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Approximating poles of complex rational
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Abstract. In this paper we investigate the application of the Nelder–
Mead simplex method to approximate poles of complex rational func-
tions. To our knowledge, there isn’t any algorithm which is able to find
the poles of a function when only the values on the unit circle are given.
We will show that this method can accurately approximate 1, 2 or even
3 poles without any preliminary knowledge of their locations. The work
presented here has implications in the study of ECG signals.

1 Introduction

The research presented in this article is motivated primarily by the fact that
by combining a couple of simple complex rational functions and examining the
values on the unit circle, the result can be very similar to an ECG signal (see
Fig. 1). These functions can be applied for analysis, compression and denoising
of ECG signals. Diagnostic applications may also be possible.

Rational functions play an important role in control theory. The Malmquist–
Takenaka systems are often used to identify the transfer function of a system,
see [1], [2], [9], and [10]. However automatic approximation of the poles of
these functions proved not trivial when only the values on the unit circle are
given and we have no preliminary knowledge about the locations of the poles.

A function, such as the one in Fig. 1, can be defined by its poles and the
corresponding coefficients. The coefficients can be expressed by means of scalar
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(a) An ECG signal from [3]. (Apnea-
ECG Database)

(b) An approximating function.

Figure 1: An ECG signal and a very similar function produced using complex
rational functions.

products when using an orthonormal system, so the main problem is to find
the poles generating an appropriate system.

In this paper we investigate the application of the Nelder–Mead simplex
method to approximate poles of generated complex rational functions given
by their values on the unit circle. The question of H∞ approximation (see [1]
and [2]) is also to be analyzed.

2 Mathematical background

In this section we will introduce our functions of interest and recall some
properties of related orthonormal systems. Then we give a summary of the
Nelder–Mead simplex method, a commonly used nonlinear optimization algo-
rithm.

2.1 Complex rational functions

Denote by C the set of complex numbers and let D := { z ∈ C : |z| < 1 } be the
open unit disk, T := { z ∈ C : |z| = 1 } the unit circle and D

∗ := C \ (D ∪ T).
The natural numbers will be considered as the set N := { 1, 2, 3, . . . }.

The disk algebra, i.e. the set of functions analytic on D and continuous on
D ∪ T, will be denoted by A. The scalar product on T is defined by:

〈f, g〉 =
1

2π

∫2π

0

f(eit)g(eit)dt.



Approximating poles of complex rational functions 171

(a) a =
(

3
4
e

1

2
iπ
)

, c = (1) (b) a =
(

1
4
e

3

2
iπ
)

, c = (1)

(c) a =
(

1
2
e

1

2
iπ , 1

2
e

3

2
iπ
)

, c = (−1, 2) (d) a =
(

1
4
eiπ , 3

4
e

1

3
iπ
)

, c = (1, i)

Figure 2: Examples of complex rational functions.

We shall examine functions generated by the collection of

ϕn(z) :=
1

(1− anz)mn
(z ∈ C; m ∈ N; n = 1, . . . ,m),

where an ∈ D (n = 1, . . . ,m) and mn =
∑

i≤n,ai=an
1 the multiplicity of

the parameter an. We note that ϕn has a pole in a∗n = 1/an ∈ D
∗ and

Φ := (ϕn : n = 1, . . . ,m) ⊂ A.
Fig. 2 illustrates some rational functions of the form f =

∑m
n=1 cnϕn with

a = (a1, . . . , am), c = (c1, . . . , cm) and m = 1, 2. 1

By applying the Gram–Schmidt orthogonalization procedure to Φ, we ob-
tain an orthonormal system Ψ := (ψn : n = 1, . . . ,m) on T, the so-called
Malmquist–Takenaka system (introduced in [7] and [11], see also [6]), which
can be expressed by the Blaschke functions:

Bb(z) :=
z− b

1− bz
(b ∈ D; z ∈ C).

1The values on T are shown, i.e. for a function f we plot f(z) = f(eit), where t ∈ [0, 2π].
The solid line is the real part, the dashed line is the imaginary part of f(z).
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Namely

ψn(z) =

√

1− |an|
2

1− anz

n−1∏

k=1

Bak
(z) (z ∈ C; n = 1, . . . ,m),

which suggests a convenient computation method for the values of ψn.
The orthonormality of the Malmquist–Takenaka functions is defined by

〈ψk, ψl〉 = δkl (k, l = 1, . . . ,m),

where δkl is the Kronecker symbol. Note that spanΦ = spanΨ, i.e. the systems
Φ and Ψ generate the same m-dimensional subspace.

