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Abstract. In this investigation, we establish a steady-state solution of
an infinite-space single-server Markovian queueing system with working
vacation (WV), Bernoulli schedule vacation interruption, and impatient
customers. Once the system becomes empty, the server leaves the sys-
tem and takes a vacation with probability p or a working vacation with
probability 1−p, where 0 ≤ p ≤ 1. The working vacation period is inter-
rupted if the system is non empty at a service completion epoch and the
server resumes its regular service period with probability 1−q or carries
on with the working vacation with probability q. During vacation and
working vacation periods, the customers may be impatient and leave the
system. We use a probability generating function technique to obtain the
expected number of customers and other system characteristics. Stochas-
tic decomposition of the queueing model is given. Then, a cost function
is constructed by considering different cost elements of the system states,
in order to determine the optimal values of the service rate during regular
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busy period, simultaneously, to minimize the total expected cost per unit
time by using a quadratic fit search method (QFSM). Further, by taking
illustration, numerical experiment is performed to validate the analytical
results and to examine the impact of different parameters on the system
characteristics.

1 Introduction

Queueing modeling is being employed in a large variety of day-to-day con-
gestion problems as well as in industrial scenarios, such as computer systems,
call centers, web services, communication/telecommunication systems, etc. For
nearly a century, many queueing models have been developed to analyze the
characteristics of many systems and recommendations have been issued to
suggest how to deal with congestion situations. In many queueing scenarios,
when there is no job present in the system, the server may take a vacation
(V) or may provide a service for a secondary job, known as working vacation
(WV). Queueing systems with vacation and working vacation have been the
subject of interest for the queueing theorists. A detailed surveys of the litera-
ture devoted to vacation queues are found in [9], [26], [27], and the references
therein. Working vacation queue was first introduced by [24] in an M/M/1
queueing system. [17] analyzed a single server queue with batch arrivals and
general service time distribution. [28] provided the analysis for an M/G/1

queueing model with multiple vacations and exhaustive service discipline at
which the server works with different rate rather than completely stopping
the service during vacation. [15] provided performance analysis of GI/M/1
queue with working vacations. Then, [23] analyzed the M/M/1 queue with
single and multiple working vacation and impatient customers. They com-
puted closed form solution and various performance measures with stochastic
decomposition for both the working vacation policies. After that, a Markovian
queueing system with two-stage working vacations has been considered by [25].
Recently, [18] examined an infinite-buffer multiserver queue with single and
multiple synchronous working vacations.

In this investigation, we considered vacation interruption policy at which
during working vacation period, the server may come back to the regular
working period without completing the ongoing working vacation. The con-
cept of vacation interruptions was introduced by [13]. After that, [14], [16], and
[31] generated the vacation interruption model for GI/Geo/1, GI/M/1, and
M/G/1 queueing models, respectively. Working vacation queueing system with
service interruption and multi-optional repair was considered by [11]. Then,
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[10] examined system performance measures for an M/G/1 queueing model
with single working vacations and a Bernoulli interruption schedule. [29] stud-
ied the strategic behaviour in a discrete-time working vacation queue with
a Bernoulli interruption schedule. [22] investigated a single server queueing
model with multiple working vacations and vacation interruption where an
arriving customer can balk the system at some particular times. Recently, a
study of an infinite-space single server Markovian queue with working vacation
and vacation interruption was established by [20].

Over recent decade, customer’s impatience becomes the burning issue of pri-
vate and government sector businesses. Thus, an increasing attention has been
seen in queueing systems with impatient customers due to the absence (vaca-
tion) of the server. [1] gave the analysis of customers’ impatience in different
queues with server vacation. Then, vacation queueing models with impatient
customers and a waiting server have been examined by [21]. [30] analyzed
an M/M/1 queue with vacations and impatience timers which depends on
the server’s states. [8] examined a queueing model with feedback, reneging
and retention of reneged customers, multiple working vacations and Bernoulli
schedule vacation interruption. Further, performance and economic analyzes
of different queueing models with vacation/working vacation and customer’s
impatience have been treated by [5, 6], [2, 3], [4], [19, 7], and the references
therein.

In this work, the main objective is to analyze the queueing performance of an
infinite-space single-server working vacation queueing system with Bernoulli
schedule vacation interruption at which whenever the system becomes empty,
the server switches to the vacation period with a certain probability p and
to the working vacation with a complementary probability 1 − p. During the
vacation period, the customers are served at a lower service rate. During this
period, at each service completion instant, if there are customers in the queue,
the server either remains in the working vacation status with probability q, or
switches to the regular service status with probability 1− q. During vacation
and working vacation periods, the customers may get impatient with different
rates and leave the system . In this study, the probability generating function
(PGF) is used to determine the stationary system and queue lengths. The
stochastic decomposition of the queueing model is also provided. Further, the
cost optimization analysis of the system is carried out using quadratic fit search
method (QFSM) in order to minimize the total expected cost of the system
with respect to the service rate during normal busy period.

The rest of the paper is organized as follows. Section 2 describes the queue-
ing system by stating the requisite hypotheses and notations which are needed
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to develop the model. Section 3 is devoted to a practical application of the
proposed queueing model. In Section 4, the steady-state equations governing
the queueing model are constructed and the steady-state solution of the con-
sidered queueing system is obtained, using the probability generating function
technique. In the Section 5, we focus on useful system characteristics in terms
of state probabilities. Section 6 is devoted to the stochastic decomposition of
the queueing system. In Section 7, we construct a cost function. Numerical
analysis has been carried out in Section 8. Finally, we ended the paper with a
conclusion in Section 9.

