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Abstract. In this paper we study the asymptotic behavior of the solu-
tion of quasilinear parametric variational inequalities posed in a cylinder
with a thin neck, and we obtain the limit problem.

1 Introduction

The aim of the paper is to study the asymptotic behavior of the solution of
quasilinear variational inequalities in a beam with a thin neck. Mathemati-
cally, this notched beam is given by

Qc={(x1,x) eR3: =1 <x; < 1,|x| < € if[xq] > te, x| < ere if x7] < tel,

where €, T¢, and te are positive parameters such that <= — 0.

Previous work on domains of this type was done by Hale & Vegas [7], Jimbo
[8, 9], Cabib, Freddi, Morassi, & Percivale [2], Rubinstein, Schatzman & Stern-
berg [13], Casado-Diaz, Luna-Laynez & Murat [3, 4] and Kohn & Slastikov
[10].
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The most recent results are of Casado-Diaz, Luna-Laynez & Murat [4]. They
studied the asymptotic behavior of the solution of a diffusion equation in the
notched beam (. and obtained at the limit a one-dimensional model.

In the present article the geometrical setting is the same as in [4], but
we consider quasilinear variational inequalities instead of linear variational
equalities.

The paper is organized as follows. In Section 2 the geometrical setting is
described, the studied problem is given, and the assumptions for our results
are formulated. In Section 3 the asymptotic behavior of the solution is stud-
ied. Some results from [11] are recalled which, unfortunately, don’t provide
information about what happening near to the notch. Thus we need to prove
some auxiliary results. In Section 4 the limit problem is obtained. To prove
the results in this section, we combine the ideas from [5] with the adaptation
to variational inequalities of the method used in [4].

2 Setting the problem

Let € > 0 be a parameter, e (re > 0) and te (te > 0) be two sequences of
real numbers, with

Te — 0, te = 0, when e — 0.
We assume that

t €
T—2—>u, r——)v, with 0 < pu < 400, 0 <v < +00, when e — 0.
€ €

Let S C R? be a bounded domain such that 0 € S, which is sufficiently smooth
to apply the Poincaré-Wirtinger inequality.
Define the following subsets of R3:

Qf = (_]v_tE) X (€S), Qg = [_tE)te] X (€T€S), Q:-:L = (tE)]) X (€S),

€
Q.=0,u0%uUQ!, and Q. =0_UQ].

Q¢ is a notched beam, the main part of the beam is Ql and the notched part
Qg. A point of Q€ is denoted by x = (x7,x’) = (x7,x2,X3).
Denote by
Io ={-1}x (eS) and TS ={1} x (eS)
the two bases of the beam, and let

Fe=r-urst
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be the union of the two bases.
Denote
Ve ={VeH"(Q), V=0onT..

We consider the following problem:
Find U € M¢ such that, for all V. € Mg,

J AcDe(x, Ue, Be) VU, V(Ve — Ue)] dx > 0 (1)

with A¢, Be, and @, given functions, M. a closed, convex, nonempty cone in
Ve.

This problem has applications in Physics. Bruno [1] observed that when
a ferromagnet has a thin neck, this will be preferred location for the domain
wall. He also noticed that if the geometry of the neck varies rapidly enough,
it can influence and even dominate the structure of the wall.

Consider problem (1). We impose the following assumptions:

(A1) The matrix A has the following form

Aclx) = Xay (A <X1, Xel) + X0 (x)A° <X1 X,> ’

te €Te
where AT AC € L®((—1,1) x §)3*%3,

(A2) The matrix B¢ has the following form
1 x/ o[ X1 x/
Be(x) =Xal (X)B X]vz +XQ2(X)B T

where BT, BO € L®((—1,1) x S)3*3.

