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Abstract. We reiterate the theoretical basics of holographic associative
memory, and conduct two experiments. During the first experiment, we
teach the system many associations, while during the second experiment,
we teach it only one association. In both cases, the recalling capability
of the system is examined from different aspects.

1 Introduction

Holographic associative memory, or holographic neural network was presented
by Sutherland [18, 19] as a new paradigm for artificial neural system design.
As in the case of artificial neural networks, stimulus-response associations are
taught to this system, and later the taught responses are recalled by pre-
senting stimuli to the system. However, there are a few diversions from the
conventional artificial neural systems.

First and foremost, information is represented by complex numbers, more
precisely by phase angle orientation. Large number of associations are super-
imposed onto a single neural element, onto the same set of complex elements
representing synaptic connections within a single neural cell. This represen-
tation allows us to manipulate the stored associations, enabling us to model
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short term-, long term-, or permanent memory. The learning of one association
consists of one non-iterative transformation, without back-propagation or an
iterative process. Recalling is also done by only one similar transformation.

Holographic associative memory has many applications, for example classifi-
cation [15], facial expression analysis [3], large image database handling [7, 8],
currency exchange rate prediction [13], data compression [11], land mine de-
tection [20], and surface approximation [5], just to name a few areas. Note that
we don’t wish to present an extensive overview of neither the applications-,
nor the bibliography of holographic neural networks.

We outline the theoretical basics of holographic associative memory in sec-
tion 1.1. As there are many interfaces where the system can be fine tuned,
we present our own setup in section 1.2. The first experiment is described in
section 2. Here we examine how the system behaves when we teach it many as-
sociations. We conduct the experiment with different setups; the preparations
for these, and their outcome can be found in sections 2.1, 2.2, 2.3, and 2.4.
Our second experiment is described in section 3. Here we examine the system’s
behaviour when we only teach it one association. The results are presented in
sections 3.1, and 3.2. The conclusions, and the possible areas of further re-
search are presented in section 4. Finally, the results of the experiments are
collected in appendix A.

1.1 Theory

The stimuli, and the corresponding responses are complex vectors S € C'*™
and R € C"*™ respectively; while the single neural element to which we teach
the associations is a complex matrix H € C"*™. The standard way of teaching
is

H~ H+S"R (1)

where the matrix A* denotes the conjugate transpose of the matrix A. If the
stimulus is given as S := A7, ..., Anei®n], with A € ]R(J{ and Oy € R for
1 < k < mn; then the recalling happens as

1
R —  SH 9
2o M @)

where the sum in the denominator is the normalisation coefficient. Note that
we can batch together multiple stimuli into one matrix, then recall all of them
with only one matrix-matrix multiplication, and some normalisations. Also
note that the system can subsequently learn additional associations at any



Experiments with H.A.M. 157

given time, which is not true for traditional artificial neural networks, where
one has to essentially restart the whole training in order to learn new infor-
mation.

Let’s look at the scenario, in which we have taught the associations (St, R¢)
to the system for T < t < p, and the magnitudes of the components were
around 1. Imagine that we recall a new stimulus S’. We can write an arbitrary
element of the response as

P
velt = Z Aett (3)
t=1

with y,A¢ € R and ¢,¥; € R for 1 < t < p; where each component in
the sum corresponds to one of the previously learned associations. If S’ ~ Sy,
where 1 <1 < p, then we can expect that Ay = 1, and ¥ = ¢; while Ay < 1
for t # 1. We can also expect that these latter components will neutralise in a
manner analogous to a random walk, see [18].

