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Abstract. Let G be a simple connected graph of order n and size m.
The matrix L(G) = D(G) − A(G) is called the Laplacian matrix of the
graph G, where D(G) and A(G) are the degree diagonal matrix and
the adjacency matrix, respectively. Let the vertex degree sequence be
d1 ≥ d2 ≥ · · · ≥ dn and let µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0 be the
eigenvalues of the Laplacian matrix of G. The graph invariants, Laplacian
energy (LE), the Laplacian-energy-like invariant (LEL) and the Kirchhoff
index (Kf), are defined in terms of the Laplacian eigenvalues of graph

G, as LE =
∑n
i=1

∣∣µi − 2m
n

∣∣, LEL =
∑n−1
i=1

√
µi and Kf = n

∑n−1
i=1

1
µi

,
respectively. In this paper, we obtain a new bound for the Laplacian-
energy-like invariant LEL and establish the relations between Laplacian-
energy-like invariant LEL and the Kirchhoff index Kf. Further, we obtain
the relations between the Laplacian energy LE and Kirchhoff index Kf.
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1 Introduction

Let G(V(G), E(G)) be a simple connected graph with vertex set V(G) =
{v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em}, where order |V(G)| = n

and size |E(G)| = m. The degree d(vi) or di of a vertex vi is the number of
edges incident on vi. The set of vertices adjacent to v ∈ V(G), denoted by
N(v), refers to the neighborhood of v. Let max{di : vi ∈ V(G)} = d1 = ∆ and
min{di : vi ∈ V(G)} = dn = δ. More on notations and definitions, we refer to
[15].

The adjacency matrix A(G) associated with G is a square matrix defined as
A(G) = (aij), where aij = 1, if vertex vi is adjacent to vertex vj, and 0 other-
wise. The eigenvalues λ1, λ2. . . . , λn of A(G) forms the adjacency spectrum of
G. The well known properties of the adjacency eigenvalues are

∑n
i=1 λi = 0,∑n

i=1 λ
2
i = 2m. The Laplacian matrix L(G) of a graph G is defined as

L(G) = D(G) −A(G), where D(G) = diag{d1, d2, . . . , dn} is the vertex degree
diagonal matrix of G and A(G) is the adjacency matrix of G. The eigenval-
ues µ1, µ2, . . . , µn of L(G) forms the Laplacian spectrum of G. The Laplacian
matrix is a real symmetric and positive semi-definite matrix. The Laplacian
eigenvalues can be arranged in the non-increasing order as µ1 ≥ µ2 ≥ · · · ≥
µn−1 > µn = 0. We note that µn = 0 with multiplicity equal to the number of
the connected components of G. Also, µn−1 > 0 if and only if the graph G is
connected.

Analogous to the adjacency spectrum of a graph, the Laplacian spectrum
also satisfies the following relations

∑n
i=1 µi = trace(L(G) = D − A) = 2m,∑n

i=1 µ
2
i = trace(L(G) = D − A)2 =

∑n
i d

2
i +

∑n
i=1 di = M1 + 2m, where

M1 =M1(G) is called the first Zagreb index introduced by Gutman and Tri-
najstic [3]. A modification to the first Zagreb index, called the Forgotten index
F(G), see [2, 3], is defined as the sum of the cubes of the vertex degrees of the
graph G, that is, F = F(G) =

∑n
i=1 d

3
i .

In Huckel Molecular Orbital (HMO) model, the total π-electron energy E
calculated is a quantum-chemical characteristics of large polycyclic conjugated
molecules. Gutman [4] defined the energy E of a graph G as the sum of the ab-
solute values of the eigenvalues of the adjacency matrix. That is, E =

∑n
i=1 |λi|,

where λi’s are the adjacency eigenvalues of the underlying molecular graph.
For the adjacency spectrum, the energy E(G) has the following basic proper-
ties.
1. E(G) ≥ 0, equality if and only if m = 0,
2. E(G) = E(G1) + E(G2), where G1 and G2 are the components of G,
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3. If one component of the graph G is G1 and all other components are isolated
vertices, then E(G) = E(G1).

There has been enormous interest on the investigation of graph energy con-
cept and analogous definitions have been formulated for other matrices asso-
ciated to a graph. Gutman and Zhou [5], put forward the definition of the
Laplacian energy LE(G) of a graph G, as the sum of the absolute deviations
(that is, the distances from the average) of the Laplacian eigenvalues.