2 Model description

Consider an infinite-buffer single server Markovian queueing system where the
arriving customers follow Poisson process with rate λ. During the regular ser-
vice period, the customers are served with an exponential rate µb. The server
begins a vacation with probability p or a working vacation with probability
1− p, where 0 ≤ p ≤ 1, at the instant when he finds the system empty. Dur-
ing the working vacation period, the server renders service to the customers
with a lower rate µv(µv < µb). A new busy period starts if the system is non
empty after the end of vacation period or working vacation period. Further,
it is assumed that the working vacation period is interrupted if the system is
non empty at a service completion instant and the server resumes the regular
service period with probability 1 − q or carries on with the working vacation
with probability q. Vacation and working vacation periods are assumed to be
exponentially distributed with rates θ and φ respectively.

Whenever a customer arrives to the system and realizes that the server is
on vacation (resp. working vacation) he activates an exponentially distributed
impatience timer T1 (resp. T2) with parameter ξ (resp. α), where α < ξ. If the
server comes back from his vacation or working vacation before the timer T1
or T2 expires, the customer remains in the system till the completion of his
service. The customer leaves the system and never returns if T1 or T2 expires
while the server is still on vacation or working vacation.

At time t, let L(t) denote the total number of customers in the system and
J(t) denotes the state of the server with

J(t) =


0, when the server is in working vacation period,

1, when the server is in vacation period,

2, when the server is in regular service period.
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Then, the pair {L(t), J(t), t ≥ 0} defines a two dimensional continuous time
discrete state Markov chain with state space E = {((0, 0) ∪ (0, 1)) ∪ (i, j), i =
1, 2, ..., j = 0, 1, 2}. Let Pij = lim

t→∞P {L(t) = i, J(t) = j} denote the stationary

probabilities of the Markov process {L(t), J(t), t ≥ 0}.

Figure 1: State-transition-rate diagram.
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3 Practical application of the queueing model

Reducing energy costs is a major problem in modern information and com-
munication technology (ICT) systems, as the inactive devices in modern ICT
systems consume a significant amount of energy. We consider a ICT system
with a single device, wherein jobs arrive according to a Poisson process with
rate λ. The job processing time is exponentially distributed with rate µb.When
the system work has been done, to reduce energy costs, the device switches
either to off state with probability p or to a lower energy state with a compli-
mentary probability 1 − p wherein it keeps part of its capacity and processes
the incoming jobs with a lower rate µv (µb > µv), which is also exponentially
distributed. The lower energy state can be considered as the working vaca-
tion status of the device. In order to avoid the increasing workload and the
prolonged job sojourn time, once a job arrives at an empty device, the device
processes the job with the rate µv, and begins to move to the regular service
period. The switching process takes time and the processing of the current job
can not be interrupted. Then, at each time of service completion during the
working vacation period, the device can remain in the working vacation period
with probability q or switch to the regular service period with probability1−q.

If the device successfully switches to the regular service period and finds
jobs online, it will process them with rate µb (the working vacation period is
interrupted).

Moreover, we suppose that whenever a customer arrives to the system and
finds that the device is on vacation (resp. working vacation) he activates an im-
patience timer T1, (resp. T1) exponentially distributed with parameter ξ (resp.
α). If the device returns from its vacation/working vacation before the time
expires, the customer stays in the system until his service is completed. How-
ever, if impatience timer expires while the server is still on vacation/working
vacation, the customer abandons the queue, never to return.

4 Stationary Solution of the Model

Using the theory of Markov process, the stationary equations governing the
system are as follows

λP01 = ξP11 + pµbP12, (1)

(λ+ θ+ nξ)Pn,1 = λPn−1,1 + (n+ 1)ξPn+1,1, n ≥ 1, (2)

λP00 = µvP10 + (1− p)µbP1,2, (3)
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(λ+ µv + φ+ (n− 1)α)Pn,0 = λPn−1,0 + (qµv + nα)Pn+1,0, n ≥ 1, (4)

(λ+ µb)P12 = µbP2,2 + θP1,1 + φP1,0 + (1− q)µvP2,0, (5)

(λ+µb)Pn2 = λPn−1,2+θPn,1+φPn,0+µbPn+1,2+(1−q)µvPn+1,0, n ≥ 2. (6)

Define the Probability generating functions (PGFs) as

P0(z) =

∞∑
n=0

Pn,0z
n,

P1(z) =

∞∑
n=0

Pn,1z
n,

P2(z) =

∞∑
n=1

Pn,2z
n,

with P0(1) + P1(1) + P2(1) = 1, P
′
0(z) =

∑∞
n=1 nz

n−1Pn,0, and P ′1(z) =
∑∞
n=1 n

zn−1Pn,1 .
Multiplying equation (2) by zn and summing over n, we get after using equa-
tion (1)

ξ(1− z)P ′1(z) − [λ(1− z) + θ]P1(z) + pµbP12 + θP01 = 0. (7)

Multiplying equation (4) by zn and summing over n, we get after using equa-
tion (3)

αz(1− z)P ′0(z) − [(1− z)(λz− µv + α) + µv(1− q) + zφ]P0(z)
+[zφ− (1− z)(µv − α) + (1− q)(λz+ µv)]P00 + q(1− p)zµbP12 = 0.