To teach the external data (being visual, audio, etc.) to the system, we need
to convert it to the internal complex representation. This is done during the
so called pre-processing step. During this step one can apply other transfor-
mations of course, for example one can prepare the data so that the above
mentioned neutralisation becomes more prominent. One such method is called
symmetrisation.

e One can compute the mean p of the distribution of the phases in the
stimulus, and the variance o of the same distribution. Then the phases
0y can be transformed using

o — (4)
T+e o
for T < k < n. This is called the sigmoid transformation, and it maps
the distribution, if it displays an approximate Gaussian form, to a fairly
uniform state, see [14, 16, 18].

o If the distribution of the phases displays a different form, then one can
still transform the phases 0y as

0y — 27F(0y) (5)

for T < k < n, where F is the cumulative function of the mentioned
distribution, see [14, 16]. To apply this method, one has to have some
knowledge about the nature of the stimuli, or has to approximate the
distribution using the phases in the stimuli.
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The counterpart of the pre-processing step is the post-processing step, which
happens after the recall. During this step, one applies transformation to the
response.

Next to the standard teaching scheme given by (1), there also exists a so
called adjusted-, or enhanced teaching scheme. Assume that we want to asso-
ciate a stimulus S with the response R, but instead of using (1), first we recall
S using (2), gaining (say) R’, and then we associate S with R—R’. In a nutshell,
we teach only the difference to the system, thus we try to avoid the alteration
of the already thought associations. So the adjusted teaching happens as

. 1
H«~H+S (R ST MSH). (6)
One can apply a given teaching scheme multiple times with the same associ-
ations, to reteach them to the system, effectively enforcing them. This is the
so called iterative training, and with this latter adjusted teaching scheme it is
quite powerful, as we will see.

As one teaches more and more associations to the system, the entries in
the matrix H will change-, and most likely grow in magnitude. The average
magnitude of the matrix entries approaches a theoretical saturation limit,
which depends on the length of the stimuli n, see [18]. At this threshold, the
storage capacity is reached, and fuzz becomes more dominant. Thus one has
to apply some technique to prevent the saturation of memory.

e One can proportionally rescale the matrix entries, so that the average
of all magnitudes remains at a predefined threshold, called the memory
profile, see [12, 18]. This memory profile is expressed as the percentage of
the saturation limit. A lower percentage results in a short-term memory,
while a larger percentage results in a long-term memory.

e One can also “deactivate” those matrix entries, whose magnitude is be-
low a predefined threshold, see [12]. This can be helpful if the matrix is
sparsely stored, and we want to lower the required space.

These techniques can be applied either after each teaching, periodically, or
when some condition is satisfied.
1.2 Our setup

During our experiments, we handled visual data, more specifically the red-
green-blue (RGB) triplets coming from an OpenGL frame-buffer, where each
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colour component is represented by a byte. The first task during pre-processing
is to convert this external data into the internal complex representation. Let
gs = exp(2mi/s), and Us := {€%,...,eS'}. We encoded each byte with the
transformation t : {0,1,...,255} — Usse being given by t(b) := b, so we
encoded each of them as one of the 256th roots of unity. Note that this encoding
could be used for other type of external data which we can represent as a
sequence of bytes. Also note that the magnitudes of the vector components
will be 1, thus the normalisation coefficient in expression (2) becomes simply
n. This way, the information is carried by the phase angles of the complex
elements, while the magnitudes can be treated as confidence levels.

During the symmetrisation of a stimulus, we computed the mean of the
distribution of the phases 0y as

he Ly e, (7)

the variance of the mentioned distribution as

n

o |- (0w 0

k=1

and applied the sigmoid transformation (4), thus silently assuming that the
distribution of the phases display a Gaussian form. As we will see, this was
already beneficial, although it worths to investigate the distribution of the
input more thoroughly in real world applications.

The linear algebraic computations can be sped up by delegating the work
to the video card of the machine. To achieve this, we used the OpenCL BLAS
package, see [23]. Both the standard teaching (1) and the recalling (2) can
be implemented using either clblasCgemm, or clblasZgemm which are able to
realise the computation

C— aA*B+ pC (9)

on float-, or double complex elements respectively. (To implement the adjusted
teaching (6), one has to combine the standard teaching and the recalling.) As
the normalisation coefficient is n, it can be seen that we can precompute 1/n,
and pass it to the applied function as a constant multiplier.
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2 Experiments with many associations

We examined the recalling capabilities of the holographic associative memory
while teaching it many images. For this end, we used the so called CIFAR-10
dataset, see [9]. Every image in this dataset has a width of 32 pixel, and a
height of 32 pixels. As every pixel is given by an RGB triplet, we have that
n = 3072 in this case. (Next to its abundance, this is the second reason why
this dataset has been chosen: n is small.)