(A3) The functions @ : Q¢ x R — R3*3 and V. : Q. x R — R3 are
Carathéodory mappings having the following form:

!/

Delx,m) = xon (0! (31,1 ) + 3000 002 (X1, 22 1) 4
€ y 1N _X()_1€ € 1y c y 1 XQg € te, €T€)n )
for a.e. x € Qg, for alln € R;
for all Ue € Lz(—o-e)v W, € LZ(—Qe)37 (D]e('»ue(‘))we(')»q)g(‘»ue('))we(') €
[2((=1,1) x S)3.
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(A4) Coercivity condition
There exist C1,C, > 0 and k; € L®(Q,) such that for all £ e R3, e R

[Ac(x)Dc(x,1)Be(x)E, & > C1l|E]|* + Caml9 —Kkq(x) ae. x€ Qe (2)

for some 1 < q1 < 2, for each € > 0.

(A5) Growth condition
There exist C > 0 and « € L>(Q.) such that for all £ e R3, n e R

HAe(X)(De(XaTI)E»H < CH‘EH + Cl+ «(x) a.e. x € Qe, (3)
for each € > 0.

(A6) Monotonicity condition
For all £, T € R", n € R,

[Ae(x)De(x,n)Be(x)E — Ae(x)De(x,M)Be(x)T, & —T] > 0, a. e. x € Q,
for each € > 0.
(A7) If ue — u and we — w in L2(Y'), then
QL ue(-)w(-) = @'(-,u(-))w(-) strongly in L(Y").
If ue — u and we — w in L%(Z), then

@O, ue(-))w(-) = @°(-,u(-))w(-) strongly in L*(Z).

3 Asymptotic behavior of the solution

To study the asymptotic behavior we use the change of variables y = ye(x)
given by

= = — 4
yr=x1 y c ()

which transforms the beam (except the notch) in a cylinder of fixed diameter.
This change of variable is classical in the study of asymptotic behavior of
variational equalities in thin cylinders or beams (see [6], [12], [14]). We denote
by Yo, YO, YI, Y, and Y2 the images of QZ, Q% QF, Q., and QF by the
change of variables y = y¢(x), i.e.

Yg - (_1a_t€) X S) Yg - [_te,tE] X (Tes)) Y(_-:'_ — (t€)1) X S)
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Yo=Y UYoUYS Yl=vouvl
Denote by Y=, Y+, and Y' the "limits”of Yz, YZ, and Y], i.e.

Y =(-1,00xS, Y'=(0,1)xS, Y=Y uY*

Note that Y! is contained in its limit Y.
The two bases of the beam ', and I' are transformed to A~ and AT,

respectively, where
AT ={-11xS and AT ={1}xS.

e transforms to A = A~ UA™.
Let Ue € M be the solution of the variational inequality (1). Define
ue € Ke by
Ue(y) = Ue(yc'(y)) ae ye Ve (5)

K¢ being the image of M. K¢ is a closed, convex, nonempty cone in D, with
De={veH'(Ye)|v=0on Al. We need the following two assumptions:

(A8) There exists a nonempty, convex cone K in H'(Y") such that
(i) KN H'((=1,0)U(0,1)) # 0
(i) e4 = 0, ue, € K¢, u € H'((—=1,0)U (0, 1)), Ue, — u (weakly) in
H'(Y") imply u € K.

(A9) There exists a nonempty, convex cone L in L?((—1,1);H'(S)) such
that
ei — 0, we, € Ke, w € L2((—1,1); H(S)), we, — w (weakly) in
L2((—=1,1); H'(S)) imply w € L.

By change of variables y = y¢(x) the operator V transforms to

Ve — (a- 10 16') _
oY1’ €dyz’ € dy3
In the following we recall some results from [11, 4].

Lemma 1 ([11]) Let Ue € M be the solution of the inequality (1) and ue €
Ke given by (5). If assumptions (A1) - (A6) are verified then the sequence U,

satisfies

1

u€ 6 Me) m
€

J [VU[?dx < C. (6)
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Theorem 1 ([11]) Let U¢ be the solution of the variational inequality (1)
and ue € K¢ defined by

Uc(y) = Uelyc'(y)) ae ye Ve

If assumptions (A1)-(A6) and (A8)-(A9) are verified, then there exist three
functions u, w, and o' with

uwe H'((=1,00U(0,1)NK, u(-1)=u(1)=0,
wel, o el?(Yh3,
such that up to extraction of a subsequence

Xy Ue 2 U in L2(Y"):

Oue ou . 2o
- — — in LAY7);
AACH YRR e
Oouc ou 2
— — in LHY™);
Xy T ay )

1
XY;Evy,ue — Vyw in L2(Yh?

and
Xy10e — o' in L2(YN3.

