following:

e On a certain path element aj; can be followed either by element a;iij;
(down), or by element aiy1 41 (diagonally to the right), where T <i<mn
and 1 <j <Ai.

e By the length of a path we mean the sum of the elements to be found
along the path.

For example, should for n = 5 the matrix be the following (see Fig. 1.),
then the longest path from the peak to the base is the shaded one and its
length is 37.

2. Office-building_1: Let A be a matrix whose elements ai; (i=1,...,n,j =
1,...,m) represent an one-storied rectangular office building. The elements of
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the matrix represent the offices and they store the taxes to be paid by anyone
who enters the respective room. There is a door between any two neighbour-
ing elements. You can enter the building only at office with position (1,1) and
leave it only at position (1, m). Which is the minimal loss of money you can
get through the building with?

For example, see Fig. 2. (n =5, m =4). The minimal loss of money is 14,
which we got by following the shaded path.

N v
oo e e
oo e e
=R S

Figure 2: Array A associated to Office-building_1.

3. Office-building_2: The same problem with the following differences:

e There are offices where they do not take money, but they give a certain
amount of money ("negative tax”).

e There are one-way doors (with one-side door-handles). Array B, whose
elements by (i=1,...,n,j =1,...,m) are binary strings with 4 char-
acters (0’ or '1’), stores the door-codes of the offices. The first binary
character of the code represents the up-door, the second the right-door,
the third the down-door and the fourth the left-door. For example, code
"0101" means that we can leave the office only to right and left directions.

e We assume that there is no such office-tour of the building, going along
which we could increase our amount of money.

Determine the most favorable way of getting through the building. For
example, see Fig. 3. (n =5, m = 4) and Fig. 4. The most favorable path
goes through the same offices this time too, and means a loss of money of 7.

In the case of all the above-presented problems the array C is bi-dimensional,
and the recursive formulas that implement the principle of optimality have the
following forms:
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Figure 3: Array A and B associated to Office-building_2 problem.
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Figure 4: The Office-building.
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1101

Problem 1 (Triangle): (Element cyj stores the length of the longest path
from the position (1,j) to the nth row; The trivial sub-problems are represented
by the cells from the n-th row, and the optimal value of the original problem

is going to be stored in cell ¢11.)
Cnj=0nj, 1 <j<n

Cij = ajj + max(cip1j, Civrj+1), T<i<m, 1 <5 <1
Problems 2 and 3 (Office-buildings): (Element cyj stores the length of
the optimal path between the offices from the positions (1,1) and (i,j); The
trivial sub-problem is represented by cell ¢y, and the optimal value of the
original problem is going to be stored in cell cpm).)
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¢ = an,

otherwise
Cij = aij + Min(Ci14, Cij+1, Civ1j, Cij—1)
(assuming that the rooms with the respective positions exist,
and they have “proper doors”)

In the first example (the triangle problem) the chain of the recursive calls
is cycle-free. In such a situation, there is an elegant technique that does not
require the programmer to establish the evaluation order of the sub-problems:
recursion with result catching [11]. By catching the results of all recursive calls,
the second and subsequent evaluations of any sub-problem become constant-
time operations, reducing the overall running time considerably. Recursion
with result catching is very easy to implement in softwares like Maple, Mat-
lab, Mathematica, etc. (In Maple we use the option remember instruction.)
These softwares and the recursion with result catching technique are within
the programming reach of most of the researchers, even if they are not experts
in programming.

For instance: On the one hand, procedure triangle A is an immediate
transcription of the recursive formula, but, unfortunately, this algorithm has
exponential time complexity (inefficient divide and conquer strategy). On the
other hand procedure triangle B differs from triangle A only in one line
(option remember;) and it has polynomial complexity (dynamic program-
ming technique).

triangle A := proc(n, a, i, j)
if i<n then
return ali,jl+max(triangle A(n,a,i+1,j),
triangle A(n,a,i+1,j+1));
else return ali,j];
end if;
end proc:

triangle B := proc(n, a, i, j)
option remember;
if i<n then
return ali,jl+max(triangle B(n,a,i+1,j),
triangle B(n,a,i+1,j+1));
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else return ali,jl;
end if;
end proc:

In the case of the second and third sample-problems the chain of the recur-
sive calls is circular. For example, the optimal value of cell cy3 may depend
on the optimal value of cell ¢33, and, conversely, ¢33 may also depend on c)3.
In such situation, the recursive approach is excluded (to avoid infinite recur-
sive call). Furthermore, there are no easy dynamic programming solutions for
these type of problems (for more details, see [7]). The method and software
tool presented in this paper are especially useful in case of such problems.

