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Abstract: In this paper we introduce an event forecasting method for wireless 
sensor networks (WSNs), and its testing results in real world circumstances. The 
algorithm recognizes and differentiates the event sequences that turn up inside the 
sensor field, and then uses these recognized event sequences for event forecasting. The 
method uses the Fuzzy set theory and clustering methods. The events are represented 
with three different parameters (measurement data, sensor ID, and timestamp). 
According to the model of the algorithm, each sensor node periodically samples a 
predefined environmental parameter, and if the value of the measurement data is higher 
than a predefined threshold, the node stores this data as an event. A series of events is 
stored in the so called Time-Space fuzzy Signature (TSS). A TSS is a set of events, 
which are detected on a local node, or on its neighbors in its communication range. The 
algorithm performs hierarchical clustering on the TSSs to determine, which of them can 
represent the same event sequence, and as a result the same phenomenon. Then, on the 
results of the hierarchical clustering we perform a K-mean clustering, in order to filter 
out the noise events. The event forecasting feature of the WSN can be useful for target 
tracking or sleep scheduling protocols, among others. In this article, first we shortly 
introduce the theoretical background and definitions of the algorithm; then, we 
demonstrate the working. 
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1. Introduction 

A Wireless Sensor Network (WSN) consists of a large number of distributed 
nodes that organize themselves into a multi-hop wireless network. Each node 
has one or more sensors, embedded processors and a low-power radio. 
Typically, these nodes coordinate to perform a common task. The WSNs greatly 
extend our ability to monitor and control the physical environment from remote 
locations; furthermore, they can greatly improve the accuracy of information 
obtained via collaboration between sensor nodes. An interesting and useful 
feature of these networks is called event forecasting. 

In [1], we suggested an event forecasting algorithm for WSNs, which builds 
up on a fuzzy framework. According to this method the sensor nodes try to 
forecast specific events from the changes of the environmental parameters, and 
from formerly registered measurements. This feature of the WSNs can be very 
useful in practice. The method is fully distributed and robust, and it does not 
require hard time synchronization or localization. In this article we would like 
to introduce an algorithm which is based on the same fuzzy framework, but tries 
to recognize and differentiate the event sequences that occur inside the area 
covered by the sensor network, and extract from them the “pure sequence(s)”. 
(A pure sequence is an event sequence that occurs inside the area monitored by 
the sensor network just because of a phenomenon and does not contain noise 
events.) These pure sequences can be used then for event forecasting. The 
efficiency of the proposed method was tested in real circumstances as well, 
using a few Crossbow MicaZ sensor nodes that were placed next to different 
kinds of crossroads; the event-sequences recognized by the sensors model well 
the different trajectories of the passing cars. 

In the next section we introduce the theoretical background, how the events 
are represented on the sensor nodes, and how the nodes store and sort the event 
sequences that appear in the network. 

2. Definitions 

In the following we provide a few definitions that are necessary to 
understand the context in which the forecasting model was developed and the 
measurements were done. These definitions and notations will be further 
detailed, and their usage will be explained in the following sections. 

In [1] we defined a fuzzy set of events as follows: 

 }|),(.),,{( FftIDfE ffE ∈= µ  (1) 
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where F is a certain feature space of the taken measurement. In Fuzzy 
terminology F is the universe of the features (f), where the events ( Ee∈ ) are 
defined. The parameter (.)Eµ  is called fuzzy membership function. This 
function assigns to every f a number between 0 and 1, depending on the degree 
at which f belongs to the fuzzy set of events. fID  means the ID of the sensor 

node where the event appeared, and ft is the detection time of the event. 
In the case when a node has more than one event to be managed, we store 

these events in the so called Time-Space fuzzy Signature (TSS) 

 }|,...,,,{ 21 Eeeeee ntrg ∈=i ID,TSS  (2) 

This is a set of events that occurred before the i-th target event ( trge ) being 
detected by the local sensor node ( ID ). The neee ,...,, 21  events are either events 
detected by neighboring sensors, which alerted all the other nodes in their 
vicinity, or they are events detected by the local node itself, at a previous 
moment in time. These events are sorted in the TSS in descending order, by 
their time of occurrence ( ft ). 