Theorem 2 ([11]) Let U be the solution of the variational inequality (1)
and u € H'((=1,0) U (0,1)) N K given in Theorem 1. If assumptions (A1)-
(A6) and (A8) are verified, then there exists a subsequence of solutions Uk,
also denoted by Ue, such that

li 1
1m
e—0 \Q€|

J Ue(x) — ulx1)? dx = 0. (7)

Unfortunately, this change of variables doesn’t provide information about
what happening near the notch. Thus we use another change of variables,
which was given in [4]. Consider the case, when

pu<+4+oo and v<-+oo.
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The change of variables z = z¢(x) is defined as follows

o (1 + te) —j—z if —1<xy < —t,
e if —te<xi<t, ifp=0,
z1 = eie(x1_t€)+%a if te<x1 <1, 2/
e+t —p, if —1<x < —te,
LX) if —te <x1 <t if u>0,

Be(xy—te) +p, if te<xg <1

(8)

This change of variables transforms the notch in a cylinder of fixed diameter
and length, but transforms the rest of the beam in a very large domain. But
it allows to describe the behavior of the solution U of inequality (1) when x5

is close to zero.

We denote by Z¢, 28, Z¢, Z., and Zl: the images of QZ, Q% QF Q, and

Q! by the change of variables z = z¢(x), i.e.

_ 1 —1te te te 1 0 te te
Z-=(— — <L = —S), Z2=|-5,5| xS
te T—te t 1
+_ (Le e lte 2
and Ze_(r%’ ere +T%)X<res)
1—t 1
Z; = <—w€(€) — u,—u> X <S> , Z9=[-p,ul xS,
ete Te

1— 1
ete Te

if w>0. We set
Zc=2_uz%uzf zZl=z_uz!

We denote by Z~, Z*, and Z° the "limits” of Z_, Z}, and Z9, i.e.
L = (—OO,—I.l) X Rz, Z+ = (p'v +OO) X Rzy ZO = [—H) P-] X Sa

and define
Z=7z"uzuzt z2'=z"uz".
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Remark 1 ([4]) In (8) there are two definitions of ze corresponding to the
cases w = 0 and p > 0. Actually when w > 0, we could define ze by the
definition given for w =0 because

te pre 1 TR

H~—= ~ and — ~—.
2’ ete  ere’ te T2

The definition (8) which distinguishes the cases @ = 0 and w > 0 has the
advantage that the image Z¢ of Q¢ by the change of variables z = z(x) is
contained in its “limit” Z for every € > 0 and Zg is fixed for u > 0; then a
function defined in Z has a restriction to Z.

Theorem 3 ([4]) Let (Ue)e be a sequence which satisfies (6). Define Qie €
HY(Z¢) by
Qe(z) = Ue(zo ' (2)), a.e. z € Ze. (9)

Then there exists a function {1, with
e Hl (Z2), @—u(07) eL®Z), t—u(0") e L°(z1), Vit e L#(Z2)3,

(where w is defined in Corollary 1), such that for every R > 0, up to extraction
of a subsequence,

Xz.rBs(0R) e — XBs (o) in LA(Z) strongly,

Xz, Vlle = VUL in L2(Z)3 weakly,

where B3(0,R) denotes the 3-dimensional ball with center (0, 0, 0) and diam-
eter R. Moreover, if w =0, then {t only depends on z1 and satisfies

A=u(0") inzZ, t=u(0h) inZ"

Ifv=pn=0, then u(0~) =u(0).
Ifv=0 and p > 0, then there exists a function W € L*((—p, n); H'(S)) such
that up to extraction of a subsequence,

%vzzae S Vwin L2(Z9)2 weakly.