(8)

Remark 1 If p = 1, equation (7) becomes

ξ(1− z)P ′1(z) = [λ(1− z) + θ]P1(z) − (µbP12 + θP01),

which matches with the result given in [1].

Remark 2 If q = 1 and p = 0, equation (8) becomes

αz(1−z)P ′0(z)−[(1−z)(λz−µv+α)+zφ]P0(z)+[zφ−(1−z)(µv−α)]P00+µbP12z = 0.

This matches with the result done in [23].
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Remark 3 If q = 1, p = 0 and α = 0, then equation (8) reduces to

P0(z) =
µv(1− z)P00 − z(µbP12 + φP00)

λz2 − z(λ+ µv + φ) + µv
,

which is same as in [24].

Multiplying equation (6) by zn and summing over n, we get after using equa-
tion (5)

(1− z)(λz− µb)P2(z) = (zφ+ (1− q)µv)P0(z) + θzP1(z)

− [(φ+ (λ+ µv)(1− q))P00 + q(1− p)µbP12]z

− µv(1− q)(1− z)P00 − (θP01 + pµbP12).

(9)

Putting z = 1 into equations (7) and (8), we respectively get

θP1(1) = pµbP12 + θP01, (10)

and

[φ+ µv(1− q)]P0(1) = [φ+ (1− q)(λ+ µv)]P00 + (1− p)qµbP12. (11)

4.1 Solution of differential equations

Equation (7) can be rewritten as

P ′1(z) −

[
λ

ξ
+

θ

ξ(1− z)

]
P1(z) +

pµbP12 + θP01
ξ(1− z)

= 0, (12)

for ξ 6= 0 and z 6= 1.
To solve the linear differential equation (12), we multiple both sides of the

equation by I.F = e−
λ
ξ
z(1− z)

θ
ξ and integrating from 0 to z, we have

P1(z) = e
λ
ξ
z(1− z)−

θ
ξ

[
P1(0) −

(
pµbP12 + θP01

ξ

)
K(z)

]
, (13)

where

K(z) =

∫ z
0

e−
λ
ξ
x(1− x)

θ
ξ
−1dx.

Then, by letting z→ 1, we obtain

P1(1) = e
λ
ξ

[
P1(0) −

(
pµbP12 + θP01

ξ

)
K(1)

]
lim
z→1(1− z)−

θ
ξ .
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Since 0 ≤ P1(1) =
∑∞
n=0 Pn,1 ≤ 1 and lim

z→1(1− z)−(θ
ξ
) →∞,we must have

P01 = P1(0) =

(
pµbP12 + θP01

ξ

)
K(1), (14)

which gives
P12 = T0P01, (15)

where T0 =
ξ−θK(1)
pµbK(1)

.

Then, substituting equation (15) into equations (10) and (13), we respectively
get

P1(1) =
ξ

θK(1)
P01, (16)

and

P1(z) = e
λ
ξ
z(1− z)−

θ
ξ

[
1−

K(z)

K(1)

]
P00. (17)

From equations (1) and (15), we get

P11 = U1P01, (18)

where U1 =
λ−pµbT0

ξ .

From equations (2) (for n = 1) and (18), we get

P21 = U2P01, (19)

where U2 = g1U1 −
λ
2ξU0, g1 =

λ+φ+ξ
2ξ and U0 = 1.

From equations (2) (for n = 2) and (18)-(19), we get

P31 = U3P01, (20)

where U3 = g2U2 −
λ
3ξU1 and g2 =

λ+φ+2ξ
3ξ .

Then, recursively, it yields
Pn1 = UnP01,

where

Un =

{
λ−pµbT0

ξ , if n = 1,

gn−1Un−1 −
λ
nξUn−2, if n ≥ 2,

with

gn−1 =
λ+ θ+ (n− 1)ξ

nξ
.
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Next, equation (8) can be expressed as

P ′0(z) −

{
λz−µv+α

zα + φ
α(1−z) +

µv(1−q)
αz(1−z)

}
P0(z) +

{
φ

α(1−z)−
µv−α
zα + (1−q)(zλ+µv)

αz(1−z)

}
P00

+q(1−p)µb
α(1−z) P12 = 0,

for α 6= 0, z 6= 0, and z 6= 1.
Now, in order to solve the above differential equation we multiply it both

sides by I.F = e
−λ
α
zz

(
µvq
α

−1
)
(1−z)

φ+µv(1−q)
α and integrating from 0 to z, we get

P0(z) = z
−
(
µvq
α

−1
)
(1− z)−

(
φ+µv(1−q)

α

){(µv
α

− 1
)
P00A(z)

−
µv(1− q)

α
P00B(z) −

(
φ+ (1− q)λ

α
P00 +

q(1− p)µb
α

P12

)
C(z)

}
,

(21)

where

A(z) =

∫ z
0

e
λ
α
(z−x)x

µvq
α

−2(1− x)
φ+µv(1−q)

α dx,

B(z) =

∫ z
0

e
λ
α
(z−x)x

µvq
α

−2(1− x)
φ+µv(1−q)

α
−1dx,

C(z) =

∫ z
0

e
λ
α
(z−x)x

µvq
α

−1(1− x)
φ+µv(1−q)

α
−1dx.

