

DOI: 10.2478/ausi-2022-0011

Computing Laplacian energy, Laplacian-energy-like invariant and Kirchhoff index of graphs

S. Bhatnagar

Department of Applied Mathematics, Aligarh Muslim University, Aligarh, India email: sbhatnagar734@gmail.com

Merajuddin

Department of Applied Mathematics, Aligarh Muslim University, Aligarh, India

email: meraj1957@rediffmail.com

S. Pirzada

Department of Mathematics, University of Kashmir, Srinagar, India email:

pirzadasd@kashmiruniversity.ac.in ORCID:0000-0002-1137-517X

Abstract. Let G be a simple connected graph of order n and size m. The matrix L(G) = D(G) - A(G) is called the Laplacian matrix of the graph G, where D(G) and A(G) are the degree diagonal matrix and the adjacency matrix, respectively. Let the vertex degree sequence be $d_1 \geq d_2 \geq \cdots \geq d_n$ and let $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{n-1} > \mu_n = 0$ be the eigenvalues of the Laplacian matrix of G. The graph invariants, Laplacian energy (LE), the Laplacian-energy-like invariant (LEL) and the Kirchhoff index (Kf), are defined in terms of the Laplacian eigenvalues of graph G, as LE = $\sum_{i=1}^n \left| \mu_i - \frac{2m}{n} \right|$, LEL = $\sum_{i=1}^{n-1} \sqrt{\mu_i}$ and Kf = n $\sum_{i=1}^{n-1} \frac{1}{\mu_i}$, respectively. In this paper, we obtain a new bound for the Laplacian-energy-like invariant LEL and establish the relations between Laplacian-energy-like invariant LEL and the Kirchhoff index Kf. Further, we obtain the relations between the Laplacian energy LE and Kirchhoff index Kf.

Computing Classification System 1998: G.2.2

Mathematics Subject Classification 2010: 05C09, 05C12, 05C50, 05C92, 15A18 Key words and phrases: Laplacian matrix; Laplacian energy; Laplacian-energy-like invariant; Kirchhoff index

1 Introduction

Let G(V(G), E(G)) be a simple connected graph with vertex set $V(G) = \{\nu_1, \nu_2, \dots, \nu_n\}$ and edge set $E(G) = \{e_1, e_2, \dots, e_m\}$, where order |V(G)| = n and size |E(G)| = m. The degree $d(\nu_i)$ or d_i of a vertex ν_i is the number of edges incident on ν_i . The set of vertices adjacent to $\nu \in V(G)$, denoted by $N(\nu)$, refers to the *neighborhood* of ν . Let $\max\{d_i : \nu_i \in V(G)\} = d_1 = \Delta$ and $\min\{d_i : \nu_i \in V(G)\} = d_n = \delta$. More on notations and definitions, we refer to [15].

The adjacency matrix A(G) associated with G is a square matrix defined as $A(G) = (a_{ij})$, where $a_{ij} = 1$, if vertex ν_i is adjacent to vertex ν_j , and 0 otherwise. The eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ of A(G) forms the adjacency spectrum of G. The well known properties of the adjacency eigenvalues are $\sum_{i=1}^n \lambda_i = 0$, $\sum_{i=1}^n \lambda_i^2 = 2m$. The Laplacian matrix L(G) of a graph G is defined as L(G) = D(G) - A(G), where $D(G) = diag\{d_1, d_2, \ldots, d_n\}$ is the vertex degree diagonal matrix of G and A(G) is the adjacency matrix of G. The eigenvalues $\mu_1, \mu_2, \ldots, \mu_n$ of L(G) forms the Laplacian spectrum of G. The Laplacian matrix is a real symmetric and positive semi-definite matrix. The Laplacian eigenvalues can be arranged in the non-increasing order as $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{n-1} > \mu_n = 0$. We note that $\mu_n = 0$ with multiplicity equal to the number of the connected components of G. Also, $\mu_{n-1} > 0$ if and only if the graph G is connected.

Analogous to the adjacency spectrum of a graph, the Laplacian spectrum also satisfies the following relations $\sum_{i=1}^n \mu_i = \text{trace}(L(G) = D - A) = 2m$, $\sum_{i=1}^n \mu_i^2 = \text{trace}(L(G) = D - A)^2 = \sum_i^n d_i^2 + \sum_{i=1}^n d_i = M_1 + 2m$, where $M_1 = M_1(G)$ is called the first Zagreb index introduced by Gutman and Trinajstic [3]. A modification to the first Zagreb index, called the Forgotten index F(G), see [2, 3], is defined as the sum of the cubes of the vertex degrees of the graph G, that is, $F = F(G) = \sum_{i=1}^n d_i^3$.