Let Ke be the image of M by the change of variables z = z¢(x). Ke
is a closed, convex, nonempty cone in H'(Z.). We need the following two
assumptions:

(A10) There exists a nonempty subset R of HI]OC(Z) such that
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ei = 0,R>0, Qle, € K, W€ H] (2),

loc
Xz.nBs (0.R)0e; — XB;(0.R) (strongly) in L(Z),

and
Xz Vile, — VAL (weakly) in (L3(Z))3,

imply 1 € K.

(A11) There exists a nonempty, convex cone £ in L2((—p, n); HY(S)) such
that
€1 — 0, We, € K., W € L2((—p, n); HY(S)), We, — W (weakly) in
L2((—p, w); H'(S)) imply W € L.

Theorem 4 Let U € M be the solution of the variational inequality (1),
u e H'((=1,0) U (0,1)) N K defined in Theorem 1, and {ic € Re given by
(9). If assumptions (A1)-(A6) and (A8)-(A11) are verified, then there exists
a function @t € R, with

4 —u(07) € L%(Z7), t—u(0h) € L8(Z1), Vi € L*(Z2)3, (10)
such that for every R >0, up to extraction of a subsequence,
Xz.rBs(0R) e — XBs (o) in L2(Z) strongly,

Xz Viie = VIL in L2(Z)? weakly.
Moreover, if L =0, then QL only depends on z1 and satisfies

A=u0") mZ, A=u(0") inZ".

Ifv=un=0, then u(0~) =u(0).
If v.=0 and pn > 0, then there exists a function W € L such that up to
extraction of a subsequence,

%vzlae VoW in L2(Z9)2 weakly. (11)

Proof. From Lemma 1 it follows that there exists a subsequence of solutions
U, also denoted by Ue, such that (6) is satisfied. Thus by Theorem 3 we
get that there exists a function {i € HfOC(Z) such that the statement of the
theorem is true. By assumption (A10) we get that i € K.

If v=0and u > 0 then, by Theorem 3, there exists a function W &€
L2((—p, w);H'(S)) such that up to extraction of a subsequence, (11) holds.

Then by assumption (A1l) we get that W € L. |
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Lemma 2 Let U be one solution of the variational inequality (1), {ie defined
by (8). Assume that (A1)-(A3) and (A5) hold. Then

‘ A0 <> @° <',.,a€(-)> B° <) V()
i W K

Proof. Taking the square of the first growth condition from (A5), multiplying
by é, and integrating on Q9, we obtain

L2(29)

1s bounded.

1

ZJ [Ae(x)®@(x, Ue(x))Be(x) VU (x)[|* dx <
€ Q2

1

< —
_ez

1

QY
J ]VUE(X)HdeJrZJ Uo()P dx + L2
ol €~ Jae

e2

ot oo -
Applying the change of variable z, and taking out riz from Vi, we get
J A <Z],z'> ®° <Z1,z’,ﬁ€(2)> B° (Zl,z’> Viie(z)
7 n n n
ot ot ot 2
< CJ ( e(z) Tedle(z) Te €(2)> H dz—lrr‘éCJ ie(z)? dz + .
70 70

621 s aZZ " e 623
By Theorem 3, [|[V{le|[12(z0)3 and [[{ic[[{2(z0) are bounded, thus the statement
of the lemma holds. [

2
dz <

Corollary 1 Suppose that the assumptions of Lemma 2 are verified. Then
there exists 0° € L*(Z°) such that

4 The limit variational inequality

In this section we obtain the limit problem in two cases: when 0 < p < +o0
and v = 0 respectively when p = 400 and 0 < v < +00. In these cases

ere _ e ve
te

. 0)
Te te

v _
u

thus the beam has a thin neck.
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4.1 Thecase 0<pu<ooand v=0

Theorem 5 Let 0 < p < oo and v =0.
Assume that (A1)-(A11) are verified and the following four conditions are
satisfied:

(C1) @ € K implies Xy1 ¢ € Ke;
(C2) ¥ € L implies xy1 P € Ke;
(C3) 9 e R implies Xz ® € Re;
(C4) § e T implies ng{l\) e Ke.
Then the following three statements hold:

1) There exists a subsequence of the sequence U of solutions of (1), also
denoted by Ue, and a function uw € H'((—1,0) U (0,1)) N K such that (7) is
satisfied.