Taking limit z→ 1 in equation (21), we get

P0(1) =

{(µv
α

− 1
)
A(1)P00 −

µv(1− q)

α
B(1)P00

−

[
(φ+ (1− q)λ)

α
P00 +

q(1− p)µbP12
α

]
C(1)

}
lim
z→1(1− z)−(

φ+µv(1−q)
α

).

Since 0 ≤ P0(1) =
∑∞
n=0 Pn,0 ≤ 1 and lim

z→1(1 − z)−(
φ+µv(1−q)

α
) → ∞,we must

have
P12 = S1P00, (22)

where

S1 =

(µv − α)A(1)C(1) − µv(1− q)
B(1)
C(1) − (φ+ (1− q)λ)

q(1− p)µb

 .
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Substituting equation (22) into equation (21), we get

P0(z) = P00

{(
µv
α − 1

) [
A(z) − A(1)

C(1)C(z)
]

−µv(1−q)
α

[
B(z) − B(1)

C(1)C(z)
]}
z−(µv

α
q−1)(1− z)−(

φ+µv(1−q)
α

).

Substituting equation (22) into equation (11), we obtain

P0(1) = HP00, (23)

where

H =

(µv − α)A(1)C(1) + µv(1− q)
(
1− B(1)

C(1)

)
φ+ µv(1− q)

 .
From equations (15), (16), and (22), we find

P1(1) =
ξS1

θK(1)T0
P00. (24)

From equations (3) and (22), we get

P10 = V1P00. (25)

where V1 =
λ− (1− p)µbS1

µv
.

From equations (4)(for n = 1) and (25), we obtain

P20 = V2P00, (26)

where V2 = f0V1 −
λ

qµv+α
V0, f0 =

λ+µv+φ
qµv+α

and V0 = 1.

From equations (4) (for n = 2) and (25)-(26), we get

P30 = V3P00, (27)

where V3 = f1V2 −
λ

qµv+2α
V1 and f1 =

λ+µv+φ+α
qµv+2α

.

From equations (4)(for n = 3) and (26)-(27), we get

P40 = V4P00, (28)
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where V4 = f2V3 −
λ

qµv+3α
V2 and f2 =

λ+µv+φ+2α
qµv+3α

.

Then, recursively, it yields
Pn0 = VnP00,

where

Vn =


1, if n = 0,
λ−(1−p)µbS1

µv
, if n = 1,

fn−2Vn−1 −
λ

qµv+(n−1)αvn−2, if n ≥ 2,

with

fn−2 =
λ+ µv + φ+ (n− 2)α

qµv + (n− 1)ξ
.

Next, substituting equations (10) and (11) into equation (9), we get

P2(z) =
(zφ+(1−q)µv)P0(z)+θzP1(z)−z(φ+µv(1−q))P0(1)−zθP1(1)

(1−z)(λz−µb)
− µv(1−q)

λz−µb
P00. (29)

Applying L’Hospital’s rule to equation (29), we get

P2(1) =
(φ+ µv(1− q))P

′
0(1) + θP

′
1(1) − µv(1− q)P0(1)

µb − λ
+
µv(1− q)

µb − λ
P00. (30)

This implies

P ′0(1) =
(µb − λ)P2(1) + µv(1− q)(P0(1) − P00) − θP

′
1(1)

φ+ µv(1− q)
. (31)

Equation (7) can be rewritten as

P ′1(z) =
[λ(1− z) + θ]P1(z) − pµbP12 − θP01

ξ(1− z)

Applying L’Hospital’s rule, we have

P ′1(1) =
λ

θ+ ξ
P1(1). (32)

Further, equation (8) can be rewritten as

P ′0(z) =
1

αz(1− z)
([(1− z)(λz− µv + α) + µv(1− q) + zφ]P0(z)

−[zφ− (1− z)(µv − α) + (1− q)(λz+ µv)]P00 − q(1− p)zµbP11) .
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Applying L’Hospital’s rule, we have

P ′0(1) =
(λ+ α− µv − φ)P0(1) + (µv + φ− α+ λ(1− q) + qµb(1− p)S1)P00

α+ φ+ µv(1− q)
.

(33)
Next, substituting equations (32) and (33) into (30), we obtain

P2(1) =

[
(φ+ µv(1− q))(λ+ α− µv − φ)

(α+ φ+ µv(1− q))(µb − λ)
−
µv(1− q)

µb − λ

]
P0(1)

+
λθP1(1)

(θ+ ξ)(µb − λ)
+ (φ+ µv(1− q))[

µv + φ− α− λ(1− q) + qµb(1− p)S1
(α+ φ+ µv(1− q))(µb − λ)

+
µv(1− q)

µb − λ

]
P00.

(34)

Using equations (23)-(24) and (34), and normalization condition, we can get
the value of P00. Next, we need to write Pn,2 in terms of P0,0.
Substituting equations (15), (18), (22), and (25)-(26) into equation (5), we get

P22 = S2P00, (35)

where S2 = (1+ ρ)S1 −
θS1
µbT0

U1 −
φV1+V2µv(1−q)V1

µb
, ρ = λ

µb
.