In Huckel Molecular Orbital (HMO) model, the total π -electron energy E calculated is a quantum-chemical characteristics of large polycyclic conjugated molecules. Gutman [4] defined the energy E of a graph G as the sum of the absolute values of the eigenvalues of the adjacency matrix. That is, $E = \sum_{i=1}^n |\lambda_i|$, where λ_i 's are the adjacency eigenvalues of the underlying molecular graph. For the adjacency spectrum, the energy E(G) has the following basic properties.

- 1. $E(G) \ge 0$, equality if and only if m = 0,
- 2. $E(G) = E(G_1) + E(G_2)$, where G_1 and G_2 are the components of G,

3. If one component of the graph G is G_1 and all other components are isolated vertices, then $E(G) = E(G_1)$.

There has been enormous interest on the investigation of graph energy concept and analogous definitions have been formulated for other matrices associated to a graph. Gutman and Zhou [5], put forward the definition of the Laplacian energy $\mathsf{LE}(\mathsf{G})$ of a graph G , as the sum of the absolute deviations (that is, the distances from the average) of the Laplacian eigenvalues.

$$LE = LE(G) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|,$$

where G is a graph with n vertices and m edges and $\mu_1, \mu_2, \dots, \mu_n$ are the Laplacian eigenvalues.

The Laplacian energy has some analogous properties as the energy E(G) but does not possess the basic properties (2) and (3) of E(G). Also, $E \ge 0$. To overcome this, Liu and Liu [10] introduced the Laplacian-energy-like invariant (LEL) defined as

$$LEL = LEL(G) = \sum_{i=1}^{n-1} \sqrt{\mu_i}.$$

More on LEL can be seen in [11, 12, 13, 14, 17, 18] and in references therein. The Wiener Index W(G) of a graph G is a topological index and is defined as

$$W(\mathsf{G}) = \sum_{\mathfrak{i}<\mathfrak{j}} \mathsf{d}_{\mathfrak{i}\mathfrak{j}},$$

where d_{ij} is the number of edges in the shortest path between the vertices i and j in G. Wiener [21] investigated the Wiener index and found the correlation between the boiling points of paraffin and the structure of the molecules. Analogous to the Wiener index, Klein and Randic [9] defined the Kirchhoff index Kf(G) of a simple connected graph G as

$$Kf(G) = \sum_{i < j} r_{ij},$$

where r_{ij} is the resistance distance between vertices i and j of G. That is, r_{ij} is equal to the resistance between two equivalent points on an associated electronic network, obtained by replacing each edge of G by a unit (1 Ohm)

resistor. Gutman and Mohar [6] and Zhu et al. [22] independently proved that the Kirchhoff index can be represented in terms of the Laplacian eigenvalues as

$$Kf = Kf(G) = n \sum_{i=1}^{n-1} \frac{1}{\mu_i}$$

In this article, we obtain a bound for the Laplacian-energy-like invariant and establish some relations between the Laplacian-energy-like and the Kirchhoff index. Also, we establish some relations between the Laplacian energy and the Kirchhoff index.

2 Bound on Laplacian-energy-like invariant

Liu and Liu [10] obtained an upper bound for LEL as

$$LEL \le \sqrt{2m(n-1)},\tag{1}$$

equality holds if and only if $G \cong K_n$.

First we have the following lemmas.

Lemma 1 [20] Let $a = (a_i)$, i = 1, 2, ..., n, be a positive real number sequence with $0 < r \le a_i \le R < +\infty$. Then the following inequality holds.

$$n\sum_{i=1}^{n} a_i^2 - \left(\sum_{i=1}^{n} a_i\right)^2 \ge \frac{n}{2}(R-r)^2, \tag{2}$$

with equality if and only if $a_1=R, a_n=r$ and $a_2=a_3=\cdots=a_{n-1}=\frac{r+R}{2}$

Lemma 2 [1] Let G be a simple graph of order n with at least one edge. Then $\mu_1 = \mu_2 = \cdots = \mu_{n-1}$ if and only if G is a complete graph K_n .

Now, we present a sharp upper bound for the Laplacian-energy-like invariant in terms of the number of vertices $\mathfrak n$, the number of edges $\mathfrak m$, the maximum vertex degree Δ and the algebraic connectivity k.