Given a function f ∈ A we can compute PΨf = Pa1,...,amf, the orthogonal
projection of f on the subspace spanΨ by the formula

PΨf =

m∑

n=1

〈f, ψn〉ψn.

Let EΨf = Ea1,...,amf denote the best approximation of f in ||.||2, in spanΨ:

EΨf := ||f− PΨf||2 =
√

〈f− Pf, f− Pf〉.

Our aim is to minimize EΨf for a given function f ∈ A (f is given by its
values on T) and m ∈ N dimension by choosing the parameters a1, a2, . . . , am

of the Ψ (or Φ) system ’well’.

Naturally, in our computations we use the discrete approximation of the
scalar product:

[f, g] := [f, g]N =
1

2πN

N−1∑

k=0

f(e2πik/N)g(e2πik/N)

for a sufficiently large N. Let us choose e.g. N = 256. Furthermore a function
is given by its values on the set

TN :=
{
z ∈ T : z = e2πik/N; k = 0, . . . ,N− 1

}
.
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2.2 The Nelder–Mead algorithm

The method introduced by Nelder and Mead in [8] is for the minimalization of
a function of n variables, which depends only on the comparison of function
values at the n+1 vertices of a general simplex, followed by the replacement of
the vertex with the highest value by another point. The simplex adapts itself
to the local landscape and contracts on to the final minimum. The method
has been shown to be effective and computationally compact. Though there
are very few proofs concerning its convergence properties (see [4] and [5]),
it is widely used in practice in natural sciences and engineering for function
optimization.

The method is described as follows. Let f : R
n → R be an arbitrary function

and x1, x2, . . . , xn+1 ∈ R
n the vertices of the current (nondegenerate) simplex

in n-dimensions. Usually the vertices are defined by an xs starting point and
w > 0:

x1 := xs, xi := xs +w · ei−1 (i = 2, . . . , n+ 1),

where ei is the ith element of the canonical basis in R
n.

Let yi := f(xi) (i = 1, . . . , n+ 1) and define the indices h and l such that

yh = max {yi : i = 1, . . . , n+ 1 } , yl = min {yi : i = 1, . . . , n+ 1 } ,

the highest and lowest values. Further define x the centroid of the points xi

with i 6= h.
At each stage in the process xh is replaced by a new point; three operations

are used: reflection, expansion and contraction with the following parameters:
α = 1, β = 1

2
and γ = 2, since the natural (’standard’) strategy given by these

values proved to be the best, see [8]. These are defined as follows:

• The reflection of xh is defined by the relation

xr := (1+ α)x− αxh, yr := f(xr).

If yl ≤ yr < yh, then xh is replaced by xr and we start again with the
new simplex.

• If yr < yl, i.e. the reflection has produced a new minimum, then we
expand xr to xe by the relation:

xe := γxr + (1− γ)x, ye := f(xe).

If ye < yr, we replace xh by xe and restart the process; but if ye ≥
yl, then we have a failed expansion, and we replace xh by xr before
restarting.
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• If on reflecting xh to xr we find that yr ≥ yi for all i 6= h, i.e. that
replacing xh by xr leaves yr the maximum, then we define a new xh to
be either the old xh or xr, whichever has the lower y value (when yh = yr

then choose xh), and form

xc := βxh + (1− β)x, yc := f(xc).

We then accept xc for xh and restart, unless xc > min { xh, xr }, i.e. the
contracted point is worse than the better of xh and xr. For such a failed
contraction we replace all xi points by 1

2
(xi+xl) and restart the process.2

We stop the iteration when the standard deviation is less then ε, a small
preset value:

(

1

n

n+1∑

i=1

(yi − y)2

)

1
2

< ε,

where

y =
1

n+ 1

n+1∑

i=1

yi.

Let us choose e.g. ε = 10−6.

The Nelder–Mead method is an effective and robust algorithm, but it often
stops near local minima ignoring better global solutions. In these cases a
reinitialization of the simplex at another starting point may prove helpful.

In Fig. 3 we illustrate the steps of a 2-dimensional simplex with starting
point xs = (4, 6) and w = 1 optimizing the quadratic function:

f(x) = f(x ′, x ′′) =
1

16
(x ′ − 2)2 + (x ′′ − 3)2 (x ′, x ′′ ∈ R).

The effects of reflection, expansion and contraction can be observed, as defined
above. It is clear that in this simple case the simplex contracts on the minimum
xmin = (2, 3).3

2This operation is called a shrink and a shrinking parameter δ can also be defined. The
standard choice is δ = 1

2
.

