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Abstract. Residual closeness is recently proposed as a vulnerability mea-
sure to characterize the stability of complex networks. Residual closeness
is essential in the analysis of complex networks, but costly to compute.
Currently, the fastest known algorithms run in polynomial time. Moti-
vated by the fast-growing need to compute vulnerability measures on
complex networks, new algorithms for computing node and edge resid-
ual closeness are introduced in this paper. Those proposed algorithms
reduce the running times to @ (ns) and © (n4) on unweighted networks,
respectively, where n is the number of nodes.

1 Introduction

Networks with complex topology describe a wide range of systems in nature
and society. The research for complex networks is a significant area of multidis-
ciplinary studies including applied and theoretical sciences such as informat-
ics, computer science, physics, biology, mathematics, chemistry, social sciences
[18, 21]. An interconnection network is composed of nodes and edges between
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those nodes. The nodes are the elementary components of the system and the
edges connect pair of nodes that mutually interact exchanging information.
The robustness of an interconnection network is of prime significance for net-
work designers. Stability measures are considerably intriguing in the research
of network vulnerability. The robustness of a network is the measurement of
the global strength of its underlying graph. The vulnerability of complex net-
works can be either node or edge vulnerability meaning that how different
classes of network topologies are affected by the removal of a finite number of
nodes and/or edges. There exist diversity of vulnerability parameters proposed
to measure the stability of networks. The earliest measure of vulnerability of
a network is connectivity and it is a considerable measure [16]. It gives the
minimum cost to disrupt the network. However it does not consider what re-
mains after disintegration and this is the disadvantage of connectivity. Other
improved measures were introduced and studied to overcome this disadvan-
tage, such as integrity [5], toughness [9, 28], tenacity [4, 17], scattering num-
ber [15], rupture degree [29, 30]. On the contrary to connectivity, improved
parameters not only consider the cost to damage a network but also how
badly the network is damaged. These measures are efficient if the underlying
graph has become disconnected or trivial after network failure. The problem
of measuring these stability parameters of graphs is NP-complete in general
from an algorithmic point of view [7, 8, 10, 11, 14, 19, 22]. Therefore these
parameters are not efficient enough in the study of complex networks. The
notion of residual closeness is introduced recently as a novel graph vulnerabil-
ity measure by Dangalchev [6]. Residual closeness is a graph-based approach
for network vulnerability analysis. This parameter measures the vulnerabil-
ity of networks more susceptible than some other parameters in being. The
main object of residual closeness is to measure the vulnerability even when
the disruption of nodes/edges do not disconnect the graph. The necessity and
advantages of residual closeness for measuring the vulnerability of graphs are
detailed by Dangalchev. Instances reveal that the residual closeness can state
the robustness of graphs better than or independently from the other measures
existing in literature. Residual closeness can be seen the most proper measure
for modeling the stability of network topologies in case of potential node or
edge disruption [6]. The closeness and residual closeness of a graph has been
studied by several authors, including [1, 2, 3, 12, 13, 24, 25, 26, 27, 31, 32, 33].

In this paper, the graphs are simple, finite and undirected without loops
and multiple edges. For a graph G = (V, E) with n nodes and m edges, |[V| =n
and [E| = m, respectively. The length of a shortest path between two nodes i
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and j in G is the distance dg(i,j). If the nodes i and j are not connected, then
dg(i,j) = 00, and for i =j, dg(i,j) = 0.

The paper proceeds as follow. The theoretical background on the residual
closeness is presented in Section 2. Section 3 describes the new developed
algorithms for computing the node and edge residual closeness that require
less computational effort than the existing algorithms in literature. Section 4
concludes the paper.

2 Residual closeness

The closeness of a graph is defined as C = )_ C(i), where C(i) is the closeness
i

of a vertex i and C(i) = 3_ 274 [g].
j#

Let di(i,j) be the distance between vertices i and j in the graph, received
from the original graph where all edges incident to vertex k are deleted. Then
the closeness after removing vertex k is defined as C, = 5 5 274 (L) The

1A
vertex residual closeness (VRC) of the graph is defined as R = mkin{Ck} [6].