Theorem 3 Let G be a simple connected graph of order $\mathfrak n$ and size $\mathfrak m$. Let the maximum vertex degree be Δ and the algebraic connectivity be $\mu_{n-1} \geq k$. Then

$$LEL(G) \le \sqrt{2m(n-1) - \left(\frac{n-1}{2}\right)\left(\sqrt{\Delta+1} - \sqrt{k}\right)^2} \tag{3}$$

with equality if and only if $G \cong K_n$, where K_n is the complete graph of order n.

Proof. From Lemma 1, for $a = (a_i)$, where a_i are all positive real numbers and $0 < r \le a_i \le R < +\infty$, we have

$$n\sum_{i=1}^n {\alpha_i}^2 - \bigg(\sum_{i=1}^n \alpha_i\bigg)^2 \geq \frac{n}{2}(R-r)^2.$$

Setting n := n - 1, $a_i = \sqrt{\mu_i}$, $r = \sqrt{\mu_{n-1}}$ and $R = \sqrt{\mu_1}$, we get

$$(n-1)\sum_{i=1}^{n-1}\mu_i - \bigg(\sum_{i=1}^{n-1}\sqrt{\mu_i}\bigg)^2 \geq \bigg(\frac{n-1}{2}\bigg)\bigg(\sqrt{\mu_1} - \sqrt{\mu_{n-1}}\bigg)^2.$$

Since $\sum_{i=1}^{n-1}\mu_i=\text{trace}(L)=\sum_{i=1}^n d_i=2m$ and LEL $=\sum_{i=1}^{n-1}\sqrt{\mu_i},$ we have

$$\begin{split} &(n-1)2m-(LEL)^2 \geq \left(\frac{n-1}{2}\right)\left(\sqrt{\mu_1}-\sqrt{\mu_{n-1}}\right)^2,\\ &\text{or } LEL^2 \leq 2m(n-1)-\left(\frac{n-1}{2}\right)\left(\sqrt{\mu_1}-\sqrt{\mu_{n-1}}\right)^2,\\ &\text{or } LEL \leq \sqrt{2m(n-1)-\left(\frac{n-1}{2}\right)\left(\sqrt{\mu_1}-\sqrt{\mu_{n-1}}\right)^2}. \end{split}$$

For $\Delta + 1 \le x \le n$, consider the function

$$f(x) = 2m(n-1) - \left(\frac{n-1}{2}\right) \left(\sqrt{x} - \sqrt{\mu_{n-1}}\right)^2.$$

Differentiating both sides with respect to x, we have

$$\begin{split} f'(x) &= -\left(\frac{n-1}{2}\right) \; 2\bigg(\sqrt{x} - \sqrt{\mu_{n-1}}\bigg) \left(\frac{1}{2\sqrt{x}}\right) \\ &= -\left(\frac{n-1}{2}\right) \left(\frac{\sqrt{x} - \sqrt{\mu_{n-1}}}{\sqrt{x}}\right) \leq 0. \end{split}$$

That is, f(x) is a decreasing function of x for $\Delta + 1 \le x$. So

$$f(x) \leq f(\Delta+1) = 2m(n-1) - \left(\frac{n-1}{2}\right) \left(\sqrt{\Delta+1} - \sqrt{\mu_{n-1}}\right)^2.$$

Therefore,

$$\mathsf{LEL} \leq 2 \mathfrak{m}(\mathfrak{n}-1) - \left(\frac{\mathfrak{n}-1}{2}\right) \left(\sqrt{\Delta+1} - \sqrt{\mu_{\mathfrak{n}-1}}\right)^2.$$

Again, consider the function

$$g(x) = 2m(n-1) - \left(\frac{n-1}{2}\right) \left(\sqrt{\Delta+1} - \sqrt{x}\right)^2 \text{ for } x \ge k.$$

Differentiating both sides with respect to x, we get g'(x) =

$$-2\left(\frac{n-1}{2}\right)\ \left(\sqrt{\Delta+1}-\sqrt{x}\right)\left(\frac{-1}{2\sqrt{x}}\right)=\left(\frac{n-1}{2}\right)\left(\frac{\sqrt{\Delta+1}-\sqrt{x}}{\sqrt{x}}\right).$$