Our goal was to examine how long the system can retain an association while
continuously fed with new associations. We taught associations in rounds. In
each round, we taught a new image to the system; and after, we recalled all the
previously taught images. (We've taught 128 images to the system from the
first batch of the binary version of CIFAR 10, in 128 iterations.) The results
of these recalls were compared with the taught responses.

To improve the performance of the system, we choose the responses as fol-
lows.

e We used the elements of U, (that is 1 and —1) as the complex elements
of the responses, to be able to associate the different stimuli with binary
numbers. (Note that the magnitude of the elements is yet again 1.)

e These binary numbers were selected from a block code of length m, with
a minimum Hamming distance d between the elements of the block code
see for example [10].

When we taught a new association, we generated a new codeword as re-
sponse R, and also stored it separately for later comparisons. (Our generation
process was fairly simple: independently of m and d, the first codeword was
always 0; and we’ve always searched for the next codeword sequentially, com-
paring with the previously generated codewords to maintain the minimum
distance between the codewords.)

After a recall, the output can contain noise, so during the post-processing
step we had to decide about the value of the complex elements in the recalled
response R’. If the principal value of the phase fell into (—7t/2,7t/2], then we’ve
mapped the component to 1, otherwise to —1.

We would like to mention that we could have chosen the elements of Uz, Uy,
etc. as the complex elements of the responses. This way we could have used
ternary-, quaternary-, etc. numbers, so we could have encoded much larger set
of numbers while keeping m constant. However, as we will see, the phase errors
can be huge during recalling, so using even two digits is already challenging.
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For example, using Uz, phases falling in (—7t/3,7/3] would map to 1, the
phases falling in (7t/3,71] would map to (—1+ 1v/3)/2, and finally the phases
falling in (—m, —t/3] would map to (—1 —1v/3)/2. As the number of “digits”
grow, the chance of misinterpretation grows too, because the “domains” of the
roots get smaller and smaller.

Hypothetically, one could look at the magnitude of the complex elements
really as confidence levels. If the confidence level is too low, we could switch
to another digit. This is especially handy when we use binary code, because
in this case we can only change to the other digit. It might happen that the
interpretation of the confidence should depend on how close the phase is to a
border of a “domain”. For example when the phase is way inside the domain,
we would need a low confidence level to switch digits, while near a border only
a higher confidence level could suffice. We haven’t conducted any experiments
in this area.

After mapping the complex elements of R’ to either 1 or —1, we got R”,
which we compared with the elements of our block code using the following
algorithm. It returns the evaluation of the recall, which can be either perfect,
confident, ambiguous, or faulty.

1. Try to find a codeword c, whose distance from R” is at most [ (d—1)/2].
If there doesn’t exist such ¢, then go to step 3.

2. If ¢ = R, then set the result to perfect, otherwise to faulty, and terminate
the algorithm.

3. Let C be the set of those codewords which distance from R” is smaller
than d. If C = {R}, then set the result to confident, and terminate the
algorithm. If [C] > 1, and R € C, then set the result to ambiguous, and
terminate the algorithm.