4 Dynamic programming as optimal path algorithm
in weighted digraphs

In the followings we are going to consider the recursive formula as an implicit
description of a weighted digraph. By this approach several dynamic pro-
gramming problems can be interpreted as optimal path problems between two
specific vertices of this graph [8].

e The vertices of the graph represent the sub-problems. Thus, we can
consider the used elements of array C storing the optimal values of the
sub-problems as such ones, which represent the vertices of the graph.

e The arcs of the graph represent possible choices (optimize means here
the choice of optimal). The graph has an arc from vertex B to vertex
A if, the optimum value of the array-element corresponding to vertex A
may directly depend on the optimum value of the array-element corre-
sponding to vertex B, according to the recursive formula. For example, if
ca = min/max{fa(cg, )i =1,...,n}, then there are arcs from vertices
B; to vertex A.

e The weights of the arcs reflect the weights of choices.

e The optimal sequence of decisions is represented by the optimal path
between the vertex representing the trivial sub-problem and the vertex
that represents the original problem. If the problem has more than
one trivial sub-problem, we introduce a dummy trivial-node, which is
connected to all trivial vertices.
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Figure 5: Cycle free digraph attached to the Triangle problem.

Figures 5 and 6 show the graphs behind the sample-problems. The big black
node represents the original problem and the gray one the trivial sub-problem.
In the case of the triangle problem we introduced a dummy trivial-node. The
optimal paths are represented by thick arrows. The cells of array C store the
optimum values of the corresponding sub-problems.

We distinguish three cases [8]:

e 1. The attached graph is cycle free. In this case the most efficient
optimal path algorithm is based on the topological order of the vertices.
The time complexity of this algorithm is O(N + M) (N and M are the
numbers of the vertices and arcs, respectively) [3].

e 2. The graph contains cycles, but there are no negative weight arcs.
For this case the best choice is Dijkstra’s shortest path algorithm. The
time complexity of the most efficient implementation of this algorithm
is O(NlogN + M) [3].

e 3. The graph has negative arcs, but it has no negative weight cycles.
This shortest path problem is solved by the Belmann-Ford algorithm
(O(NM)) [3].

The optimal (shortest) path problem to be solved is the following. Given
a weighted digraph (G(V,E,w), V: set of vertices, E: set of arcs, w: E — R
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weight function) with N vertices 1,2, ..., N and M arcs, determine the shortest
paths from the vertex s (source) to all the other vertices (destinations).

We denote with c(v) (the optimum value attached to vertex v) the weight
of the shortest path from the source (s) to vertex v. (c(s) = 0,c(u) = oo for
all vertices u that are not reachable from vertex s)

The above mentioned shortest path algorithms are based on the following
lemmas and propositions: (For proofs and further details see [3] and [6])

Lemma 1. Parts of any shortest path are also shortest paths. (Principle of
optimality)

Lemma 2. All s-source shortest paths constitute an s-rooted tree called
optimal-paths-tree.

Lemma 3. The optimal-paths-tree can be built progressively starting with
vertex s. At each step the tree is extended with a new arc that attaches to
the tree a new vertex. (Implementation of the principle of optimality)

Lemma 4. If vertex u is the immediate predecessor of vertex v on the
optimal path from s to v, then: c¢(v) = c(u) + w(u,v). (The optimum value
of vertex v is based on the optimum value of vertex u, and can be computed
on the basis of the weight of arc (u,v))

Corollary 1. The optimum values of all vertices that are reachable from s
depend on the optimum value of the one of their in-neighbours.

Lemma 5. The optimum values have to be computed according to a topo-
logical order of the vertices with respect to the optimal-paths-tree.