Again, differentiating both sides with respect to x, we get

$$\begin{split} g''(x) &= \left(\frac{n-1}{2}\right) \frac{\sqrt{x} \left(-\frac{1}{2\sqrt{x}}\right) - \left(\sqrt{\Delta+1} - \frac{1}{2\sqrt{x}}\right)\sqrt{x}}{x} \\ &= \left(\frac{n-1}{2}\right) \frac{\sqrt{x} \left(-\frac{1}{2\sqrt{x}} - \sqrt{\Delta+1} + \frac{1}{2\sqrt{x}}\right)}{x} \\ &= \left(\frac{n-1}{2}\right) \frac{-\sqrt{\Delta+1}}{\sqrt{x}} = -\left(\frac{n-1}{2}\right) \left(\frac{\sqrt{\Delta+1}}{\sqrt{x}}\right) \\ &< 0. \end{split}$$

This implies that g(x) is an increasing function for $x \geq k$. Therefore,

$$g(x) \leq g(k) = 2m(n-1) - \left(\frac{n-1}{2}\right) \left(\sqrt{\Delta+1} - \sqrt{k}\right)^2.$$

This gives

$$\mathsf{LEL} \leq \sqrt{2 \mathfrak{m} (\mathfrak{n} - 1) - \left(\frac{\mathfrak{n} - 1}{2}\right) \left(\sqrt{\Delta + 1} - \sqrt{k}\right)^2}.$$

Equality occurs in Inequality (3) if and only if the equality occurs in Lemma 1, that is, if and only if $\mu_2 = \mu_3 = \dots = \mu_{n-1} = \frac{\mu_1 + \mu_{n-1}}{2}$, which is possible, if and only if $\mu_2 = \mu_3 = \dots = \mu_{n-1}$, that is, by Lemma 2, if and only if $G \cong K_n$, proving the theorem.

Remark 4 It is evident from Inequality (3), that the bound in Theorem 3 is sharper than the bound given in Inequality (1).

3 Relations between Laplacian-energy-like invariant and Kirchhoff index

In this section, we present two relations between Laplacian-energy-like invariant and Kirchhoff index. First, we have the following observation.

Lemma 5 [8] Let $p = (p_i)$ and $a = (a_i)$, i = 1, 2, ..., n, be two sequences of positive real numbers such that $p_1 + p_2 + \cdots + p_n = 1$ and $0 < r \le a_i \le R <= \infty$. Then the following inequality holds.

$$\sum_{i=1}^n p_i a_i \sum_{i=1}^n \frac{p_i}{a_i} \leq \frac{1}{4} \left(\sqrt{\frac{R}{r}} + \sqrt{\frac{r}{R}} \right)^2.$$

Lemma 6 [7] Let $p = (p_i)$, i = 1, 2, ..., n, be a positive real number sequence and let $a = (a_i)$, $b = (b_i)$, ..., $c = (c_i)$, i = 1, 2, ..., n, be r sequences of nonnegative real numbers of similar monotonicity. Then the following inequality holds.

$$\left(\sum_{i=1}^n p_i\right)^{r-1} \sum_{i=1}^n p_i a_i b_i \dots c_i \geq \sum_{i=1}^n p_i a_i \sum_{i=1}^n p_i b_i \dots \sum_{i=1}^n p_i c_i,$$

with equality if and only if r-1 sequences are constant.

Theorem 7 Let G be a simple connected graph of order n and size m. Let the maximum vertex degree be Δ , first Zagreb index M_1 and the algebraic connectivity be $\mu_{n-1} \geq k$. Then,

$$LEL \ge \sqrt{\frac{4k(M_1 + 2m)(Kf)}{(n+k)^2}}.$$
 (4)

with equality if and only if $G \cong K_n$, where K_n is the complete graph of order n.

Proof. From Lemma 5, for real numbers p_i , $a_i > 0$ and $\sum_{i=1}^n p_i = 1$, $0 < r \le a_i \le R < +\infty$, we have

$$\sum_{i=1}^n p_i a_i \sum_{i=1}^n \frac{p_i}{a_i} \leq \frac{1}{4} \left(\sqrt{\frac{R}{r}} + \sqrt{\frac{r}{R}} \right)^2.$$