2) Let u and w be as given in Theorem 1 and Q. and W as in Theorem 4.
Then (u,w,{l, W) solves the limit variational problem:
find uw € H'((=1,00 U (0,1) NK, u(=1) =u(l) =0, w € L, and @i € K,
A(—pn) = u(07), i(n) = u(0h), w ¢ L such that for all v € H'((—1,0) U
]E{)J%:)QK, v(=1)=v(1)=0,hel, and9 e R, 9(—p) =v(07), D(n) = v(07),
S

+J [AO (Z‘,z/> @° <Z],z',ﬁ(z)) BO (Z‘,z’> v/ (1, W) (2),
2 n n n

V'(9,h)(z) — V'(11,W)(z)] dz > 0.

3) Let o' be as given in Theorem 1, o° as given in Corollary 1. Then

o'(y) =AM Y@ (y,u(y))B' (W)V'(w,w)(y) forae yeY',

0°(z) = A° (Z],z’> @° (“,z’,a(z)) BO (Z],z’> v/ (a, ]a>
m m m v
for a.e. z € Z°.

Proof. Statement 1) follows from Theorem 2.
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2) Since v = 0, from Theorem 4 it follows that i € K only depends on z;
with
A=u(0") inZ, t=u(0") in Z™T,

and there exists a function W € { such that up to extraction of a subsequence,
%vzlae VW in L2(Z°)?2 weakly,
Let ¢~ € H'([-1,0]) and ¢ € H'([0,1]) and define ¢ € H'((—1,0) U
(0,1)) N K such that

(xq) = @ (x1), if x7€(-1,0)
PRI ot i x1 € (0,1,

Letp €L, § € ﬁ and { € L. For e small enough, the sequence V. defined
by

Ve(x) =xq1 (%) <(P(X1) + e <x1, t)) +

xoe ) (0 (B2) 4 S0 (B 2)), ae xea

belongs to M.
Putting n = Ue(x), & = VU¢(x) and

T ="Te(x) = X1 () (V'(@, ) + Af1)(ye(x))+

X 0) g (V10,8) + M) (ze(), ae. x € Q

in the monotonicity condition, we get

0< é JQ [Ac(x)De(x, Ue(x))Be(x)VUe(x) — Ae(x)De(x, Ue(x))Be(x)Te(X),
VUe(x) — Te(x)] dx =
— j Ac()De(x, Ue(x))Be(x) VU (x), VU ()] dx—
Q.

L A0 ®elx Ul Be() VU(x), Te(x)] dxt
JQe

- ”Q Ac(x)Delx, Ue(x))Be(x)Te(x), VUe(x)] dx—
+ L[ AD et U)ol Te(x), Telx) dx =
€ JQE
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In the following we study each term separately. The first term

r

[Ac(x)De(x, Ue(x))Be(x)VUe(x), VU (x)] dx <
JQe

r

]
e

< G| Abd®etx Uelx)Belx) VU(x), Vel dx
1
=

ALY DLy (), Ue(x)BLY (X)) VUe(x),

aX1 ' aXZ ’ aX3

(d(P(X1)+€aIP(Ue(X)) 0P (ye(x)) 6¢(ye(><))>} dx +
dX]
_|_

[, [AS(zlx) @2z, Ul BAze (I TULL),

€

0% Tete  Ox7 12 Oxp 12 Ox3

(tua@(‘i’i‘) L e 2zl 1 0fzelx) 1a$(ze<x)))] N

(using the change of variable y = y(x) in the integral over Q]€ and the change
of variables z = z¢(x) in the integral over Q9)