Substituting equations (15), (19), (22), and (26)-(27) into equation (6) (for
n = 2), we obtain

P32 = S3P00, (36)

where S3 = (1+ ρ)S2 − ρS1 −
θS1
µbT0

U2 −
φV2+µv(1−q)V3

µb
.

Substituting equations (15), (20), (27)-(28), and (35)-(36) into equation (6)
(for n = 3), we find

P42 = S4P00,

where S4 = (1+ ρ)S3 − ρS2 −
θS1
µbT0

U3 −
φV3+µv(1−q)V4

µb
.

Then, recursively, it yields
Pn2 = SnP00,

where

Sn =

{
1, if n = 1,

(1+ ρ)Sn−1 − ρSn−2 −
θS1
µbT0

Un−1 −
φVn−1+µv(1−q)Vn

µb
, if n ≥ 2,

with S0 = 0.
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5 Performance measures

As the steady-state probabilities are obtained one can easily derive the various
performance measures of the model.
− The probability that the system is in working vacation (P0(1)).

P0(1) =

(µv − α)A(1)C(1) + µv(1− q)
(
1− B(1)

C(1)

)
φ+ µv(1− q)

P00.
− The probability that the system is in vacation period (P1(1)).

P1(1) =
ξS1

θK(1)T0
P00.

− The probability that the system is in busy period (P2(1)).

P2(1) =

[
(φ+µv(1− q))(λ+α− µv−φ)

(α+φ+µv(1− q))(µb−λ)
−
µv(1− q)

µb − λ

]
P0(1)+

λθP1(1)

(θ+ ξ)(µb − λ)

+ (φ+µv(1−q))

[
µv+φ−α−λ(1− q)+qµb(1− p)S1

(α+φ+µv(1− q))(µb−λ)
+
µv(1− q)

µb − λ

]
P00

Substituting equation (23) into equation (33), we get the expected number of
customers when the system is on working vacation period (E(L0)).

E(L0)=P
′
0(1)=

[
(λ+α−µv−φ)H+µv+φ−α+λ(1− q)+qµb(1− p)S1

α+ φ+ µv(1− q)

]
P00.

Substituting equation (24) into equation (32), we get the expected number of
customers when the system is on vacation period (E(L1)).

E(L1) = P
′
1(1) =

λξS1
θ(θ+ ξ)K(1)T0

P00.

Equation (9) can be rewritten as

P2(z) =
(zφ+ (1− q)µv)P0(z) + θzP1(z) − z(φ+ µv(1− q))P0(1) − zθP1(1)

((1− z)(λz− µb)

−
µv(1− q)

λz− µb
P00.

Differentiating the above equation and applying L’Hospital’s rule, we get

E(L2) = P
′
2(1) =

φ+µv(1−q)
2(µb−λ)

P ′′0 (1) +
(λµv(1−q)+µbφ)

(µb−λ)2
P ′0(1) +

θ
2(µb−λ)

P ′′1 (1)

+ (λµv(1−q)+µbφ)
(µb−λ)2

P ′0(1) +
λµv(1−q)
(µb−λ)2

(P00 − P0(1)) +
λµv(1−q)
(µb−λ)2

P00.
(37)
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Differentiating equation (7) twice with respect to z and letting z = 1, we obtain

P ′′1 (1)

2
=

λ

θ+ 2ξ
P ′1(1). (38)

Differentiating equation (8) twice with respect to z and letting z = 1, we obtain

P ′′0 (1)

2
=

(λ− µv − φ)P
′
0(1) + λP0(1)

φ+ 2α+ µv(1− q)
. (39)

Substituting equations (38) and (39) into equation (37), we get the expected
number of customer when the server is busy (E(L2)).

E(L2) =
1

µb−λ

[
(φ+µv(1−q))(λ−µv−φ)

φ+2α+µv(1−q)
+ λµv(1−q)+φµb

µb−λ

]
P ′0(1) +

1
µb−λ

×
[
λθ
θ+2ξ+

φµb
µb−λ

]
P ′1(1)+

λµv(1−q)
(µb−λ)2

P00+
λ

µb−λ

[
φ+µv(1−q)

φ+2α+µv(1−q)
− µv(1−q)

µb−λ

]
P0(1).

The expected number of customers in the system can be computed as E(L) =
E(L0) + E(L1) + E(L2).
− The average rate of abandonment of customers due to impatience (Ra).

Ra = α

∞∑
n=0

(n− 1)Pn,0 + ξ

∞∑
n=0

nPn,1 = α(E[L0] − (P0(1) − P00)) + ξE[L1].

6 Stochastic decomposition of the model

The stochastic decomposition structures for the mean queue length and mean
waiting times at stationary state are expressed in the following Theorems.

Theorem 1 If λ < µb, the stationary queue length L can be decomposed into
the sum of two independent random variables as L = L0 + Ld, where L0 is the
stationary queue length of a classical M/M/1 queue without vacations and Ld
is the additional queue length due to the effect of working vacation or vacation
with its pgf as

Ld(z) =
(

1
1−ρ

){[
1− ρz− (φz+µv(1−q))

µb(1−z)

]
P0(z) + z

[
φ+µv(1−q)
µb(1−z)

]
P0(1)

+
[
1− ρz− θz

µb(1−z)

]
P1(z) +

θz
µb(1−z)

P1(1) +
µv(1−q)
µb

P00

}
.