3This algorithm is also known as the amoeba method for the similarity of the simplex’s
moves to the named unicellular creature.
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Figure 3: Moves of a Nelder–Mead simplex optimizing a quadratic function.

3 Methodology

In this section we explain how the Nelder–Mead method can be applied to
find suitable parameters for the approximation. Furthermore, we describe our
experiments and measurements.

Our goal is to minimize the function EΨf = Ea1,...,amf introduced in Section
2.1 for a given f ∈ A function (f is given by its values on T) and m ∈ N dimen-
sion by choosing the parameters a1, a2, . . . , am of the Ψ system. For solving
this minimization problem, we shall use the Nelder–Mead simplex algorithm
described in Section 2.2.

The parameters of the Ψ system are to be chosen from D. The simplex
method requires vertices from R

n. So in order to allow the simplex to move
freely in R

n i.e. without any constraints to its steps, we set n = 2m and use
the map

R
2 ∋ (u, v) 7−→ z =

u√
1+ u2 + v2

+
v√

1+ u2 + v2
i ∈ D.

This map is a bijection between R
2 and D. Then a map from R

2m to D
m can

be easily given by considering pairs of coordinates in R
2m.

The traditional map used comes from the following idea. Imagine a half
sphere on the complex unit disk D and then lay a plane R

2 on the half sphere.
Then the corresponding z ∈ D to an (u, v) ∈ R

2 point is given by joining
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C
1

(u, v)

z0

Figure 4: Mapping (u, v) ∈ R
2 to z ∈ D.

the complex zero with (u, v) by a straight line and projecting its intersection
with the half sphere in C as seen in Fig. 4. The formula can be deduced from
properties of the similar triangles on the figure.

So to find the (a1, . . . , am) ∈ D
m parameter values minimizing EΨf, we

use a simplex in R
2m. Let the starting position xs be the zero of R

2m, and
w = 0.1. The iteration stops when the standard deviation of the EΨf values
in the vertices of the simplex descend below ε = 10−6.

For a given m ∈ N and function f ∈ A of the form

f(z) =

m∑

n=1

cnϕn(z) (z ∈ T; cn ∈ C)

with parameters a1, . . . , am ∈ D defining the functions ϕn (n = 1, . . . ,m) and
the approximations b1, . . . , bm ∈ D of the parameters an define

Df := max { |an − bn| : n = 1, . . . ,m } ,

the error of the approximation of the poles. (For convenience, we sometimes
refer to the an parameters of the rational system as poles although these are
actually not poles of the functions in focus. The 1/an values are.) Further
define

Hf :=
max { |f(t) − (Pb1,...,bm

f)(t)| : t ∈ T }

max { |f(t)| : t ∈ T }
,

the relative error of the approximation in H∞ norm. Naturally, in our com-
putations we use the discrete approximation of Hf. And finally define

N f ∈ N,

the number of calculations the simplex algorithm performs before terminating,
where one calculation means evaluating Eb1,...,bm

f for a given function and set
of parameters.



Approximating poles of complex rational functions 177

In our first experiments we used 1024 functions with one pole a1 randomly
chosen from the uniform distribution on D, forming f(z) = c1ϕ1(z) with c1
also randomly chosen from D. We avoided extreme values of a1 and c1 too
close to zero (less than 0.05), because these values would result in almost
constant function values on T. We also avoided a1 values too close to T

(greater than 0.95), because ϕ1 can no longer be defined with its parameter in
T and our discretization may prove insufficient to reflect the properties of these
extreme functions. For each function f we applied the Nelder–Mead algorithm
as described above to find its pole and measured the previously defined Df,
Hf and N f values.

Then we generated another 1024 functions with two poles i.e. functions of
the form f(z) = c1ϕ1(z) + c2ϕ2(z) with a1, a2, c1, c2 chosen similarly to the
previous case and measured the Df, Hf and N f values again.

This experiment has been repeated for another 1024 functions with three
random poles and coefficients: f(z) =

∑3
i=1 ciϕi(z).

Finally we investigated the iterated application of the simplex algorithm in
the case m = 3. This means that if the result was not good enough (e.g.
Df > 10−4), we reinitalized the simplex with w = 0.1 and xs in the position
reached in the previous iteration and started the optimization process again,
at most 5 times.