Setting $p_i = \frac{\sqrt{\mu_i}}{LEL}, \ \alpha_i = (\mu_i)^{\frac{3}{2}} \quad i=1,2,\ldots,n-1, \ \mathrm{where} \ LEL = \sum_{i=1}^{n-1} \sqrt{\mu_i}, \ \mathrm{we}$ get

$$\begin{split} &\sum_{i=1}^{n-1} \left(\frac{\mu_i^2}{LEL}\right) \sum_{i=1}^{n-1} \left(\frac{\frac{1}{\mu_i}}{LEL}\right) \leq \frac{1}{4} \left(\sqrt{\frac{\mu_1}{\mu_{n-1}}} + \sqrt{\frac{\mu_{n-1}}{\mu_1}}\right)^2 \\ &\text{or} \quad \frac{\sum_{i=1}^{n-1} \mu_i^2 \sum_{i=1}^{n-1} \frac{1}{\mu_i}}{LEL^2} \leq \frac{1}{4} \left(\sqrt{\frac{\mu_1}{\mu_{n-1}}} + \sqrt{\frac{\mu_{n-1}}{\mu_1}}\right)^2 \\ &\text{or} \quad \frac{(M_1 + 2m)(\frac{Kf}{n})}{LEL^2} \leq \frac{1}{4} \left(\sqrt{\frac{\mu_1}{\mu_{n-1}}} + \sqrt{\frac{\mu_{n-1}}{\mu_1}}\right)^2. \end{split}$$

This gives

$$\label{eq:lel} \text{LEL} \geq \sqrt{\frac{4(M_1 + 2m)(\frac{Kf}{n})(\mu_1 \mu_{n-1})}{(\mu_1 + \mu_{n-1})^2}}.$$

For $\Delta+1 \leq x \leq n$, consider the function, $f(x)=\frac{x}{(x+\mu_{n-1})^2}$. Differentiating both sides with respect to x, we get

$$\begin{split} f'(x) &= \frac{(x + \mu_{n-1})^2(1) - 2x(x + \mu_{n-1})}{(x + \mu_{n-1})^4} \\ &= \frac{x + \mu_{n-1} - 2x}{(x + \mu_{n-1})^3} = \frac{\mu_{n-1} - x}{(x + \mu_{n-1})^3} \leq 0. \end{split}$$

This implies that f(x) is a decreasing function. Thus,

$$f(x) \geq f(n) = \frac{n}{(n+\mu_{n-1})^2}.$$

Therefore,

$$\text{LEL} \geq \sqrt{\frac{4(M_1 + 2m)(Kf)\mu_{n-1}}{(n + \mu_{n-1})^2}}.$$

Now, for $x \ge k$, consider the function $g(x) = \frac{x}{(n+x)^2}$.

As it is an increasing function of x, so we have $g(x) \ge g(k) = \frac{k}{(n+k)^2}$. Therefore,

$$LEL \ge \sqrt{\frac{4(M_1+2m)(Kf)k}{(n+k)^2}},$$

Equality occurs in Theorem 7 if and only if the sequence a_i in Lemma 5 is a constant, that is all a_i 's are equal. Therefore $\mu_1 = \mu_2 = \dots = \mu_{n-1}$. Then, by Lemma 2, $G \cong K_n$ and the proof is complete.

4 Relation between Laplacian energy and Kirchhoff index

In this section, we obtain two relations between the Laplacian energy and the Kirchhoff index. We begin with the following.

Lemma 8 [19] (Radon Inequality). If $a_i, x_i > 0$, n > 0, $i \in 1, 2, ..., n$, then

$$\sum_{i=1}^n \frac{x_i^{r+1}}{\alpha_i^r} \geq \frac{(\sum_{i=1}^n x_i)^{r+1}}{(\sum_{i=1}^n \alpha_i)^r}$$

where r is an arbitrary real number such that $r \le 1$ or $r \ge 0$. Equality holds if and only if either r = -1, or r = 0 or $\frac{x_1}{a_1} = \frac{x_2}{a_2} = \cdots = \frac{x_n}{a_n}$.

Lemma 9 [1] Let G be a graph of order $n \geq 3$ vertices and maximum degree Δ . Then $\mu_2 = \mu_3 = \cdots = \mu_{n-1}$ if and only if $G \cong K_n$, or $G \cong K_{1,n-1}$, or $G \cong K_{\Delta,\Delta}$.

Theorem 10 Let G be a graph on n vertices and m edges with maximum degree Δ . Then,

$$(2m - \Delta - 1) \left[(2m - \Delta - 1) - \frac{4m}{n} (n - 2) + \frac{4m^2}{n^3} (Kf - 1) \right]$$

 $\geq (LE - \Delta - 1)^2$

with equality if and only if $G \cong K_n$ or $G \cong K_{1,n-1}$.