LE = LE(G) =

n∑
i=1

∣∣∣∣µi − 2m

n

∣∣∣∣ ,
where G is a graph with n vertices and m edges and µ1, µ2, . . . , µn are the
Laplacian eigenvalues.

The Laplacian energy has some analogous properties as the energy E(G) but
does not possess the basic properties (2) and (3) of E(G). Also, LE ≥ 0. To
overcome this, Liu and Liu [10] introduced the Laplacian-energy-like invariant
(LEL) defined as

LEL = LEL(G) =

n−1∑
i=1

√
µi.

More on LEL can be seen in [11, 12, 13, 14, 17, 18] and in references therein.
The Wiener Index W(G) of a graph G is a topological index and is defined

as

W(G) =
∑
i<j

dij,

where dij is the number of edges in the shortest path between the vertices i and
j in G. Wiener [21] investigated the Wiener index and found the correlation
between the boiling points of paraffin and the structure of the molecules.
Analogous to the Wiener index, Klein and Randic [9] defined the Kirchhoff
index Kf(G) of a simple connected graph G as

Kf(G) =
∑
i<j

rij,

where rij is the resistance distance between vertices i and j of G. That is,
rij is equal to the resistance between two equivalent points on an associated
electronic network, obtained by replacing each edge of G by a unit (1 Ohm)
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resistor. Gutman and Mohar [6] and Zhu et al. [22] independently proved that
the Kirchhoff index can be represented in terms of the Laplacian eigenvalues
as

Kf = Kf(G) = n

n−1∑
i=1

1

µi

In this article, we obtain a bound for the Laplacian-energy-like invariant and
establish some relations between the Laplacian-energy-like and the Kirchhoff
index. Also, we establish some relations between the Laplacian energy and the
Kirchhoff index.

2 Bound on Laplacian-energy-like invariant

Liu and Liu [10] obtained an upper bound for LEL as

LEL ≤
√
2m(n− 1), (1)

equality holds if and only if G ∼= Kn.

First we have the following lemmas.

Lemma 1 [20] Let a = (ai), i = 1, 2, . . . , n, be a positive real number sequence
with 0 < r ≤ ai ≤ R < +∞. Then the following inequality holds.

n

n∑
i=1

a2i −

(
n∑
i=1

ai

)2
≥ n
2
(R− r)2, (2)

with equality if and only if a1 = R,an = r and a2 = a3 = · · · = an−1 = r+R
2

Lemma 2 [1] Let G be a simple graph of order n with at least one edge. Then
µ1 = µ2 = · · · = µn−1 if and only if G is a complete graph Kn.

Now, we present a sharp upper bound for the Laplacian-energy-like invariant
in terms of the number of vertices n, the number of edges m, the maximum
vertex degree ∆ and the algebraic connectivity k.
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Theorem 3 Let G be a simple connected graph of order n and size m. Let
the maximum vertex degree be ∆ and the algebraic connectivity be µn−1 ≥ k.
Then

LEL(G) ≤

√
2m(n− 1) −

(
n− 1

2

)(√
∆+ 1−

√
k

)2
(3)

with equality if and only if G ∼= Kn, where Kn is the complete graph of order
n.

Proof. From Lemma 1, for a = (ai), where ai are all positive real numbers
and 0 < r ≤ ai ≤ R < +∞, we have

n

n∑
i=1

ai
2 −

( n∑
i=1

ai

)2
≥ n
2
(R− r)2.

Setting n := n− 1, ai =
√
µi, r =

√
µn−1 and R =

√
µ1, we get

(n− 1)

n−1∑
i=1

µi −

( n−1∑
i=1

√
µi

)2
≥
(
n− 1

2

)(
√
µ1 −

√
µn−1

)2
.

Since
∑n−1
i=1 µi = trace(L) =

∑n
i=1 di = 2m and LEL =

∑n−1
i=1

√
µi, we have

(n− 1)2m− (LEL)2 ≥
(
n− 1

2

)(
√
µ1 −

√
µn−1

)2
,

or LEL2 ≤ 2m(n− 1) −

(
n− 1

2

)(
√
µ1 −

√
µn−1

)2
,

or LEL ≤

√
2m(n− 1) −

(
n− 1

2

)(
√
µ1 −

√
µn−1

)2
.

For ∆+ 1 ≤ x ≤ n, consider the function

f(x) = 2m(n− 1) −

(
n− 1

2

)(√
x−
√
µn−1

)2
.