4. Set result of the algorithm as faulty, and terminate the algorithm.

As we will see, increasing the value of d will improve the performance of the
system, while on the other hand, it will decrease the size of the block code.
Denote with Ag(m,d) the maximal size of a g-ary block code of length m,
and minimum Hamming distance d between the elements of the block code.
Based on the articles [4, 6], we have

qm q"
Volgtm,d—1 = ™4 < G G [@=172) (10)



162 G. Roméan

where
Volg(m,1) == ) (T) (q—1) (11)
j=0

denotes the volume of a Hamming ball of radius r in the space of the strings
with length of m, composed from the digits {0, 1,...,q — 1}. When q is a prime
power, then based on the article of Varshamov [22], we have

q° < Ag(m,d) (12)
where k is the greatest integer for which

ko qm

q (13)
holds. One can compute the required m using these inequalities, based on the
number of associations which we plan to teach to the system and the distance
d. We fixed the value m = 32 during our experiment. We examined the norms

[IH|max := max [Hy | (14)
and

1
||HHavg = nm Z |Hi,j| (15)
1)

to see how the magnitudes of the entries in H change. These norms can be
calculated with the help of the functions clblasiCamax and clblasScasum,
or clblasiZamax and clblasDzasum respectively for float-, or double complex
elements.

We present our result in a specific form, see Figure 1. The iterations are
displayed from left to right. In each column, we taught a new image to the
system. The position at the ith row, and jth column correspond to the evalu-
ation of the recall of the ith image in the jth iteration. The squares filled with
the darkest grey correspond to perfect recalls, the ones filled with a lighter grey
correspond to confident recalls, and the ones filled with the lightest grey cor-
respond to ambiguous recalls. Faulty recalls are designated by the absence of
a square at a given position. Although we’ve distinguished the different types
of evaluations with different colours, what is more important is the shape of
the diagram, and the transition of the colours.
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128
= perfect recall

= confident recall
o ambiguous recall

image

1 iteration 128

Figure 1: Example diagram of the iterations.

2.1 Basic case

In the basic case, we haven’t applied any special transformations, only the
method which we’ve described in section 2 with either the standard teaching,
or the adjusted teaching.

The actual results can be seen in Figures 3, and 4. We conducted the ex-
periment in both cases for the distance d = 3, see Figures 3(a) and 4(a);
furthermore for the distance d = 11, see Figures 3(b) and 4(b).

Using the standard teaching method, it seems that the recalling is more
successful for the images which we’ve taught earlier, see Figures 3(a) and
3(b). Observe that both norms grow somewhat linearly. The norm ||H|max
grows in accordance with the number of taught images, or at least after a few
iterations. This can pose a problem if one wants to teach many associations
to the system, because of the saturation which we’ve explained in section 1.1.
Now we give an explanation to the linear growth of ||H||max-

Proposition 1 Letn,m >0, p,q > 2, §1,5;,... € Uy, and Ry, Ry, ... € Ugh.
Furthermore, let H € C™*™ be the zero matriz. Then let H < H + SIR; first
fori=1, then for i=2, and so on. After the kth such iteration we will have

[Hlmax < k. (16)

Proof. During matrix addition, the elements at different positions don’t affect
each other, so it is enough to assume that the phase of the elements at only one
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given position in the products S7Ry,S5Ry,... have the same principal value.
This way, the magnitude of the element at this position will be the greatest
in H, and we can use it as an upper bound for ||H||max. The elements of the
stimuli S; and the responses R; are roots of unity, so the elements in their
product S{R; will have a magnitude of 1. Thus the magnitude of the element
at the mentioned position will be k after teaching all the association up till
the kth. O

Not surprisingly, the recalling capability becomes better as we use a larger
distance in our block code. Nevertheless, we’ve conducted our experiments
with both d = 3, and d = 11, to see the difference between the two distances.

We can see in Figures 4(a) and 4(b), that applying the adjusted teaching
offers a clear advantage over the standard teaching, as the retaining becomes
much better. Now the recalling becomes more successful for the more recently
taught images. The norm ||H||max shows a hectic-, but also bounded behaviour.
But the norm ||H||avg still grows, so one still needs to handle the growth in the
case when many images should be taught to the system, to avoid saturation.
Note however that the growth is slower than in the previous case.

