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Abstract. In the paper, the authors derive an explicit formula for
derivative polynomials of the tangent function, deduce an explicit for-
mula for tangent numbers, pose an open problem about obtaining an
alternative and explicit formula for derivative polynomials of the tan-
gent function, and recommend some papers closely related to derivative
polynomials of other elementary and applicable functions.

1 Introduction

It is not difficult to see that if f is a function whose derivative is a polynomial
in f, that is, f ′(x) = P1(f(x)) for some polynomial P1, then all the higher order
derivatives of f are also polynomials in f, so we have a sequence of polynomials
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Pn defined by f(n)(x) = Pn(f(x)) for n ≥ 0. As usual, we call Pn(u) the
derivative polynomials of f. In fact, the polynomials Pn are determined by

P0(u) = u, Pn+1(u) = P
′
n(u)P1(u), n ∈ N.

For detailed information, please refer to [8, Section 2].
In 1945, Morley [10] observed that

(tan x) ′ = 1+ tan2 x, (tan x) ′′ = 2 tan x+ 2 tan3 x,

(tan x) ′′′ = 2+ (2+ 2 · 3) tan2 x+ 2 · 3 tan4 x,
(1)

a term ak tank x in (tan x)(n) gives (tan x)(n+1) kak tank−1 x+kak tank+1 x, and
then concluded that the coefficient of tank−1 x in (tan x)(n+1) is (k− 2)ak−2 +
kak, with ak−2 = 0 when k ≤ 1, and ak = 0 when k ≥ n+ 2.

In 1995, Hoffman [8, p. 25, (5)] obtained that the derivative polynomials Pn
for the tangent function tan x defined by

dn(tan x)

d xn
= Pn(tan x)

for n ≥ 0 are polynomials of degree n+ 1 and satisfy the recurrence relation

Pn+1(u) =

n∑
k=0

(
n

k

)
Pk(u)Pn−k(u) + δ0n,

where

P0(u) = u, P1(u) = 1+ u
2, and δij =

{
0, i 6= j;
1, i = j.

In [1, 9, 12, 26, 27, 32, 36], there are some explicit formulas and recurrence
relations for the nth derivatives of trigonometric functions and other elemen-
tary functions. In [3, 4, 5, 20, 21, 26, 30, 33], there are some inequalities for
trigonometric functions and other elementary functions. Specially, there are
some explicit formulas and many other results on the nth derivative of the
tangent function tan x in [11, 14].

Motivated by those results in [8, 10] and other references mentioned above,
we are interested in the question: can one find explicit formulas for coefficients
ak of the derivative polynomials Pn(u) for the tangent function tan x?

The aim of this paper is to answer the above question. Our main results can
be stated as the following theorem.
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Theorem 1 For n ≥ 0, the derivative polynomials Pn(u) of the tangent func-
tion u = tan x can be explicitly computed by

Pn(u) =

1
2

[
n+

1−(−1)n

2

]∑
k=0

an,n+1−2ku
n+1−2k (2)

with

a2m−1,0 = (−1)m
2m∑
`=1

(−1)`22m−`(`− 1)!S(2m, `) (3)

for m ≥ 1 and

an,n+1−2k = (−1)k−1
n+1∑

`=n+1−2k

(−1)n−`2n+1−`(`− 1)!

(
`

n+ 1− 2k

)
S(n+ 1, `)

for 0 ≤ k ≤ 1
2

[
n− 1−(−1)n

2

]
, where S(n, k) for n ≥ k ≥ 1 stand for the Stirling

numbers of the second kind which can be generated by

(ex − 1)k

k!
=

∞∑
n=k

S(n, k)
xn

n!
, k ∈ N.

In Section 3 of this paper, we will pose an open problem about obtaining
an alternative and explicit formula

an,n−2m+1 = (n+1)!

m−1∑
`=0

(−1)m−1−`bm,`n
`, n ≥ 2, 1 ≤ m ≤ 1

2

[
n−

1− (−1)n

2

]
(4)

for derivative polynomials Pn(x) of the tangent function tan x, where bm,` is a
sequence to be determined.