Differentiating both sides with respect to x, we have

f ′(x) = −

(
n− 1

2

)
2

(√
x−
√
µn−1

)(
1

2
√
x

)
= −

(
n− 1

2

)(√
x−
√
µn−1√
x

)
≤ 0.
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That is, f(x) is a decreasing function of x for ∆+ 1 ≤ x. So

f(x) ≤ f(∆+ 1) = 2m(n− 1) −

(
n− 1

2

)(√
∆+ 1−

√
µn−1

)2
.

Therefore,

LEL ≤ 2m(n− 1) −

(
n− 1

2

)(√
∆+ 1−

√
µn−1

)2
.

Again, consider the function

g(x) = 2m(n− 1) −

(
n− 1

2

)(√
∆+ 1−

√
x
)2
for x ≥ k.

Differentiating both sides with respect to x, we get g ′(x) =

−2

(
n− 1

2

) (√
∆+ 1−

√
x

)(
−1

2
√
x

)
=

(
n− 1

2

)(√
∆+ 1−

√
x√

x

)
.

Again, differentiating both sides with respect to x, we get

g ′′(x) =

(
n− 1

2

) √x(− 1
2
√
x

)
−

(√
∆+ 1− 1

2
√
x

)√
x

x

=

(
n− 1

2

) √x(− 1
2
√
x
−
√
∆+ 1+ 1

2
√
x

)
x

=

(
n− 1

2

)
−
√
∆+ 1√
x

= −

(
n− 1

2

)
(

√
∆+ 1√
x

)

≤ 0.

This implies that g(x) is an increasing function for x ≥ k. Therefore,

g(x) ≤ g(k) = 2m(n− 1) −

(
n− 1

2

)(√
∆+ 1−

√
k

)2
.

This gives

LEL ≤

√
2m(n− 1) −

(
n− 1

2

)(√
∆+ 1−

√
k

)2
.
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Equality occurs in Inequality (3) if and only if the equality occurs in Lemma
1, that is, if and only if µ2 = µ3 = · · · = µn−1 = µ1+µn−1

2 , which is possible, if
and only if µ2 = µ3 = · · · = µn−1, that is, by Lemma 2, if and only if G ∼= Kn,
proving the theorem. �

Remark 4 It is evident from Inequality (3), that the bound in Theorem 3 is
sharper than the bound given in Inequality (1).

3 Relations between Laplacian-energy-like invariant
and Kirchhoff index

In this section, we present two relations between Laplacian-energy-like invari-
ant and Kirchhoff index. First, we have the following observation.

Lemma 5 [8] Let p = (pi) and a = (ai), i = 1, 2, . . . , n, be two sequences of
positive real numbers such that p1+p2+· · ·+pn = 1 and 0 < r ≤ ai ≤ R <= ∞.
Then the following inequality holds.

n∑
i=1

piai

n∑
i=1

pi
ai
≤ 1
4

(√
R

r
+

√
r

R

)2
.

Lemma 6 [7] Let p = (pi), i = 1, 2, . . . , n, be a positive real number sequence
and let a = (ai), b = (bi), . . . , c = (ci),i = 1, 2, . . . , n, be r sequences of non-
negative real numbers of similar monotonicity. Then the following inequality
holds. (

n∑
i=1

pi

)r−1 n∑
i=1

piaibi . . . ci ≥
n∑
i=1

piai

n∑
i=1

pibi · · ·
n∑
i=1

pici,

with equality if and only if r− 1 sequences are constant.

Theorem 7 Let G be a simple connected graph of order n and size m. Let
the maximum vertex degree be ∆, first Zagreb index M1 and the algebraic
connectivity be µn−1 ≥ k. Then,

LEL ≥

√
4k(M1 + 2m)(Kf)

(n+ k)2
. (4)

with equality if and only if G ∼= Kn, where Kn is the complete graph of order
n.
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Proof. From Lemma 5, for real numbers pi, ai > 0 and
∑n
i=1 pi = 1, 0 < r ≤

ai ≤ R < +∞, we have

n∑
i=1

piai

n∑
i=1

pi
ai
≤ 1
4

(√
R

r
+

√
r

R

)2
.