(40)
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Proof. Consider

L(z) = P0(z) + P1(z) + P2(z)

=

[
1+

φz+ µv(1− q)

(1− z)(λz− µb)

]
P0(z) +

[
1+

θz

(1− z)(λz− µb)

]
P1(z)

− z

[
φ+ µv(1− q)

(1− z)(λz− µb)

]
P0(1) −

[
θz

(1− z)(λz− µb)

]
P1(1)−

µv(1− q)

λz− µb
P00

=

(
µb − λ

µb − λz

){[
µb − λz

µb − λ
−

(φz+ µv(1− q))

(µb − λ)(1− z)

]
P0(z)

+ z

[
φ+ µv(1− q)

(1− z)(µb − λ)

]
P0(1) +

[
µb − λz

µb − λ
−

θz

(µb − λ)(1− z)

]
P1(z)

+

[
θz

(1− z)(µb − λ)

]
P1(1) +

µv(1− q)

µb − λ
P00

}
=

(1− ρ)

1− ρz
× Ld(z),

where Ld(z) can be expressed in series expansion as

Ld(z) =

(
1

1− ρ

){[
1− ρz−

(φz+ µv(1− q))

µb(1− z)

]
P0(z) + z

[
φ+ µv(1− q)

µb(1− z)

]
P0(1)

+

[
1− ρz−

θz

µb(1− z)

]
P1(z) +

θz

µb(1− z)
P1(1) +

µv(1− q)

µb
P00

}

=
1

1− ρ

{ ∞∑
n=0

Pn,0z
n − ρ

∞∑
n=0

Pn,0z
n+1 +

φ

µb

∞∑
n=1

∞∑
k=0

Pn+k,0z
n

+
µv(1− q)

µb

∞∑
n=1

∞∑
k=0

Pn+k+1,0z
n +

∞∑
n=0

Pn,1z
n − ρ

∞∑
n=0

Pn,1z
n+1

+
φ

µb

∞∑
n=1

∞∑
k=0

Pn+k,1z
n

}
=

∞∑
n=0

tnz
n,

such that t0 =
1

1− ρ
(P00 + P01), and

tn =
1

1− ρ

{
Pn,0 − ρPn−1,0 +

φ

µb

∞∑
k=0

Pn+k,0 +
µv(1− q)

µb

∞∑
k=0

Pn+k+1,0

+Pn,1 − ρPn−1,1 +
φ

µb

∞∑
k=0

Pn+k,1

}
, n ≥ 1.
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Now, we show that
∑∞
n=0 tn = 1 for tn ∈ [0, 1].

∞∑
n=0

tn =
1

1− ρ

{
(1− ρ)

∞∑
n=0

Pn,0 +
φ

µb

∞∑
n=1

nPn,0 +
(1− q)µv
µb

∞∑
n=1

(n− 1)Pn,0

+ (1− ρ)

∞∑
n=0

Pn,1 +
θ

µb

∞∑
n=1

nPn,1

}

=
1

1− ρ

{
(1− ρ)

∞∑
n=1

Pn,0 +

(
φ+ µv(1− q)

µb

) ∞∑
n=1

nPn,0

−
µv(1− q)

µb

∞∑
n=1

(n− 1)Pn,0 + (1− ρ)

∞∑
n=0

Pn,1 +
θ

µb

∞∑
n=1

nPn,1

}
.

Applying equation (31), we get

∞∑
n=0

tn=
1

1−ρ

{
(1−ρ)

∞∑
n=1

Pn,0 −
µv(1−q)

µb

∞∑
n=1

Pn,0+(1−ρ)

∞∑
n=0

Pn,1+
θ

µb

∞∑
n=1

nPn,1

+

(
φ+ µv(1− q)

µb

)[
(µb − λ)P2(1) + µv(1− q)(P0(1) − P00) − θP

′
1(1)

φ+ µv(1− q)

]}
+

=

∞∑
n=0

Pn,0 + 1− P0(1) − P1(1) −
(1− q)µv
µb(1− ρ)

P00 +
(1− q)µv
µb(1− ρ)

P00 +

∞∑
n=0

Pn,1 = 1.

Hence, Ld(z) is a PGF of the additional queue length due to the Bernoulli
schedule vacation interruption. �

Theorem 2 If λ < µb, the stationary waiting time can be decomposed into
the sum of two independent random variables as W =W0 +Wd, where W0 is
the waiting time of a customer corresponding to classical M/M/1 queue which
has an exponential distribution with the parameter µb(1 − ρ) and Wd is the
additional delay due to due to the effect of working vacation or vacation with
its Laplace-Stieltjes transform (LST).

W∗d(s) =
1

(µb − λ)s

{
[(µb − λ+ s)s− φ(λ− s) − λ(1− q)µv]P0

(
1−

s

λ

)
+ [(µb − λ+ s)s− θ(λ− s)]P1

(
1−

s

λ

)
+(λ− s)(φ+ µv(1− q))P0(1) + (λ− s)θP1(1) + (1− q)µvsP00

}
.
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Proof. The relationship between the probability generating function L and
LST of waiting time [12] is given by

L(z) =W∗(λ(1− z)).