Proof. In Lemma 8 (Radon inequality), setting

$$r = 1, \quad x_i = \left| \mu_i - \frac{2m}{n} \right|, \quad a_i = \mu_i, \quad i = 2, 3, \dots, n-1,$$

we obtain

$$\sum_{i=2}^{n-1} \frac{(\mu_i - \frac{2m}{n})^2}{\mu_i} \geq \frac{(\sum_{i=2}^{n-1} \left| \mu_i - \frac{2m}{n} \right|)^2}{\sum_{i=2}^{n-1} \mu_i}.$$

We have, $(\mu_i-\frac{2m}{n})^2=(\mu_i)^2+\frac{4m^2}{n^2}-\frac{4m}{n}\mu_i.$ Therefore,

$$\begin{split} \sum_{i=2}^{n-1} \frac{(\mu_i - \frac{2m}{n})^2}{\mu_i} &= \sum_{i=2}^{n-1} \mu_i + \frac{4m^2}{n^2} \sum_{i=2}^{n-1} \frac{1}{\mu_i} - \frac{4m}{n} \sum_{i=2}^{n-1} 1 \\ &= (2m - \mu_1) + \frac{4m^2}{n^2} \left(\frac{Kf}{n} - \frac{1}{\mu_1} \right) - \frac{4m}{n} (n-2) \\ &= (2m - \mu_1) + \frac{4m^2}{n^3} \left(Kf - \frac{n}{\mu_1} \right) - \frac{4m}{n} (n-2) \end{split}$$

and

$$\begin{split} \frac{\left(\left.\sum_{i=2}^{n-1}\left|\mu_{i}-\frac{2m}{n}\right|\right.\right)^{2}}{\sum_{i=2}^{n-1}\mu_{i}} &= \frac{\left(\left.\sum_{i=1}^{n}\left|\mu_{i}-\frac{2m}{n}\right|-(\mu_{1}-\frac{2m}{n})-(\frac{2m}{n}-0)\right.\right)^{2}}{\sum_{i=1}^{n}\mu_{i}-\mu_{1}-0} \\ &= \frac{(LE-\mu_{1})^{2}}{2m-\mu_{1}}, \end{split}$$

since $\mu_n = 0$. Thus,

$$\begin{split} &(2m-\mu_1) + \frac{4m^2}{n^3} \bigg(Kf - \frac{n}{\mu_1} \bigg) - \frac{4m}{n} (n-2) \geq \frac{(LE-\mu_1)^2}{2m-\mu_1} \\ & \text{or } (2m-\mu_1) \bigg((2m-\mu_1) + \frac{4m^2}{n^3} \bigg(Kf - \frac{n}{\mu_1} \bigg) - \frac{4m}{n} (n-2) \bigg) \geq (LE-\mu_1)^2. \end{split}$$

Since $\Delta + 1 \le \mu_1 \le n$, so

$$\left(2m - (\Delta + 1)\right) \left[(2m - (\Delta + 1)) + \frac{4m^2}{n^3} (Kf - 1) - \frac{4m}{n} (n - 2) \right] \ge (LE - n)^2,$$

For equality in Theorem 10, all the above inequalities must be equalities. Therefore, we have $\mu_2 = \mu_3 = \mu_{n-1}$. Since $\mu_1 = \Delta + 1$, so by Lemma 9, $G \cong K_n$, or $G \cong K_{1,n-1}$, completing the proof.

Theorem 11 If G is a connected graph on n vertices and m edges with maximum vertex degree Δ , then

$$\begin{split} &\left(F+3M_1-6C_3-(\Delta+1)^3\right)+\frac{4m^2}{n^2}\bigg(2m-(\Delta+1)\bigg)\\ &-\frac{4m}{n}\bigg(M_1+2m-(\Delta+1)^2\bigg)\geq \frac{n\bigg(LE-(\Delta+1)\bigg)^2}{(Kf-1)}, \end{split}$$

where F, M_1 and C_3 are the Forgotten index, first Zagreb index and the number of the triangles, respectively. And equality occurs if and only if $G \cong K_n$ or $\mu_1 = \mu_2 = \cdots = \mu_p$, $\mu_{p+1} = \mu_{p+2} = \cdots = \mu_{n-1}$, $(1 \le p \le n-2)$ with $n(\mu_1^2 + \mu_{n-1}^2) = 2m(\mu_1 + \mu_{n-1})$.