B Jw {A](y)q)]s(yaue(y))lg] (Y)Vue(y),

€

(dcp(y1)+eatb(y) 0 (y) awm)]

dy; dyr1 ' Oyp ' duy3

1
+ teréJ {AO <Z1,z’> ®° <Z],z',{l(z)> BO <Z1,z’> :
n 70 n m n
s olic(z) 1 olie(z) 1 ofie(z)
te 0z1 ' €re 0zp 'ere 0z3 '

(u d@(z1) | e 0P(z) 10P(z) 1a$(z)>] ©

te  dzq Tete 0z7 12 0z 'tZ 0z3

Taking the limit, we get

T = | (o' Vo) ay+ |

0@ V0 $))] a
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The second term

1] Ac(x)Delx, Uex))Be(x)VUe(x), Telx)] dx —
Q

TS =
2 e2

HJW (' (W), (V(0, ) + A1) ()] dy+
+Jzo [GO(Z)’(V/(@@) +7\f2)(2)} dz,

when e tends to zero.
The third term

when e tends to zero.
The last term

1 J Ac(x)®elx, Ue(x))Bex)telx), Te(x)] dx —

=gl
| A 0wl W7 ) + M)
(V'(@, ) +Afy)(y)] dy+
1

+J [ ( > < ) (“,z')(v'(@,ﬁ)ﬂfz)(z),
20 m "

(V'(®,P) +Af2)(2)]

when € tends to zero.
Adding the limits of T§, T5, T5, and Tf, we get

—J (0" (9), Afa ()] dy—J [0%(2), Afa(2)] dzt (13)
Y! Z0

+JY1 AT (W) (v, uly1)BT (W) (V' (0, ) + A1) (W), V(@ ) (y)—
— V'(u,w)(y) + AMf1(y)l+
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+J [AO ( ! ’) @° ( Z’,ﬁ(Z)> B° <Z1,Z'> (V/(9,0) +Af2)(2),
20 w i m

V'(9,0)(z) — V'(Q,W)(2) + Afa(z),] dz > 0.

Setting
e—u=0v—u), p—w=0h—w), ¢ =09, and { = 0h,

where 8 > 0, dividing by 0, then letting 6 — 0, we get the limit variational
inequality.
Putting
(@, u) = (h,w) and (§,0) = (P, W),

dividing by A, and letting A — 0, we get

Jw (o' (y) — AT (Y) @ (y, w(y1))B )V (u,w)(y), f1(y)] dy+

< [GO(Z)—AO( )cDO(z iz )) (Z‘,z’) V' (@, W) (2),
70 w’ m m

f2(z)] dz >0, Wf; e H'(Y"),Vf, e H'(Z).
Then 3) follows. u

4.2 The case p=+o00 and 0 < v < 400
Theorem 6 Let p = 400 and 0 < v < 4o00. Assume that (A1)-(A9) are

verified and the following two conditions are satisfied:
(C1) ¢ € K implies Xy1 @ € Ke;
(C2) ¥ € L implies xy1 b € Ke.
Then the following three statements hold:

1) There exists a subsequence of the sequence Ue of solutions of (1), also
denoted by Ue, and a function uw € H'((—=1,0) U (0,1)) N K such that (7) is
satisfied.

2) Let uw and w be given as in Theorem 1. Then (u,w) solves the limit
variational problem:
find w e H'((—=1,0) U (0,1)) N K, u(—1)

u(1) =0 and w € L such that for
allve H'((—=1,00U (0,1)) N K, v(—T1) )

v(1)=0 and he L

L] AN W)@ (y, uly1)B Y) V' (u, W) (y), V/(v, ) () = V'(u, w)(y)] > 0.
(14)
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8) Let o' given in Theorem 1. Then

o'(y) =AY (y,u(y))B' (Y)V'(w,w)(y) forae yeY.

Proof. Statement 1) follows from Theorem 2.
To prove statement 2), let @~ € H'([—1,0]) and @ € H'([0,1]) and define
@ € H'((—=1,0) U (0,1)) N K such that

(P_(X1), if X1 € (_])O)
@(x1) :{

et(x1), if x3€(0,1).