2.2 Preprocessing

During this part of the experiment, we repeated the same process, as in section
2.1, but this time we symmetrised the stimuli, as it is explained in section 1.2.

The results can be seen in Figures 5, and 6. Concerning the distance d = 3,
see Figures 5(a) and 6(a); and for the distance d = 11, see Figures 5(b) and
6(b).

It can be seen that the application of the symmetrisation results in a slightly
better recalling, so it worth spending time on it. Note however, that the char-
acteristics of the different teaching methods remained the same. That is, when
using the standard teaching method, the recalling is more successful for the im-
ages taught at the beginning; while when using the adjusted teaching method,
this holds true for the more recently taught images. The norm ||H||max grows
a bit slower when using the standard teaching method, however it shows a
higher variance when using the adjusted teaching method. As for the norm
|IH||avg, it grows similarly to the basic case, that is when the symmetrisation
was not applied.
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2.3 Rescaling

In this case, we repeated the process described in section 2.1, but we multiplied
our matrix H with a decay term A every time when we learned a new asso-
ciation. (Except after the first learning of course.) To multiply the entries in
the matrix, one can use the functions clblasCsscal, or clblasZdscal respec-
tively for float-, or double complex elements. Of course one can economise, and
rescale the entries during teaching by incorporating this A into « and 3, see
operation (9). We conducted this part of the experiment with three different
decay terms, namely with A = 0.9, A = 0.95, and finally A = 0.975.

The results can be seen in Figures 7 and 8. For the case of standard teaching,
and distance d = 3, see 7(a), 7(d) (A = 0.9), 7(b), 7(e) (A = 0.95), and 7(c),
7(f) (A = 0.975); for distance d = 11, see 7(g), 7(j) (A = 0.9), 7(h), 7(k)
(A=0.95), and 7(i), 7(1) (A = 0.975). As for the case of adjusted teaching, and
distance d = 3, see 8(a), 8(d) (A = 0.9), 8(b), 8(e) (A = 0.95), and 8(c), 8(f)
(A =0.975); for distance d = 11, see 8(g), 8(j) (A =0.9), 8(h), 8(k) (A =0.95),
and 8(i), 8(1) (A = 0.975).

As expected, the recalling is only successful for the images which we’ve
taught recently, and the time of retention grows as A approaches 1. When
applying standard teaching, both the norm ||H||max and ||H||ave seem to stop
growing after reaching a certain limit. As for the adjusted teaching, the norm
|IH||max shows a hectic-, but bounded behaviour again, and the norm ||H||avg
seems to stop growing over a certain limit in this case too. Thus one can
prevent the saturation of memory by applying a decay term, however its value
should be chosen based on the required retention time and the threshold which
we are willing to reach with the presented norms.

Proposition 2 Let A € (0,1), n,m > 0, p,q > 2, $1,S3,... € Uy, and
Ri,Ryy... € UH*. Furthermore, let H < SiRy. After this, let H < A(H + SIR;)
first fori=2, then for i =3, and so on. During this process, we have

1
[Hlmax < T 1. (17)
Proof. The proof will be similar to the one given for proposition 1. We assume
that the phase of the elements at only one given position in the products
S7R1,S3Rz, ... have the same principal value. By defining f(x) := A(x+1), one
can see that

[H||max < fk(x) (18)

x=1
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will hold after the kth step, where f* is the kth iterate of f. Indeed, the
magnitude of the element at the mentioned position will be 1 at the beginning,
A(1 + 1) after the first step, A(A(1 + 1) + 1) after the second step, and so on.
The right side of the above inequality has a simple form for k > T, namely
2>\‘<+Ak—1+...+>\:2>\k+1_)‘k—1 L (19)
1—A k—oo 1 —A
as A € (0,1). d

For A = 0.9, we get ||H|lmax < 9; for A = 0.95, we get ||H||max < 19; and for
A =0.975, we get ||H|lmax < 39. Observe that these values give a good bound
for the norms ||H||max which can be observed in Figures 7(d), 7(e), and 7(f)
respectively.