In the final section of this paper, we give a consequence of Theorem 1 and
recommend some papers closely related to derivative polynomials of other
elementary and applicable functions.

2 Proof of Theorem 1

Now we start out to simply prove our Theorems 1 as follows.
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In [36, Theorem 2.1] and [36, Corollaries 2.1 and 2.2], it was obtained that

(tan x)(n) = (−i)n+1
n+1∑
k=1

2n+1−k(k− 1)!S(n+ 1, k)(i tan x− 1)k,

(tan x)(n) = (tan x+ i)
n∑
k=1

(2i)n−kk!S(n, k)(tan x− i)k,

and

(tan x)(n) =
n+1∑
k=0

[
(−1)k+1 cos

(
n+ 1+ k

2
π

)

×
n+1∑

`=max{1,k}

(−1)n−`2n−`+1(`− 1)!S(n+ 1, `)

(
`

k

)]
tank x. (5)

The identity (5) can be reformulated as

(tan x)(n) = − cos

(
n+ 1

2
π

) n+1∑
`=1

(−1)n−`2n−`+1(`− 1)!S(n+ 1, `)

+

n+1∑
k=1

[
(−1)k+1 cos

(
n+ 1+ k

2
π

) n+1∑
`=k

(−1)n−`2n−`+1(`− 1)!S(n+ 1, `)

(
`

k

)]
tank x.

Consequently, we arrives at

a2m−1,0 = − cos

(
2m

2
π

) 2m∑
`=1

(−1)2m−`−122m−`(`− 1)!S(2m, `)

= (−1)m
2m∑
`=1

(−1)`22m−`(`− 1)!S(2m, `)

for m ≥ 1 and

an,n+1−2m = (−1)n cos((n+ 1−m)π)

n+1∑
`=n+1−2m

(−1)n−`2n−`+1(`− 1)!S(n+ 1, `)

(
`

n+ 1− 2m

)

= (−1)m−1
n+1∑

`=n+1−2m

(−1)n−`2n+1−`(`− 1)!S(n+ 1, `)

(
`

n+ 1− 2m

)
for 0 ≤ m ≤ 1

2

[
n− 1−(−1)n

2

]
. The proof of Theorem 1 is thus complete.
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3 An open problem

Now we would like to propose an open problem as follows.
The equation (2) means that

(tan x)(n) =

1
2

[
n+

1−(−1)n

2

]∑
k=0

an,n−2k+1 tann−2k+1 x. (6)

Differentiating with respect to x on both sides of (6) gives

(tan x)(n+1) =

1
2

[
n+

1−(−1)n

2

]∑
k=0

an,n−2k+1(n− 2k+ 1) tann−2k x
(
1+ tan2 x

)

=

1
2

[
n+

1−(−1)n

2

]∑
k=0

an,n−2k+1(n− 2k+ 1) tann−2k x

+

1
2

[
n+

1−(−1)n

2

]∑
k=0

an,n−2k+1(n− 2k+ 1) tann−2k+2 x

=

1
2

[
n+

1−(−1)n

2

]
+1∑

k=1

an,n−2k+3(n− 2k+ 3) tann−2k+2 x

+

1
2

[
n+

1−(−1)n

2

]∑
k=0

an,n−2k+1(n− 2k+ 1) tann−2k+2 x

=

1
2

[
n+

1−(−1)n

2

]∑
k=1

[an,n−2k+3(n− 2k+ 3) + an,n−2k+1(n− 2k+ 1)] tann−2k+2 x

+an,n+1(n+ 1) tann+2 x+ a
n,

1+(−1)n

2

1+ (−1)n

2
tan

(−1)n−1
2 x.