Setting pi =
√
µi

LEL , ai = (µi)
3
2 i = 1, 2, . . . , n− 1, where LEL =

∑n−1
i=1

√
µi, we

get

n−1∑
i=1

(
µ2i
LEL

) n−1∑
i=1

( 1
µi

LEL

)
≤ 1
4

(√
µ1
µn−1

+

√
µn−1
µ1

)2

or

∑n−1
i=1 µ

2
i

∑n−1
i=1

1
µi

LEL2
≤ 1
4

(√
µ1
µn−1

+

√
µn−1
µ1

)2
or

(M1 + 2m)(Kfn )

LEL2
≤ 1
4

(√
µ1
µn−1

+

√
µn−1
µ1

)2
.

This gives

LEL ≥

√
4(M1 + 2m)(Kfn )(µ1µn−1)

(µ1 + µn−1)2
.

For ∆+ 1 ≤ x ≤ n, consider the function, f(x) = x
(x+µn−1)2

.

Differentiating both sides with respect to x, we get

f ′(x) =
(x+ µn−1)

2(1) − 2x(x+ µn−1)

(x+ µn−1)4

=
x+ µn−1 − 2x

(x+ µn−1)3
=

µn−1 − x

(x+ µn−1)3
≤ 0.

This implies that f(x) is a decreasing function. Thus,

f(x) ≥ f(n) = n

(n+ µn−1)2
.

Therefore,

LEL ≥

√
4(M1 + 2m)(Kf)µn−1

(n+ µn−1)2
.
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Now, for x ≥ k, consider the function g(x) = x
(n+x)2

.

As it is an increasing function of x, so we have g(x) ≥ g(k) = k
(n+k)2

. Therefore,

LEL ≥

√
4(M1 + 2m)(Kf)k

(n+ k)2
,

Equality occurs in Theorem 7 if and only if the sequence ai in Lemma 5 is a
constant, that is all ai’s are equal. Therefore µ1 = µ2 = · · · = µn−1. Then, by
Lemma 2, G ∼= Kn and the proof is complete. �

4 Relation between Laplacian energy and Kirchhoff
index

In this section, we obtain two relations between the Laplacian energy and the
Kirchhoff index. We begin with the following.

Lemma 8 [19] (Radon Inequality). If ai, xi > 0, n > 0, i ∈ 1, 2, . . . , n,
then

n∑
i=1

xr+1i

ari
≥

(
∑n
i=1 xi)

r+1

(
∑n
i=1 ai)

r

where r is an arbitrary real number such that r ≤ 1 or r ≥ 0. Equality holds if
and only if either r = −1, or r = 0 or x1

a1
= x2

a2
= · · · = xn

an
.

Lemma 9 [1] Let G be a graph of order n ≥ 3 vertices and maximum degree
∆. Then µ2 = µ3 = · · · = µn−1 if and only if G ∼= Kn, or G ∼= K1,n−1, or
G ∼= K∆,∆.

Theorem 10 Let G be a graph on n vertices and m edges with maximum
degree ∆. Then,

(2m− ∆− 1)

[
(2m− ∆− 1) −

4m

n
(n− 2) +

4m2

n3
(Kf− 1)

]
≥ (LE− ∆− 1)2

with equality if and only if G ∼= Kn or G ∼= K1,n−1.
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Proof. In Lemma 8 (Radon inequality), setting

r = 1, xi =

∣∣∣∣µi − 2m

n

∣∣∣∣ , ai = µi, i = 2, 3, . . . , n− 1,

we obtain

n−1∑
i=2

(µi −
2m
n )2

µi
≥

(
∑n−1
i=2

∣∣µi − 2m
n

∣∣)2∑n−1
i=2 µi

.

We have, (µi −
2m
n )2 = (µi)

2 + 4m2

n2
− 4m

n µi. Therefore,

n−1∑
i=2

(µi −
2m
n )2

µi
=

n−1∑
i=2

µi +
4m2

n2

n−1∑
i=2

1

µi
−
4m

n

n−1∑
i=2

1

= (2m− µ1) +
4m2

n2

(
Kf

n
−
1

µ1

)
−
4m

n
(n− 2)

= (2m− µ1) +
4m2

n3

(
Kf−

n

µ1

)
−
4m

n
(n− 2)

and (∑n−1
i=2

∣∣µi − 2m
n

∣∣ )2∑n−1
i=2 µi

=

(∑n
i=1

∣∣µi − 2m
n

∣∣− (µ1 −
2m
n ) − ( 2mn − 0)

)2
∑n
i=1 µi − µ1 − 0

=
(LE− µ1)

2

2m− µ1
,

since µn = 0. Thus,

(2m− µ1) +
4m2

n3

(
Kf−

n

µ1

)
−
4m

n
(n− 2) ≥ (LE− µ1)

2

2m− µ1

or (2m− µ1)

(
(2m− µ1) +

4m2

n3

(
Kf−

n

µ1

)
−
4m

n
(n− 2)

)
≥ (LE− µ1)

2.