3. Problem formulation 

According to the model, each sensor node periodically samples a predefined 
environmental parameter, and in the case when the value of the membership 
function assigned to this environmental parameter is higher than a threshold 
limit, the node stores this data as an event. The shape of the membership 
function can be defined arbitrarily, according to a specific interval in the input 
space, based on what the user regards as an event. When a node detects an 
event, it sends a “limited broadcast” message to its neighboring nodes. Every 
sensor in radio range receives this message. All the sensors have a TSS 
database, which is filled up with their own events and the events detected by the 
neighboring nodes. A phenomenon passing through the monitored area creates 
event sequences (called global event sequences). 
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Figure 1: A local event sequence. 

From this global event sequence a simple node senses only those events, 
which appeared in its communication range (called local sequence); in Fig. 1 
sensor node A sees only those events, which are logged in his communication 
range (red circle). There can be multiple phenomena in the sensor field at the 
same time, so the global sequences, and as a consequence the local sequences as 
well, can be overlapped with each other. In that case, the nodes can filter out 
from this mixed event set the pure local sequences, and then these pure local 
sequences can be used for event forecasting. 

4. The TSS distance 

As mentioned before, a phenomenon passing through the area monitored by 
the sensor network creates event sequences. Our aim is to estimate the number 
of the “pure sequences” that are mixed due to the overlapped sequences, i.e., 
how many different phenomena affected the sensor nodes. We have to find the 
similar event sequences, and assign them to the same cluster group. Then, we 
should extract from each cluster group the “pure event sequence”, i.e., what 
phenomenon that group represents. To gain the ability to create clusters from 
the mixed event sequences, we must define a distance function between the 
different TSSs. But before doing so, in order to be able to compare the TSSs, 
that were created at different moments in time, we have to normalize the TSSs 
by time. 
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Figure 2: A normalized TSS. 

 Fig. 2 illustrates a TSS after normalization. As shown in the picture, 
normalization means that we shift the time parameter of the events so that the 
target event is at time 0, and all the other events, which occurred earlier in time 
than the target event, have negative time parameters. With this normalization 
we can transform all TSSs to a standard form. 

The TSS distance function compares two normalized TSSs and assigns a 
number between 0 and 1 to them, in order to describe the similarity of the two 
TSSs. This is carried out in two steps. In the first step we try to order into pairs 
the events of the TSSs, while in the next step we try to quantify the differences 
between the pairs that we have found. One of the most important aspects in 
looking for event pairs is that we only search pairs in events which have the 
same sensor ID. 

Fig. 3 illustrates a case, when two TSSs contain only events that are related 
to two different sensor IDs (sensorID = 1 and 2). In the figure we can see a 
possible pairing among events with sensorID = 1, but we also see that another 
pairing is possible too. Finding the best possible pairing is important, because 
we can filter out the noise events, as these events won’t have pairs in the 
pairing. We can draw one important conclusion, that the time difference of the 
found pairs should be minimal. 

 

 
Figure 3: A possible event pairing. 

Fig. 4 illustrates another case, where we can see that taking into account 
only the minimization of the time differences, as mentioned above, might not 
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lead to an optimal solution. The reason for it is that the event sequences of the 
two TSSs might be shifted a bit in time. This pair choosing method will thus not 
pair together those point pairs which really belong together.  

 

 
Figure 4: An example when the above greedy pair choosing algorithm  

does not get an optimal solution. 

Thus, we have to redefine the conclusion above so that in the pairing the 
sum of the time differences should be minimal. This problem is equivalent with 
the assignment problem in graph theory, which consists in finding a maximum 
weight matching in a weighted bipartite graph. This assignment problem can be 
solved in polynomial time, for instance with the Hungarian method [3]. 

 
The weights of the edges are  

 2
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 (3) 

where, w is the weight of the edge, t∆ is the time difference between two events, 
while µ∆ is the µ  difference between the two events. We can see that the 
weight of an edge between two events depends on the time and the membership 
function differences between the events. The weights should have a maximum 
and a minimum value. On one hand with the maximum value we can normalize 
the sum of the weights; on the other hand with the minimum value we can avoid 
the case when we should divide with zero according to the formula above. 

At this point we have a weighted bipartite graph and we must search the 
maximum weight matching in the sub-graphs assigned to the different sensor 
IDs. Then, the distance between two TSSs is calculated as follows: 

 
maxmin, *

1
wTSS

wd
length

∑−=  (4) 



32 A. Kalmár, G. Öllös, R. Vida 
 

  

where w denotes the weights of the different edges, while TSS length, min is the 
number of elements of the shorter TSS. 