Let P € L and y°: [0, +00) — R defined by

T, if0<1t<1
(1) = .
1, ift>1.

and

Velx) = o(x1)y° (’;") Tey (><1, ’;) ae €O,

€

which belongs to M.
For € small enough, by a simple calculation we obtain

]J
62 -Q]e
2
<C <62+ r€>
te

which tends to zero since u = 4o0.

Putting n = Ue(x), & = VU¢(x) and

de(x1)
X1

VVe —

! 1
el —Vyllb (X],X)‘ dX—i—ZJ IVVe| dx <
€ € QS

/ . 1
T—Te(x)—{ éV (:0)+ Mol it 1280
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in the monotonicity condition, we get

0< :ZJ [Ac(x)De(x, Ue(x))Be(x)VUe(x) — Ac(x)De(x, Ue(x))Be(x)Te(X),
vue(x) - Te(x)] dx =
= | A0 U IBe(x) VU (), U]
€ Q.
L A® e, Ue(x)) Bl VUL (), elx)] dx—
€° Ja.
L A0®e(x Uex))Be ()T (), TUL()] dxt
€° Ja.
+ L[ AD e, Ul Belo)Te(x), Telx)] dx =
€ JQ.

— T TS TS 4TS

In the following we study each term separately. The first term

Te= 2 [ Ac)®e(x, Uelx))Be(x) VUL (), VUe(x)] dx <
JQe

IN

o2 [Ae(x)q)e(x)ue(x))Be(X)vue(X)>vve(x)] dx =
Qe
- [ Ac)De(x, Ue(x))Be(x) VU (x), VVe(x)] dx+
JO!

€

+ j Ac(x)D(x, Ue(x))Be(x) VU (x), VVe(x)] dx,
090

e2

where the second term tends to zero. We use the change of variables y = ye(x)
in the first term:

i< | A0l ely) B ) Vel

do(yr) | 0db(y) ab(y) odly) B
( qr S oyr ' ous ! s ﬂ Q+0e=
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:L] [N(U)CDl(y,ue(y))B‘(y)veue(y),

de(y1) ow(y) ob(y) ow(y)
d .
< dyn S ow ) duz ) dus )] y+0

Taking the limit of both sides, we get

e—0

lim Tf < Jw [0‘(y),V’(<p,1b)(y)} dy.

The third term

1
T e

- JZJQ AT (Ye () @elye(x), Uelx))B (ye(x)) (V' (0, 1) + Af) (ye(x)),

VUe(x)] dx,

TS JQ Ac(x)De(x, Ue(x))Be(x)Te(x), VUe(x)] dx =

as the integral on Qg is equal with zero because T« = 0 on Qg. Using the
change of variable y = y¢(x) we get

TS = L] AT W)@y, ueW))B' W) (V(0,1) + M)(y), Vouely)| dy =

:Jw [A1(U)(De(y,ue(y))B](U)(V/((P)ll’)+7\f1)(y),V€u€(y)} dy + O..

Taking the limit when € — 0, we get

Tfﬁj

L (AT, uu BT (o) M), VY wiy)]| dy.

Similarly

TZQHJ

L oW (00 M) dy

and

T4€HJV

L ARy )B IV (0, 9) + M),

(V'(@, %) +Af1)(y)] dy,
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when € — 0.
Adding the limits of Tf, T5, T5, and Tf, we get

JY][A‘(y)ml(y,u(ymw(y)(V'(cp,w)+Af1)(y),V'(cp,¢)(y)— (15)

=V wily) + M) dz— | "), A ()] dy > 0.

Setting
—u=0(v—u), and V—w=0h—w),

where 0 > 0, dividing by 0, then letting 8 — 0, we get the limit variational
inequality.
3) Putting

(o, u) = (P, w),
dividing by A, and letting A — 0, we get

Jw [0 (y) — Al (Y) @ (y, uly1))B (YY) V' (w,w)(y), f1(y)] dy >0

v e H'(YD).

Then 3) follows. [
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