During recalling, one has to sum up n elements with magnitudes which
can reach this limit, to get one element of the recalled response. Using this
result, one can pose a limit on the magnitude of the elements, and effectively
avoid floating point miscalculations. Note that by using symmetrisation and
adjusted teaching, the situation becomes better, and we can chose a decay
term even closer to 1.

2.4 Tterative training

Although the teaching itself is not an iterative process, we can extend it to be
one, namely by reteaching those associations which we’ve recalled perfectly.
This iterative training only makes sense when one uses the adjusted teach-
ing, otherwise the system would perform poorly using the standard teaching.
During this part of the experiment, we’ve essentially repeated what we did
during the basic case, see section 2.1, but after the teaching part, when we
checked how well the system could recall the already stored associations, we
stored the indexes of those associations, which the system recalled perfectly.
After the recalling step, we applied the adjusted teaching for these indexes,
but with the original response of the given association, so we readjusted the
original response, but to the current state of the system.

The results can be seen in Figure 9. We examined this iterative training
with distance d = 3, see Figure 9(a), and with distance d = 11, see 9(b).

As we can see, the recalling capability of the system became quite good,
however we have to keep in mind that we’ve only checked 128 associations.
It can happen that the performance of the system starts degrading as we
try to maintain more and more associations in this iterative manner. The
norms ||H||max and ||H||ave show similar behaviour as when we’ve applied the
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adjusted teaching in the basic case, however the variance of ||H||max is greater,
and ||H||avg grows a bit faster.

3 Experiments with one association

In our second experiment, we worked with OpenGL to render a three dimen-
sional model, capture the scene, and teach it to our system after encoding. The
response which we taught to the system was always 1. (So this time m = 1.)
The model was rendered in grayscale, lit by one single light source positioned
at x =1,y =1, z=1. The background of the scene was coloured with a non-
grayscale colour. When the teaching was done, we rotated the model around
different axes; or moved the camera closer to-, or farther from the model; and
checked how well the system can recall the transformed model. Our choice fell
onto the famous teapot model, see Figure 2.

The width of the scene was 320 pixels, and its height was 240 pixels, which
means that in this case n = 230400. (Using the capabilities of the video card,
the system still performed well.) The encoding happened as we’ve explained
in section 1.2, except that the bytes of the background colour were mapped
to 0. We repeated the experiment while using symmetrisation.

Figure 2: The teapot model which we used during our experiment, rendered at
the position x = 0,y = 0, and z = 0 without any rotations. The lines represent
the beginning of the axes’ positive portion. The line following the spout of the
teapot corresponds to the x axis, the line going upward corresponds to the y
axis, and the third remaining line corresponds to the z axis.

The renderings which we taught to the system can be seen in Figure 10. As
the response which we taught to the system was always 1, we only checked the



168 G. Roméan

difference of the phase angle of the recalled response from 0. So on the figures
corresponding to this experiment, we marked with |8] the absolute value of the
measured phase difference.

3.1 Rotation

During this part of the experiment, the transformation which we applied to our
model was rotation around two axes with separate angles. The results can be
seen of Figures 11, 12, 13, 14, 15, and 16. The axes are listed below the figures.
The value of « corresponds to the rotation around the first axis, and the value
of 3 corresponds to the rotation around the second axis. The subfigures in the
second line of the figures correspond to the cases when symmetrisation was
applied.

For example, Figure 11 corresponds to the case when the model was rendered
as in Figure 10(a); in Figure 11(a) « corresponds to the rotation around axis
x, and  corresponds to the rotation around axis y. In Figure 11(d) we can see
the results which we gained while repeating the same experiment, but while
using symmetrisation. The experiments for the other axis combinations can
be seen in Figures 11(b), 11(e), and 11(c), 11(f). We can see in Figures 11(a)
and 11(d), that as the value of B changes, the graph stays nearly the same,
so the rotation around the y axis doesn’t change the outcome of the recalling.
This can be explained by the quasi rotational symmetry of the teapot model
with respect to this axis. However, when the value of & change, the phase
difference starts to change drastically. This is due to the fact that the teapot
model doesn’t show any symmetry with respect to the x axis.