5. The event forecasting method 

According to the model, each sensor node periodically samples a predefined 
environmental parameter, and if this sampled value is higher than the threshold 
limit, the node stores this data as an event. Every sensor has a TSS database, the 
purpose of the algorithm is thus to create cluster groups from the stored TSSs, 
and then to extract from these groups the pure event sequences. We used a 
hierarchical clustering solution, and the results are illustrated with a 
dendrogram, as shown in Fig. 5. 

The root node of the dendrogram represents the whole TSS database, and 
each leaf node is regarded as a TSS. The intermediate nodes thus describe the 
extent to which the objects are similar to each other; while the height of the 
dendrogram expresses the distance between each pair of TSSs or clusters, or a 
TSS and a cluster. 

  

Figure 5: A dendrogram representing the result of the hierarchical clustering. 

After the formation of the hierarchical cluster set from the TSS database, in 
order to attain the desired subsets the dendrogram should be cut at the proper 
levels. These subsets contain such TSSs, which represent the same event 
sequence mixed with noise events. After these subsets are available, the 
algorithm tries to extract the pure event sequences from them with the so called 
k-mean clustering. 
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K-mean clustering is one of the hard partitioning methods. It searches an 
optimal partition of the data by minimizing the sum-of-squared-error criterion 
(4) in an iterative optimization procedure [2]. 

 2

1 1
||||),( ∑ ∑

= =
−=Γ

K

i

N

j
ijijs mxMJ γ  (4) 

Let Γ={γ}ij 
be the partition matrix, defined as follows: 
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sample mean for the thi cluster with iN objects. 
The steps of the k-mean clustering algorithm are then the following: 

 
1. Initialize a K - partition randomly, or based on some prior knowledge. 

Calculate the cluster centroid matrix ],....[ 1 kmmM =  
2. Assign each object in the data set to the nearest cluster aC  , i.e., 

aj Cx ∈ , if |||||||| bjaj mxmx −<−  

                                       Nj ,...,1= , ba ≠ , Ka ,...,1= and Kb ,...,1=  
3. Recalculate the cluster centroid matrix based on the current 

partition,  

∑
∈

=
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j
a
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N
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4. Repeat steps 2 and 3 until there is no change in any cluster. 

In Fig. 6 we can see the previously detailed steps for a two-dimensional 
case. The algorithm randomly assigns two cluster centroids to the input points. 
Each data point is assigned to a cluster centroid according to the predefined 
distance function. In the next step the centroids are recomputed. The clustering 
method executes these steps repeatedly, until there is no change in the centroid 
matrix. Returning to the forecast algorithm, as a result of cutting the 
dendrogram at the proper levels, the desired TSS subsets turn up. These subsets 
will contain TSSs which represent probably the same event sequence mixed 
with noise events. In that case, we divide the different events assigned to 
different sensor IDs in the subsets, and we group the three-dimensional (sensor 
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ID, timestamp, µ ) event data structures into two-dimensional planes. These 
planes represent events which possess the same sensor ID. On those planes we 
use the formerly detailed k-mean algorithm, as follows: we start with one 
cluster group, and in each iteration we increase the number of the cluster 
groups. During an iteration we analyze two conditions: the variances of the 
groups, and the number of events in each group. If the variance of a group is 
less than a predefined parameter, it means that at this place in that plane (time 
stamp, µ ) the events are placed densely, and these events can represent a pure 
event sequence. To verify this, we have to compare the number of events in this 
group with the number of the TSSs in the subset (dendrogram sub-tree). 

 

 
Figure 6: Steps of the K-mean clustering algorithm. 

If their ratio is above a second predefined threshold, it means that we have 
found a pure event sequence, so we store the centroid (time stamp, µ ) of the 
group with the sensor ID assigned to that plane. After that we continue the 
process on the next plane. 

6. Performance analysis 

The previously introduced event forecasting algorithm was tested in real 
circumstances as follows: we implemented a WSN with user interface from 



 Analysis of an Event Forecasting Method for Wireless Sensor Networks 35 
 

Crossbow MicaZ sensor nodes, with the purpose to measure sound intensity in 
different kinds of crossroads. After the measurement, the measured data from 
each sensor node was uploaded to a WSN simulator that was running on a PC. 
The reasons why the testing of the algorithm was carried out in a simulator and 
not on the sensor nodes, are the relatively small program memory available on 
the nodes, the cumbersome nature of the debugging process on the real sensors, 
and the more clear and transparent supervision of the processes  in a simulator. 
The main purpose of this experiment was to determine whether the event-
sequences recognized by the sensors are modeling well the different trajectories 
of the passing cars. 
 