Let d(xp) (i,7) be the distance between vertices i and j in the graph, received
from the original graph where only the edge (k,p) is deleted. Then, the close-
ness after removing edge (k, p) is defined as Cjyp) =3 3 240 (W) The edge

i jA
(link) residual closeness (LRC) of the graph is defined as R = 1(0][{11% {Cwp } [6].
P

3 Design of the algorithms

The all-pair-shortest-paths problem (APSP) is one of the most well-studied
problems in algorithm design. The problem is to compute the shortest-path dis-
tance between every pair of nodes, that is finding a path between two nodes of
a graph such that the sum of the weights of its connecting edges is minimized,
together with a representation of these shortest paths. The Floyd-Warshall
algorithm [20] is one of the algorithms most used for determining the least
cost path between every pair of nodes in an edge weighted directed graph.
For the APSP problem, this algorithm has a worst-case runtime of © (n3) for
graphs with n nodes. For unweighted undirected graphs, a traditional method
to solve the APSP problem of a graph G is to run breadth-first-search (BFS),
once from every node of G which takes O (nm) time.
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For computing the node and edge vulnerability in networks via residual
closeness, algorithms with polynomial time complexities @ (n4) and © (nS),
respectively, have been proposed previously in [33] and [31]. These algorithms
were designed by the use of Floyd-Warshall algorithm. Although these algo-
rithms are efficient, they are still time-consuming when applied on large-scale
complex networks.

In this section, a polynomial time algorithm is proposed in order to cal-
culate the node and edge residual closeness for any simple finite undirected
unweighted connected graph without loops and multiple edges by using the
below exploration algorithm BFS [23]. The above function BF'S returns the
distances from a source node v to all other nodes in graph G. The adjacency
matrix A is used to store the neighbors of each vertex. The running time
of function BFS (G,v) is O (|[V|+ |E|) and the function BFS (G, v) runs for all
veV(G).

function BFS(G,v);

Input: Graph G =(V7.E) start node v

Output: forall nodes u reachable from v, dist[ u] is set to the distance from v to u

for all usV do
d.i.sr[u] «—x;
end
disr[v] «—0;
0« [
while O is not empty do
u < gect(Q);
for all edges (u,w)c E do
if dist[v]=c0 then
INJECT (Q,v);
dist|w] « dist[u] +1;

end

end
end
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Algorithm. Node Residual Closeness

Input: Graph G =(V.E ) and the adjacency matrix 4

Output: Node residual closeness

for all wel do
forall (w,j)eE do

A[w,j]=0;
A[j:w] =0;
end
forall vel’ do
BFS(G.v);
forall uel do
Dv.ul= df.sr[u];
end
end
temp =0

foral velV and ucsl do
if D[v,u] =0 and D[v,u]= then

temp = temp +1/2°F4 ;

endif

end

if temp <nre then
nre=temp ;
nre_vertex = w;

endif

forall (w,j)cE do
A[w, j]=1;
A[j;w] =1;

end

end

Node residual closeness calculation algorithm runs in polynomial time. The
inequality of |[E| < [V|(]V| —1)/2 yields the complexity of |V|2, by the outermost
for loop, the total time complexity will be @ <|V|3>.
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Algorithm. Link Residual Closeness

Input: Graph G =(¥.E) and the adjacency matrix 4

Output: Link residual closeness

forall (i,j)€E do

A[ij]=0;

A[j.]=0;

forall velV do

BFS(G,v);

forall uc? do

D[v,u] « df.sr[u] ;

end

end

temp =0;

forall veV and ucV do

if D[v:u] =0 and D[v;u] = then

temp = temp+1/27 -

endif

end

if temp < Irc then

lrc =temp ;

Ire _link=(i,j);

endif
Alij]=1;
A[j:f] =1;

end

Edge (link) residual closeness calculation algorithm runs in polynomial time.
The inequality of [E] < [V|(|]V|—1)/2 yields the complexity of |V\2, by the
outermost for loop, the total time complexity will be © (|V|4).



Computational complexity of network vulnerability analysis 205

4 Conclusion

The nodes or the edges which are responsible for fast communication flow can
be identified within a network by the use of residual closeness. The nodes and
the edges giving the residual closeness of a network are fast in distributing
information through the network. We can conclude that vulnerability of com-
plex networks can be more efficiently and sensitively measured by the use of
the new proposed algorithms. For unweighted graphs, the shortest paths from
one node to all other nodes are computed by the use of BFS in the shortest
possible time, that is, in complexity O (|V|+ |E|). In that case, if BF'S is run
for each node in the graph, that is, n times, then the shortest paths from
all nodes to all other nodes are calculated in a much shorter time than all
existing algorithms in the literature. Thereafter, at each step, one node/edge
is removed from the graph one by one independent from each other and the
closeness of the remaining subgraph is computed by the calculation of all pairs
of shortest paths. The smallest closeness among all the closeness values of the
nodes/edges is determined as the residual closeness of the related graph.
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