The results for the well-lit renderings (see Figures 10(a), 10(b), and 10(c))
seem to reflect the quasi rotational symmetry of the teapot model. This is
quite prominent on Figures 11(a), 12(a), and 13(a). The results in Figures
11(b), 11(c), 12(b), 12(c), 13(b), and 13(c) show similar behaviour, but they
are more complex.

However, the results for the silhouette-like renderings (see Figures 10(d),
10(e), and 10(f)) show no particular pattern, see Figures 14(a), 14(b), 14(c),
15(a), 15(b), 15(c), 16(a), 16(b), and 16(c). This could be because of the
simpler structure of H, and because the body of the teapot keeps nearly the
same silhouette under rotation.

As for the symmetrisation, in the case of well-lit renderings, it makes the
graphs “smoother”, see Figures 12(d), 12(e), 12(f), 13(d), 13(e), and 13(f);
while for the silhouette-like renderings, it introduces a “fuzziness”, see Figures
14(d), 14(e), 14(f), 15(d), 15(e), 15(f), 16(d), 16(e), and 16(f).



Experiments with H.A.M. 169

3.2 Scaling

In this part of the experiment, as we’ve described earlier, we moved the camera
closer to-, or farther from the model. To avoid the situation where some part
of the model gets rendered outside the frame-buffer, we adjusted the position
of the model before teaching. The new camera positions were x =4, y = 0,
z=0for 10(a); x =0,y =4, z=0 for 10(b); x =0,y =0, z =4 for 10(c);
x=-4,y=0,z=0for 10(d); x =0,y = —4, z = 0 for 10(e); and x = 0,
y =0, z = —4 for 10(f). During the experiment, we multiplied the camera’s
position with a factor v, which we continuously incremented with a small delta
from 1/2 to 4.

The results can be seen in Figure 17. The results for the well-lit render-
ings can be seen in Figures 17(a), 17(b), and 17(c); while the results for the
silhouette-like renderings can be seen in Figures 17(g), 17(h), and 17(i). The
results for the same renderings repeated with symmetrisation can be seen in
Figures 17(d), 17(e), 17(f), 17(j), 17(k), and 17(1) respectively.

As expected, the graphs have their minimum at 1, except for the results
17(a) and 17(d), where it seems that the graphs approach 0 at multiple values
of yv. Most probably, the results are only “correct” when vy € (1 —¢, 1+ ¢),
where ¢ is small, say around 0.2, or 0.3. Outside this area, the results seem
to be merely noise, saturated at a given level. (Interesting however that the
error stayed below /2, but this can be due to the fact that we taught only
one rendering to the system.) Observe that in both the well-lit cases, and in
the silhouette-like cases, symmetrisation slows down the growth of the error in
this small area around 1. It seems that the system is able to identify a scaled
object when it is close to the original rendering.

4 Conclusions and further research

When one teaches many associations to the system (section 2) it worths com-
bining the adjusted teaching with symmetrisation (section 2.2). (Note that the
standard teaching is an easily invertible operation, so it would be convenient
if we would want to remove associations; however the adjusted teaching per-
forms much better.) If the recalling is perfect, then it also worths applying
iterative training (section 2.4). To avoid the saturation of the memory, one
must use rescaling (section 2.3). Our proposition 2 gives a starting point for
the choice of the decay term A. However the behaviour of the norms ||H||max
and ||H[/avg could be investigated deeper using the theory of random matrices,
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see for example [1, 2, 17, 21]. It would worth observing how the system behaves
when one teaches it more associations.

Based on the results of section 3, we can expect that system can recall three
dimensional objects if they show some (quasi) rotational symmetry, and they
are rotated; or they are scaled a bit. It would be interesting to examine how
the system performs when one teaches it renderings of many three dimensional
objects. (Either when performing rotations, or scaling.)