Lemma 6. Assuming c(s) = 0, the building process of the optimal-paths-tree
consist in applying the formula from Lemma 4 on all arcs of the optimal-paths-
tree in their topological order.

Assuming that the optimum values attached to the vertices are going to be
generated in array C, we define the following updating operation (operator
update) on the basis of arc (u,v) € E:

update (u,v)
if ¢y > cu+w(u,v) then ¢, =cy+wu,v)
end_if

end_update

Corollary 2. If cg = 0 and ¢, = oo for all uw € V\{s}, then applying operator
update on all arcs of the optimal-paths-tree in their topological order results
incy =c(u) forallue V.

Lemma 7. For all arcs (u,v) € E it is true that: ¢, < cy +w(u,v).
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Lemma 8. If ¢cs = 0 and ¢, = oo for all uw € V\{s}, then applying operator
update on any arc-sequence that includes as sub-sequence the arc-sequence
required by Lemma 6 results in ¢y, = c(u) for allu e V.

All the three shortest path algorithms mentioned above apply the following
strategy:

e it generates such an arc-sequence that includes as sub-sequence the arc-
sequence required by Lemma 6,

e it applies operator update on all arcs of the generated sequence.

Lemma 9. If G is cycle free, then the topological-sequence of all arcs of G
includes as sub-sequence the arc-sequence required by Lemma 6.

Proposition 1. If G is cycle free, ¢cs = 0 and ¢, = oo for all u € V\{s},
then applying operator update on all arcs in their topological order results in
cu=-c(u) forallueV.

Lemma 10. If all arcs in G have non negative weights and vertex u is a
predecessor of vertex v on the optimal path from s to v, then: c(u) < c(v).

Corollary 3. If all arcs in G have non negative weights, then the optimum
values of all vertices v that are reachable from s may only depend on in-
neighbours that have optimum values less or equal than c(v).

According to Lemma 10 and Corollary 3 Dijkstra’s algorithm determines
the shortest paths according to the ascending order of their weights.

Proposition 2. (Dijkstra’s algorithm) If all arcs in G have non negative
weights, ¢s = 0 and ¢, = oo for all u € V\{s}, then the algorithm that

e starts with vertex s,

e in each step attaches the arc that links to the tree the vertex that is
"closest’ to root s (according to the current values stored in array C) to
the growing optimal-paths-tree,

e applies operator update on all out-arcs of the currently attached vertex,

results in ¢y, = c(u) for all w € V.
Proposition 3. (Bellman-Ford algorithm) If G has no negative cycles, ¢ =0
and ¢, = oo for all u € V\{s}, then the algorithm that

e chooses an arbitrary sequence of all arcs in G,

e applies operator update to the chosen sequence, again and again, until
no more changes in array C,

results in ¢, = c(u) for all u € V.
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Figure 6: Digraphs (without negative arcs/without negative cycles) attached
to the Office-buildings problems.

5 The method and the software tool

The core idea of the algorithm behind the software is that we represent ex-
plicitly the graph described implicitly by the recursive formula. Since the
dimension of the array C varies from problem to problem we treat it as one-
dimensional (row-major-index). The used cells (the vertices) of array C are
going to store the optimum values of the corresponding sub-problems and
pointers to their out-neighbour cells.

There are two strategies to transpose the functional equation of dynamic
programming into an algorithm: the direct method (direct-conversion of the
functional equation into an iterative/recursive procedure) and the successive
approximation methods (after an initial approximation, the cells that are going
to store the optimum values are successively updated —improved— either by the
functional equation itself or by an equation related to it) [10].

Another classification of the dynamic programming strategies is based on
the way the optimum values of the sub-problems are computed. The so-called
pull-approach computes directly (not by an updating process) the optimum
value of the current node on the basis of the already computed optimum values
of its immediate predecessors. This approach is an immediate application of
the functional equation, and can be used only for the acyclic graphs. The
recursion with result catching technique applies this approach [10].
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The key idea in the case of the push-approach (adaptable to all three cases)
is to propagate any improvement that has been made in the current vertex u to
its out-neighbors. More exactly, if v is an out-neighbor of the current vertex 1,
then cell ¢, (the cell corresponding to the sub-problem that is represented by
the vertex v) is updated on the basis of the arc (u,v). In other words, if value
fy(cw) 'is better’ than the current value of the cell ¢,, then ¢, is updated with
the value fy(c,). The algorithm ends when any other improvements cannot
be performed [10]. All the three optimum path algorithms we are using in the
software apply successive approximation and push-approach.