Assume that s = λ(1− z), so z = 1− s
λ and 1− z = s

λ . Applying the relations
in equation (40), we obtain the desired result. �

7 Cost model

Practically, queueing managers are interested in minimizing operating cost
of unit time. In this part of paper, we first formulate a steady-state expected
cost function per unit time, where the service rate (µb) is the decision variable.
Our main goal is to determine the optimum value of µb in order to minimize
the expected cost function. To this end, we have to define the following cost
elements:

� C1 : Cost per unit time when the server is on working during regular
busy period.

� C2 : Cost per unit time when the server is on vacation period.

� C3 : Cost per unit time when the server is on busy period.

� C4 : Cost per service per unit time during regular busy period.

� C5 : Cost per service per unit time during working vacation period.

� C6 : Cost per unit time when a customer reneges.

� C7 : Holding cost per customer per unit time.

Let Tc be the total expected cost per unit time of the system:

Tc = C1P0(1) + C2P1(1) + C3P2(1) + µbC4 + µvC5 + C6Rren + C7E[L].

7.1 The optimization study

In this subsection we focus on the optimization of the service rate (µb) in
different cases in order to minimize the cost function Tc. We solve the stated
optimization problem using QFSM method.
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Given a 3-point pattern, we can fit a quadratic function through correspond-
ing functional values that has a unique minimum, xq, for the given objective
function Tc(x). Quadratic fit uses this approximation to improve the current
3-point pattern by replacing one of its points with optimum xq. The unique
optimum xq of the quadratic function agreeing with Tc(x) at 3-point operation
(xl, xm, xu) is given by

xq ∼=
1

2

[
Tc(xl)((xm)2−(xu)2)+Tc(xm)((xu)2 − (xl)2)+Tc(xu)((xl)2 − (xm)2)

Tc(xl)(xm − xu)+Tc(xm)(xu − xl) + Tc(xu)(xl − xm)

]
.

The optimization problem can be illustrated mathematically as:

Minimize: Tc(µb) = C1P0(1)+C2P1(1)+C3P2(1)+µbC4+µvC5+C6Rren+C7E[L].

Suppose that all system parameters have fixed values, and the only con-
trolled parameter is the service rate (µb).

8 Numerical results

In this section, we provide numerical experiments to illustrate how different
system parameters affect some system characteristics.

The system parameters chosen are presented in Tables and Figures given in
the following items:

� Table 1 and Figure 2 : λ = 2.4, µv = 3.0, p = 0.3, q = 0.8, θ = 1.8, φ =
0.8, α = 0.1, and ξ = 1.9.

� Table 2 : µv = 2.6, p = 0.4, θ = 1.4, φ = 0.8, α = 0.1, and ξ = 1.2.

� Table 3 : λ = 3.2, q = 0.6, θ = 1.1, φ = 0.7, α = 0.3, and ξ = 1.7.

� Table 4 : λ = 3.0, q = 0.7, θ = 0.8, φ = 0.2, µv = 2.4, and p = 0.4.

� Table 5 : λ = 2.8, q = 0.8, α = 0.2, ξ = 1.5, µv = 2.2, and p = 0.4.

� Figure 3 : µb = 4.5, µv = 2.6, α = 0.1, ξ = 1.2, φ = 0.8, p = 0.4, and
θ = 1.4.

� Figure 4 : λ = 3.4, µv = 2.6, α = 0.1, ξ = 1.2, φ = 0.8, and θ = 1.4.
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� Figure 5 : µb = 4.7, q = 0.9, α = 0.2, ξ = 1.2, φ = 0.3, θ = 0.7, and
p = 0.4.

� Figures 6-8 : λ = 3.0, µb = 4.5, µv = 2.6, q = 0.7, ξ = 1.2, θ = 1.4, and
p = 0.4.

� Figures 7-9 : λ = 3.0, µb = 4.5, µv = 2.6, q = 0.7, α = 0.4, φ = 0.6, and
p = 0.5.

Table 1: Search for the optimum service rate µ∗b during regular busy period.
µl µm µu Tc(µl) Tc(µm) Tc(µu) µq Tc(µq)
5.100000 5.400000 5.700000 410.484439 394.420852 391.963589 5.604179 391.910733
5.400000 5.604179 5.700000 394.420852 391.910733 391.963589 5.645648 391.857148
5.604179 5.645648 5.700000 391.910733 391.857148 391.963589 5.643959 391.856942
5.604179 5.643959 5.645648 391.910733 391.856942 391.857148 5.643089 391.856912
5.604179 5.643089 5.643959 391.910733 391.856912 391.856942 5.643048 391.856912
5.604179 5.643048 5.643089 391.910733 391.856912 391.856912 5.643033 391.856912
5.604179 5.643033 5.643048 391.910733 391.856912 391.856912 5.643032 391.856912
5.604179 5.643032 5.643033 391.910733 391.856912 391.856912 5.643031 391.856912
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Figure 2: Effect of µb on Tc.
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Table 2: Optimal values of µ∗b and Tc(µ∗b) for different values of λ and q̄.

λ = 3.5 λ = 4.5 λ = 5.5

µ∗b Tc(µ∗b) µ∗b Tc(µ∗b) µ∗b Tc(µ∗b)
q̄ = 0.3 4.862986 352.655384 6.012295 410.465278 7.138987 466.276595
q̄ = 0.6 4.589849 333.020545 5.717871 387.784157 6.829078 440.910714
q̄ = 0.9 4.449532 323.932229 5.563229 377.161323 6.663980 429.046786

Table 3: Optimal values of µ∗b and Tc(µ∗b) for different values of µv and p.