Proof. In Radon inequality, set $r=1,\ x_i=\left|\mu_i-\frac{2m}{n}\right|,\ \alpha_i=\frac{1}{\mu_i},\ i=2,3,\ldots,n-1,$ we get

$$\sum_{i=2}^{n-1} \left(\mu_i - \frac{2m}{n} \right)^2 \mu_i \geq \frac{ \left(\left. \sum_{i=2}^{n-1} \left| \mu_i - \frac{2m}{n} \right| \right. \right)^2}{\sum_{i=2}^{n-1} \frac{1}{\mu_i}}.$$

Now,

$$\begin{split} &\sum_{i=2}^{n-1} \left(\mu_i - \frac{2m}{n}\right)^2 \mu_i = \sum_{i=2}^{n-1} \left(\mu_i^3 + \frac{4m^2}{n^2} \mu_i - \frac{4m}{n} \mu_i^2\right) \\ &= \sum_{i=2}^{n-1} \mu_i^3 + \frac{4m^2}{n^2} \sum_{i=2}^{n-1} \mu_i - \frac{4m}{n} \sum_{i=2}^{n-1} \mu_i^2 \\ &= \left(\sum_{i=1}^{n-1} \mu_i^3 - \mu_1^3\right) + \frac{4m^2}{n^2} \left(\sum_{i=1}^{n-1} \mu_i - \mu_1\right) - \frac{4m}{n} \left(\sum_{i=1}^{n-1} \mu_i^2 - \mu_1^2\right) \\ &= (F + 3M_1 - 6C_3 - \mu_1^3) + \frac{4m^2}{n^2} (2m - \mu_1) - \frac{4m}{n} (M_1 + 2m - \mu_1^2). \end{split}$$

For the Laplacian, we have

$$\begin{split} \sum_{i=1}^{n-1} \mu_i &= trace(D-A) = \sum_{i=1}^n d_i = 2m, \\ \sum_{i=1}^{n-1} \mu_i^2 &= trace(D-A)^2 = \sum_{i=1}^n d_i^2 + \sum_{i=1}^n d_i = M_1 + 2m, \\ \sum_{i=1}^{n-1} \mu_i^3 &= trace(D-A)^3 = trace(D^3 - 3D^2A + 3DA^2 - A^3) = F + 3M_1 - 6C_3, \end{split}$$

and

$$\begin{split} \frac{\left(\left.\sum_{i=2}^{n-1}\left|\mu_{i}-\frac{2m}{n}\right|\right.\right)^{2}}{\sum_{i=2}^{n-1}\frac{1}{\mu_{i}}} &= \frac{\left(\left.\sum_{i=1}^{n}\left|\mu_{i}-\frac{2m}{n}\right|-(\mu_{1}-\frac{2m}{n})-(\frac{2m}{n}-\mu_{n})\right.\right)^{2}}{\left.\sum_{i=1}^{n-1}\frac{1}{\mu_{i}}-\frac{1}{\mu_{1}}\right.} \\ &= \frac{(LE-\mu_{1})^{2}}{\frac{Kf}{n}-\frac{1}{\mu_{1}}} &= \frac{n(LE-\mu_{1})^{2}}{Kf-\frac{n}{\mu_{1}}}. \end{split}$$

Therefore,

$$\begin{split} &\left(F + 3M_1 - 6C_3 - \mu_1^3\right) + \frac{4m^2}{n^2}(2m - \mu_1) - \frac{4m}{n}(M_1 + 2m - \mu_1^2) \\ &\geq \frac{n(LE - \mu_1)^2}{Kf - \frac{n}{\mu_1}}. \end{split}$$

For, $\Delta + 1 \le \mu_1 \le n$, this becomes

$$\begin{split} &\left(F+3M_1-6C_3-(\Delta+1)^3\right)+\frac{4m^2}{n^2}\bigg(2m-(\Delta+1)\bigg)\\ &-\frac{4m}{n}\bigg(M_1+2m-(\Delta+1)^2\bigg)\geq \frac{n\bigg(LE-(\Delta+1)\bigg)^2}{Kf-1}. \end{split}$$

Equality case can be proved as the equality shown in Theorem 3.1 in [14]. This completes the proof. \Box

Acknowledgements

The research of Sandeep Bhatnagar is supported by CSIR, India as a Senior Research Fellowship, file No.09/112(0642)/2019-EMR-I. The research of S.