Since ∆+ 1 ≤ µ1 ≤ n, so(
2m−(∆+1)

) [
(2m−(∆+1)) +

4m2

n3
(Kf− 1) −

4m

n
(n− 2)

]
≥ (LE− n)2,

For equality in Theorem 10, all the above inequalities must be equalities.
Therefore, we have µ2 = µ3 = µn−1. Since µ1 = ∆ + 1, so by Lemma 9,
G ∼= Kn, or G ∼= K1,n−1, completing the proof. �
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Theorem 11 If G is a connected graph on n vertices and m edges with max-
imum vertex degree ∆, then

(
F+ 3M1 − 6C3 − (∆+ 1)3

)
+
4m2

n2

(
2m− (∆+ 1)

)

−
4m

n

(
M1 + 2m− (∆+ 1)2

)
≥
n

(
LE− (∆+ 1)

)2
(Kf− 1)

,

where F, M1 and C3 are the Forgotten index, first Zagreb index and the number
of the triangles, respectively. And equality occurs if and only if G ∼= Kn or
µ1 = µ2 = · · · = µp, µp+1 = µp+2 = · · · = µn−1, (1 ≤ p ≤ n − 2) with
n(µ21 + µ

2
n−1) = 2m(µ1 + µn−1).

Proof. In Radon inequality, set r = 1, xi =
∣∣µi − 2m

n

∣∣ , ai = 1
µi
, i =

2, 3, . . . , n− 1, we get

n−1∑
i=2

(
µi −

2m

n

)2
µi ≥

(∑n−1
i=2

∣∣µi − 2m
n

∣∣ )2∑n−1
i=2

1
µi

.

Now,

n−1∑
i=2

(
µi −

2m

n

)2
µi =

n−1∑
i=2

(
µ3i +

4m2

n2
µi −

4m

n
µ2i

)

=

n−1∑
i=2

µ3i +
4m2

n2

n−1∑
i=2

µi −
4m

n

n−1∑
i=2

µ2i

=

(
n−1∑
i=1

µ3i − µ
3
1

)
+
4m2

n2

(
n−1∑
i=1

µi − µ1

)
−
4m

n

(
n−1∑
i=1

µ2i − µ
2
1

)

= (F+ 3M1 − 6C3 − µ
3
1) +

4m2

n2
(2m− µ1) −

4m

n
(M1 + 2m− µ21).
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For the Laplacian, we have

n−1∑
i=1

µi = trace(D−A) =

n∑
i=1

di = 2m,

n−1∑
i=1

µ2i = trace(D−A)2 =

n∑
i=1

d2i +

n∑
i=1

di =M1 + 2m,

n−1∑
i=1

µ3i =trace(D−A)3 = trace(D3−3D2A+3DA2−A3)=F+3M1−6C3,

and (∑n−1
i=2

∣∣µi − 2m
n

∣∣ )2∑n−1
i=2

1
µi

=

(∑n
i=1

∣∣µi − 2m
n

∣∣− (µ1 −
2m
n ) − (2mn − µn)

)2
∑n−1
i=1

1
µi

− 1
µ1

=
(LE− µ1)

2

Kf
n − 1

µ1

=
n(LE− µ1)

2

Kf− n
µ1

.

Therefore,(
F+ 3M1 − 6C3 − µ

3
1

)
+
4m2

n2
(2m− µ1) −

4m

n
(M1 + 2m− µ21)

≥ n(LE− µ1)
2

Kf− n
µ1

.

For, ∆+ 1 ≤ µ1 ≤ n, this becomes(
F+ 3M1 − 6C3 − (∆+ 1)3

)
+
4m2

n2

(
2m− (∆+ 1)

)

−
4m

n

(
M1 + 2m− (∆+ 1)2

)
≥
n

(
LE− (∆+ 1)

)2
Kf− 1

.

Equality case can be proved as the equality shown in Theorem 3.1 in [14]. This
completes the proof. �
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