One could also teach the system renderings of the same object but from
different angles. (Let’s call this “sampling” of the same object.) We would
expect that if the teaching happens from many different angles, which essen-
tially cover the whole object, then the error could be kept under a certain
level despite how the object is rotated during recalling. One could examine
how the error levels change with the different samplings, and what would be
the optimal sampling, if there is such.
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A Figures

We collected here the figures corresponding to the results of our experiments,
so they won’t break the flow of the text of the article.
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Figure 3: Basic case, standard teaching. See end of section 2 for the detailed
description about the interpretation of the figures on the left hand side.
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Figure 4: Basic case, adjusted teaching. See end of section 2 for the detailed
description about the interpretation of the figures on the left hand side.
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Figure 5: Preprocessing, standard teaching. See end of section 2 for the detailed
description about the interpretation of the figures on the left hand side.
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Figure 6: Preprocessing, adjusted teaching. See end of section 2 for the detailed
description about the interpretation of the figures on the left hand side.
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Figure 7: Rescaling with standard teaching. See end of section 2 for the detailed
description about the interpretation of the figures in the odd rows.



176

G. Roméan

128
= perfect recall
8 confident
o ambiguou

image

128

= perfect recall
8 confident recal
o ambiguous recall

image

128

image

= perfect recall
8 confident recall
o ambiguous recall

1 ° 1
1 iteration 128 1 iteration 128 1 iteration 128
(a) d=3,A=0.9 (b) d =3,A =0.95 (c) d=3,A=0.975
8
g6
=
5
i 4
B
2
20 40 60 80 100 120 20 40 60 80 100 120
iteration iteration iteration

(d) d=3,A=0.9

s perfect recall
s confident recall
o ambiguous recall

128

%
g

() d=3,A=0.95

s perfect recall
8 confident recall
o ambiguous recall

128

128

(f) d =3,A =0.975

o perfect recall
= confident recall
o ambiguous recall

1 1 1
1 iteration 128 1 iteration 128 1 iteration 128
(g) d=11,A=0.9 (h) d=11,A=0.95 (i) d=11,A = 0.975
5 8 10
j 4 £ s
) =l
i’ R
< 5,
2
1 2
20 40 60 80 100 120 20 40 60 80 100 120 20 10 60 80 100 120
iteration iteration iteration

() d=11,A=0.9

(k) d=11,A =0.95

(1) d=11,A = 0.975

Figure 8: Rescaling with adjusted teaching. See end of section 2 for the detailed
description about the interpretation of the figures in the odd rows.
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Figure 10: The different renderings of the teapot model, which renderings we
taught to the system. The coordinates designate the position of the camera.
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Figure 11: Rotating, after teaching the rendering 10(a). The rotation happened
around the noted axes separately with angles « and (3. The third axis marks
the absolute value of the measured phase difference. For further explanation
about the graphs see section 3.1.

(d)xy (f) x, z

Figure 12: Rotating, after teaching the rendering 10(b). For further explana-
tion about the graphs see section 3.1 or Figure 11.
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)y, z

Figure 13: Rotating, after teaching the rendering 10(c). For further explanation
about the graphs see section 3.1 or Figure 11.
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Figure 14: Rotating, after teaching the rendering 10(d). For further explana-
tion about the graphs see section 3.1 or Figure 11.
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(d)x,y

Figure 15: Rotating, after teaching the rendering 10(e). For further explanation
about the graphs see section 3.1 or Figure 11.

2

(d) %y €y, z (f) x, z

Figure 16: Rotating, after teaching the rendering 10(f). For further explanation
about the graphs see section 3.1 or Figure 11.
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Figure 17: Scaling. We’ve multiplied the camera position with the value v,
effectively moving the camera closer-, and farther from the object. The vertical
axis marks the absolute value of the measured phase difference. For further
explanation about the graphs see section 3.2
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