µv = 2.2 µv = 2.5 µv = 2.8

µ∗b Tc(µ∗b) µ∗b Tc(µ∗b) µ∗b Tc(µ∗b)
p = 0.3 3.607634 279.308457 3.600697 286.217326 3.593235 293.371886
p = 0.6 3.313594 257.348468 3.310018 265.481915 3.306657 273.738369
p = 0.9 3.134604 243.821124 3.133657 252.623948 3.132829 261.457645

Table 4: Optimal values of µ∗b and Tc(µ∗b) for different values of α and ξ.

α = 0.1 α = 0.4 α = 0.7

µ∗b Tc(µ∗b) µ∗b Tc(µ∗b) µ∗b Tc(µ∗b)
ξ = 0.5 4.101791 324.408533 4.026891 319.266445 3.961865 315.540988
ξ = 1.0 4.126021 322.687741 4.045522 317.026212 3.975738 312.850216
ξ = 1.5 4.139667 322.657325 4.056594 316.842638 3.984583 312.525274

Table 5: Optimal values of µ∗b and Tc(µ∗b) for different values of θ and φ.

θ = 0.8 θ = 1.4 θ = 2.0

µ∗b Tc(µ∗b) µ∗b Tc(µ∗b) µ∗b Tc(µ∗b)
φ = 0.4 4.026534 307.781311 4.023896 302.709691 4.020944 300.922353
φ = 0.8 4.114485 312.824843 4.078663 302.785848 4.071751 298.539176
φ = 1.2 4.228526 319.734187 4.143652 305.561523 4.112019 299.095820
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Figure 3: Effect of λ and q̄ on E[L].
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Analysis and optimisation of a M/M/1/WV queue 391

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

0.
6

0.
8

1.
0

1.
2

1.
4

Impatient rate  ξ

T
he

 a
ve

ra
ge

 r
at

e 
of

 a
ba

nd
on

m
en

t

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● θ = 0.5
θ = 1
θ = 1.5

Figure 9: Effect of ξ and θ on Ra.

8.1 Discussion

− From Table 1 and Figure 2, we easily observe that the curve is convex.
This proves that there exists some value of the service rate µb that minimizes
the total expected cost function for the chosen set of model parameters. By
adopting QFSM and choosing the initial 3-point pattern as (µl, µm, µu) =
(5.10, 5.40, 5.70), and after finite iterations, we see that the minimum expected
operating cost per unit time converges to the solution Tc = 391.856912 at
µ∗b = 5.643031.
− From Tables 2-5, we have:
− As intuitively expected, the optimum cost function Tc(µ∗b) increases with

(λ), (µv), and (φ) and decreases with (q), (p), (ξ), (α), and (θ). With the
increasing of the arrival rate, the mean system size increases significantly.
This increases significantly the optimum cost function Tc(µ∗b). Obviously, the
increasing of the vacation rate increases the probability of the regular busy
period which in turns decreases the mean system size. This results in the de-
creasing of the minimum expected cost. Further, the impatience rates either
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during vacation or working vacation periods lead to the decreasing of the mean
number of customers in the systems which implies a decreasing in the opti-
mal expected cost. Then, when the probability with which the server resumes
its service during working vacation period to the regular service increases the
customers are served faster. Consequently, Tc(µ∗b) decreases. The same when
the probability that the server switches to the vacation period at which the
customers may get impatient and leave the system. This yields to the decreas-
ing of the mean number of customers in the system and consequently the total
expected cost decreases accordingly. In addition, the decreasing of the opti-
mum cost function Tc(µ∗b) with (φ) can be due to the choice of the system
parameters.
− The average rate of abandonment (Ra) increases with (ξ) and (α) and

decreases with (θ) and (φ). This is quite reasonable; the higher the impa-
tience rate (resp. vacation and working vacation rate), the greater (resp. the
lower) the average rate of reneging (Ra) and the smaller the mean number of
customers in the system (E(L0)) and (E(L1)).
− With the increasing of (µb) and (q̄), the mean number of customers in

the system decreases. Obviously, the smaller (resp. greater) the mean service
rate during regular busy period (resp. the probability that the server switches
to the regular busy period), the higher the mean number of customers served
and the smaller the mean system size during this period (E(L2)).
− As it should be, the service rate (µv) decreases the probability that the

server is in regular period (P2(1)) and increases the probabilities that the server
is on vacation and working vacation periods (P1(1)) and (P0(1)) respectively.
Further, obviously, the increasing of the arrival rate (λ) increases (P0(1)),
(P1(1)), and (P2(1)).

9 Conclusion

The steady-state solution of an infinite-space single-server Markovian queueing
system with working vacation (WV), Bernoulli schedule vacation interruption,
and impatient customers has been presented. The proposed queueing system
can be applied in diverse real life situations of day-to-day as well as indus-
trial congestion problems including call centers, telecommunication networks,
manufacturing system, and so on. The analytical results using probability
generating function (PGF) technique are obtained. The performance indices
derived may be helpful to the decision makers for improving the availability
of the server.
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