One directional, straight road 

Probably the simplest case is when the nodes are placed along a one 
directional, straight road. It is simple, because there is only one event sequence 
to be recognized. The potential difficulties in this case are the following. The 
different speeds of the cars along the road result in time shifts in the searched 
event sequences. The different sound intensities of the various cars cause offsets 
in the membership values of the events. In addition, the acceleration changes of 
the vehicles cause both of these problems. The setting of the nodes along the 
road can be seen in Fig. 7. 

 
Figure 7: Setting of the nodes along the one directional straight road. 

The red numbers mark the sensor IDs of each sensor. The distance between 
the nodes was approximately 20 meters. As we can see in the figure, the 
searched event sequence was the (3-2-1). The algorithm recognized this event 
sequence clearly, and in addition it recognized it in multiple forms, in the sense 
that in each form the order of the sensor IDs was the same, but the time 
differences between the events were different. On the whole it can be said that 
these event sequences (assigned to vehicles with different speeds) were 
differentiated. 
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Two directional, straight road 

The second measurement was made along a two directional straight road. It 
was similar to the one directional case in the sense that all of the nodes were 
planted on the same side of the road in a line, the distance between the nodes 
being 20 meters. The setting of the nodes can be seen in Fig. 8. 

 
Figure 8: Setting of the nodes along the two directional straight road. 

The difficulties to recognize the event sequences were the same as before 
(speed and acceleration changes), but in this case there were two event 
sequences to identify, caused by the cars moving on the two sides of the road. 
These event sequences overlapped with each other in most of the cases. The two 
event sequences were the (1-2-3-4) and the (4-3-2-1). 

From the (1-2-3-4) event sequence the 4th sensor found the (2-3-4), the 3rd 
node the (2-3) and the 2nd sensor the (1-2) event sequences. There could be 
several explanations, why the nodes found only event “sub-sequences” from the 
complete sequence. The overlapping event sequences, the not ideal TSS length, 
or the noisy environment could all be the reasons for this. 

From the (4-3-2-1) event sequence the nodes typically stored only their own 
sensed event, and that of the preceding sensor node. The recognized 
sequences were the following: (4-3), (3-2), and (2-1). Considering the fact 
that the nodes could sense the events of the distant lane less efficiently, 
and the events of the closer lane could fade them, it is most likely that 
the above mentioned possible error sources could have a greater impact on 
the results in this case. 
 
Crossroad  

After the straight road measurements, we analyzed a crossroad, which had an 
average traffic intensity. This case was the most difficult so far, as there were 
several event sequences to be recognized. If a vehicle tried to leave the 
horizontal main road for the vertical low priority road, it might have taken 
several seconds to carry out its task. This time interval depended on the actual 
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traffic conditions. This means that the time interval of the same event sequences 
could change. The topology of the measuring nodes can be seen in Fig. 9.  

 
Figure 9: The placement of the nodes in the crossroad. 

The recognized event sequences were the following: the 2nd node found the 
(4-3-2) sequence, and was able to mark the vehicles traveling horizontally from 
right to left on the main road. The 3rd sensor identified the (2-3), the 4th node 
found the (3-4), and the 5th node found the (4-5) sequences. The (2-3) and the 
(3-4) event sequences could mark the cars moving horizontally from left to right 
on the main road. The (4-5) sequence possibly marks vehicles, which turn down 
from the main road to the lower priority road. The 1st sensor node registered 
very few events and it didn’t found any sequence as a result. The detected event 
sequences characterize the trajectories of the passing cars quite well. 

To summarize the results it can be said that the recognized event sequences 
contain only two or three events. The density of the events and the small 
number of the nodes could cause this. In the case if the sensor nodes send these 
recognized local sequences to a base station, and this fits them together, than the 
desired global event sequences turn up. 

6. Conclusion 

In this paper we introduced an event forecasting method for wireless sensor 
networks and presented its testing results in real circumstances. With Crossbow 
MicaZ sensor nodes we measured the sound intensity of the vehicles next to 
various types of roads and in a crossroad. Our purpose was to ensure that the 
event-sequences recognized by the sensors model well the different trajectories 
of the passing cars. The experiments showed that in most of the cases the 
recognized event sequences contained only two or three events. This was 
probably caused by the small number of the used nodes and the density of the 
events. If a base station can communicate with all the nodes, then it has the 
ability to fit together these recognized event sequences and identify the global 
event sequences. These global sequences mark well the different phenomena 
appearing in the field of the WSN. 
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