The topological algorithm traverses the vertices of the graph (starting with
the (dummy)trivial-node) according to their topological order, and updates
the ¢y, value of all out-neighbors of the current vertex u on the basis of the arc
(u,v). At the moment we have arrived to a vertex, the corresponding element
in array C already stores the optimum value. The algorithm only confirms this
optimum. The succession the optimum values of the vertices are determined is
predestinated by the topological order of these vertices. The topological order
of the vertices can be established by a Depth First Search (DFS) procedure.
The algorithm attempts to approximate with each arc at most once [6].

If the graph has no negative weight arcs, then it can be observed that the
optimum values of the vertices are in ascending order along the shortest paths.
Consequently, the Dijkstra algorithm traverses the vertices according to this
order, and updates the c, values of all out-neighbors of the current vertex u
on the basis of the arc (u,v). It is evident that in this case the order the
optimum values of the vertices are determined is unpredictable. Therefore,
Dijkstra’s algorithm determines this order on the fly (during the algorithm); if
the vertex v is the closest (according to the current values of the array C) out-
neighbour of the already confirmed shortest-path-tree, then c, is confirmed as
the optimum value of node v. The algorithm attempts to approximate with
each arc at most once [6].

The Bellman—Ford algorithm goes through (in arbitrary order) all the arcs
of the graph (and attempts to approximate with them) again and again. It
needs at most (N — 1) tours. During a last extra-tour the algorithm realizes
that all elements of the array C have reached their optimal values. (There
were not any updates) [6].



Automated dynamic programming 161

o (M=

Input |

Data of the problem

Recursive formula Size of the problem

Genaral form Formulas of recursion .
Begin Indexes

el _|=10 | if [i=0 | 00|

] | li=0 | o
+efi-1]-1] | lalil= b}l | End Indexes
max{e[-11,cflfi-11} | Ign@m% I

Optimum Determination

carsl |

|_Save recursiv formula Load recursiv formula |

Figure 7: The Input-interface.

The algorithm is:
1. Input:

(a) The recursive formula is introduced.

(b) The index-limits (along every dimension) of the array C are intro-
duced.

(c) The indexes of the cell that represents the original problem are
introduced.

2. The recursive formula is analyzed:

(a) The software asks for the input data.
(b) The digraph is built.

3. The type of the digraph is determined. (A DFS algorithm tests if the
graph is acyclic or not, has negative arcs or not, and whether it contains
negative cycles or not.)
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4. The proper optimal path algorithm is applied.

5. The solution (the optimum value corresponding to the original problem,
and the cell-indexes along the optimal path) is printed.

Fig. 7 shows the input interface that implements steps 1/a, 1/b and 1/c of
the algorithm. As a sample problem we have:

Given two sequences in arrays a[l..4] and b[1..5], determine the longest
common subsequence.

Fig. 8 shows the output interface that presents a simulation of the dynamic
programming solution building process. The optimum value of sub-problem
(3,3) is computed on the basis of the optimum values of sub-problems (2,3)
and (3,2).

£ B][=1
[ nput_| Output

® Step by Step

[ oK |
& Only the result
Leaend
_ _ _ [7] - solved subproblem
0.0 0.0 0.0 0.0 0.0 0.0 B-Currert sunorobiem
. - In-neighbour
) " . . . - subproblem of the
0.0 0.0 0.0 0.0 0.0 0.0 current subproblem
0.0 1.0 1.0 1.0
0.0 1.0
Used formula: max{c[i-1,i],c[i,i-11}
[_Next Step

Close

Figure 8: The Output-interface.
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Conclusions

The above presented method treats different dynamic programming problems
uniformly and in such a way that it makes possible the automation of the
programming part of the problem solving process. The software is a very
useful tool for all researchers who have to deal with dynamic programming
problems, especially for those who are not experts in programming.
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