4 Results

The statistics of our measurement results of the Df, Hf and N f values are
summarized in Table 1. The histograms of these values are shown in Fig. 5,
6 and 7. Fig. 5 and 6 show the number of functions (out of 1024) with Df
and Hf approximation error values with an order of magnitude of 10−8, 10−7,
etc. Fig. 7 shows the number of functions (out of 1024) with N f values in the
intervals shown on the horizontal axis.

One can observe that in the case m = 1, i.e. the case of functions with one
pole, the algorithm always gives a very good approximation of the pole. The
order of the approximation error is better than 10−6 and so is the approx-
imation error in the H∞ norm. The algorithm is very effective and fast, it
requires 90 calculations on average. We also found that the algorithm needs
more steps when applied to a function with its pole closer to T. In these cases
the approximation is usually more accurate too.

In the case m = 2 (i.e. the case of functions with two poles) in most cases
the poles can be approximated with precision at least of order 10−6. The
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min max avg std. dev.

1 pole Df 2.83 · 10−8 2.10 · 10−5 4.74 · 10−7 1.15 · 10−6

Hf 7.20 · 10−8 2.19 · 10−5 6.52 · 10−7 1.34 · 10−6

Nf 56 116 89.92 8.30

2 poles Df 5.74 · 10−8 4.27 · 10−1 1.85 · 10−3 1.95 · 10−2

Hf 6.95 · 10−8 5.87 · 10−3 1.09 · 10−5 1.89 · 10−4

Nf 91 792 283.58 68.03

3 poles Df 7.46 · 10−8 1.78 · 100 1.13 · 10−1 2.71 · 10−1

Hf 8.53 · 10−8 3.37 · 10−1 1.82 · 10−3 1.49 · 10−2

Nf 181 2006 712.64 272.56

3 poles Df 7.46 · 10−8 5.94 · 10−1 3.91 · 10−3 3.03 · 10−2

iterated Hf 8.53 · 10−8 2.57 · 10−4 1.91 · 10−6 1.24 · 10−5

Nf 430 2782 944.54 361.27

Table 1: The measured minimum, maximum, average and standard deviation
values of Df, Hf and N f in the four investigated cases.

approximation in the H∞ norm is also very good. The algorithm requires
about 280 calculations on average. The cases when the Df value is in the order
of 10−1 or 10−2, are the ones when the two poles are very close to each other
and there is a significant difference in the absolute values of the coefficients.
In such cases the function could be almost as precisely approximated using
functions with only one pole as using functions with two poles.

For functions with three poles (m = 3), there are lot more cases when Df
is of the order 10−1, even if the H∞ error is small enough. We observed that
in these cases the algorithm finds two poles with high precision, but the third
one is far from the original. Then if we start again by initializing the simplex
in the point reached (we iterate the application of the algorithm), the third
pole is also find usually with an error less than 10−5 and the error of the H∞

approximation also decreases. Naturally the computation cost rises with m
and with the iterated application of the algorithm.

In the case of functions with even more poles, our few experiments show
that this algorithm is not as powerful as in the cases detailed above (See also
[4].) For instance, if the function is generated with 8 different poles, then the
simplex method usually finds 4 of the poles with very small errors, but the
others remain unknown.
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(a) m = 1 (b) m = 2

(c) m = 3 (d) m = 3, iterated

Figure 5: Number of functions (out of 1024) vs. order of Df.

5 Conclusions

Our results show that the Nelder–Mead simplex algorithm can be applied
effectively to solve the problem of approximating poles of complex rational
functions with 1, 2 or even 3 poles, when the functions are given by their
values on T and we have no preliminary knowledge about the location of the
poles. We also get a satisfying approximation in H∞ norm.

The results presented here have proven sufficient to perform promising cal-
culations in the case of approximating ECG signals.

6 Further research

The main area of application of this research is the processing and analysis of
ECG signals. The representation using complex rational functions may give an
efficient way to compress and store these signals. We can gain a new method
for denoising too, because of the smoothness of the functions applied. The
potentials in diagnostics are also to be explored.
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(a) m = 1 (b) m = 2

(c) m = 3 (d) m = 3, iterated

Figure 6: Number of functions (out of 1024) vs. order of Hf.

(a) m = 1 (b) m = 2

(c) m = 3 (d) m = 3, iterated

Figure 7: Histogram of N f.
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The effect of adding noise to the examined functions may also be investi-
gated.

The direct use of D and hyperbolic coordinates instead of R
2 in the imple-

mentation of the algorithm also seems to be an interesting field of research.
The design of new algorithms or possible improvement of the Nelder–Mead

method for finding poles of functions with more singularities effectively is also
to be studied.
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