Pirzada is supported by SERB-DST, New Delhi under the research project number CRG/2020/000109.

References

- [1] K.C. Das, A sharp upper bound for the number of spanning trees of a graph, $Graphs\ Comb.\ 23\ (2007)\ 625-632.\ \Rightarrow 188,\ 193$
- [2] B. Furtula, I. Gutman, A forgotten topological index, *J. Math. Chem.* **53** (2015) $1184-1190. \implies 186$
- [3] I. Gutman, N. Trinajstic, Graph Theory and Molecular Orbitals, Total π -electron energy of alternate hydrocarbons, *Chem. Phys. Lett.* **17** (1972) 535–538. \Rightarrow 186
- [4] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungszenturm Graz 103 (1978) 1–22. \Rightarrow 186
- [5] I. Gutman, B. Zhou, Laplacian energy of a graph, *Linear Algebra Appl.* **414** (2006) 29–37. \Rightarrow 187
- [6] I. Gutman, B. Mohar, The quasi-Wiener and the Kirchhoff indices coincide, *J. Chem. Inf. Comput. Sci.* **36** (1996) 982–985. \Rightarrow 188
- [7] T. Hayashi, On some inequalities, Rend. Circ. Mat. Palermo 44 (1920) 336–340. \Rightarrow 191
- [8] P. Henrici, Two remarks on Kantorovich inequality, Amer. Math. Monthly **68(9)** (1961) 904–906. \Rightarrow 191
- [9] D.J. Klein, M. Randic, Resistence distance, J. Math. Chem. 12 (1993) 81–95.
 ⇒ 187
- [10] J. Liu, B.A. Liu, A Laplacian-Energy-like invariant of a graph, MATCH Commun. Math. Comput. Chem. **59** (2008) 355–372. \Rightarrow 187, 188
- [11] B. Liu, Z.Y. Liu, A Survey on the Laplacian-energy-like invariant, *MATCH Commun. Math. Comput. Chem.* **66** (2011) 713–730. \Rightarrow 187
- [12] E.I. Milovanovic, I. Z. Milovanovic, M. M. Matejic, On relation between Kirchhoff index and Laplacian-energy-like invariant of graphs, *Math. Int. Res.* 2 (2017) 141–154. ⇒ 187
- [13] I. Milovanovic, E. Milovanovic, E. Glogic, M. Matejic, On Kirchhoff index, Laplacian energy and their relation, *MATCH Commun. Math. Comput. Chem.* **81** (2019) 405–418. \Rightarrow 187
- [14] P. Milosevic, E. Milovanovic, M. Matejic, I. Milovanovic, On relations between Kirchhoff index, Laplacian energy, Laplacian—energy—like invariant and degree deviation of graphs, *Filomat* 34(2020) 1025—1033. ⇒187, 196
- [15] S. Pirzada, An Introduction to Graph Theory, Universities Press, Hyderabad, India, 2012. ⇒186
- [16] S. Pirzada, H.A. Ganie, On Laplacian-Energy-like invariant and Incidence energy, *Trans. Comb.* **4(3)** (2015) 25–35. ⇒
- [17] S. Pirzada, H.A. Ganie, I. Gutman, On Laplacian-Energy-like invariant and Kirchhoff Index, *MATCH Commun. Math. Comput. Chem.* **73** (2015) 41–60. \Rightarrow 187

- [18] S. Pirzada, H. A. Ganie, I. Gutman, Comparison between Laplacian-energy-like invariant and the Kirchhoff index, *Elec. J. Lin. Algebra* **31** (2016) 27–41. ⇒187
- [19] J. Radon, Theorie und Anwendungen der absolut Additiven Mengenfunktionnem, Sitzungsber Acad. Wissen, Wien 122 (1913) 1295–1438. \Rightarrow 193
- [20] J. Szőkefalvi Nagy, Uber algebraische Gleichungenmit lauter reellen Wurzeln, Jahresbericht der deutschen Mathematiker Vereingung 27 (1918) 37–43. ⇒188
- [21] H. Wiener, Structural determination of paraffin boilling points, J. Amer. Chem. Soc. **69** (1947) 17–20. \Rightarrow 187
- [22] H.Y. Zhu, D.J. Klein, I. Lukovits, Extensions of the Wiener numbers, J. Chem. Inform. Comput. Sci. 36(3) (1996) 420–428. \Rightarrow 188

Received: October 1, 2022 • Revised: November 6, 2022