Comparing this with

(tan x)(n+1) =

1
2

[
n+1+

1+(−1)n

2

]∑
k=0

an+1,n−2k+2(tan x)n−2k+2
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yields

an+1,n+2 = an,n+1(n+ 1), (7)

a
n+1,

1−(−1)n

2

tan
1−(−1)n

2 x = a
n,

1+(−1)n

2

1+ (−1)n

2
tan

(−1)n−1
2 x, (8)

and
an+1,n−2k+2 = an,n−2k+3(n− 2k+ 3) + an,n−2k+1(n− 2k+ 1) (9)

for n ≥ 1 and 1 ≤ k ≤ 1
2

[
n+ 1−(−1)n

2

]
.

The derivatives of the tangent function tan x in (1) means that a0,1 = 1,
a1,2 = 1, a2,3 = 2, and a3,4 = 2 · 3. Combining these values with (7) reveals
that an,n+1 = n! for all n ≥ 0.

The derivatives of the tangent function tan x in (1) also means that a1,0 = 1,
a2,1 = 2, and a3,0 = 2. When n = 2` for ` ≥ 0, the recurrence relation (8)
becomes

a2`+1,0 = a2`,1.

When k = 1, the recurrence relation (9) can be simplified as

an+1,n = an,n+1(n+ 1) + an,n−1(n− 1) = an,n−1(n− 1) + (n+ 1)!

for n ≥ 2. From this recurrence relation, we acquire

an,n−1 =
1

3
(n+ 1)!, n ≥ 2. (10)

When k = 2, by (10), the recurrence relation (9) can be rearranged as

an+1,n−2 = an,n−1(n− 1) + an,n−3(n− 3) = an,n−3(n− 3) + (n− 1)
(n+ 1)!

3

for n ≥ 4. Accordingly, it follows that

an,n−3 =
5n− 8

90
(n+ 1)!, n ≥ 4. (11)

When k = 3, by (11), the recurrence relation (9) can be rewritten as

an+1,n−4 = an,n−3(n−3)+an,n−5(n−5) = an,n−5(n−5)+(n−3)
5n− 8

90
(n+1)!

for n ≥ 6. Therefore, it follows that

an,n−5 =
35n2 − 203n+ 264

5670
(n+ 1)!, n ≥ 6. (12)
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Similarly as above processing, we can procure that

an,n−7 =
175n3 − 2205n2 + 8654n− 10272

340200
(n+ 1)!, n ≥ 8, (13)

an,n−9 =
385n4 − 8470n3 + 66539n2 − 217910n+ 244704

11226600
(n+ 1)!, n ≥ 10,

(14)

and the like. Accordingly, from (10), (11), (12), (13), and (14), we can conclude
that

an,n−2m+1 = (n+ 1)!

m−1∑
`=0

(−1)m−1−`bm,`n
`,

n ≥ 2, 1 ≤ m ≤ 1
2

[
n−

1− (−1)n

2

]
.

(15)

Substituting this conclusion into (9) leads to

(n+ 2)!

k−1∑
`=0

(−1)k−1−`bk,`(n+ 1)` = (n− 2k+ 3)(n+ 1)!

k−2∑
`=0

(−1)k−2−`bk−1,`n
`

+(n− 2k+ 1)(n+ 1)!

k−1∑
`=0

(−1)k−1−`bk,`n
`,

k−1∑
`=0

(−1)`+1
[
(n+ 2)(n+ 1)` − (n− 2k+ 1)n`

]
bk,`

= (n− 2k+ 3)

k−2∑
`=0

(−1)`n`bk−1,`,

where n ≥ 4 and 2 ≤ k ≤ 1
2

[
n − 1−(−1)n

2

]
. Note that the sequence bk,` are

independent of n.
To the best of our knowledge, we think that it is much difficult to explicitly

determine the sequence bm,` in (15). Can one present a closed form for the
sequence bm,` in (15)?

4 Remarks

Finally we comment on Theorem 1 and recommend some references closely
related to derivative polynomials of other elementary and applicable functions.
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Remark 1 The expression (3) implies an explicit formula

T2m−1 = (−1)m
2m∑
`=1

(−1)`22m−`(`− 1)!S(2m, `), m ≥ 1

for tangent numbers T2m−1 which can be generated by

tan x =

∞∑
k=1

T2k−1
x2k−1

(2k− 1)!
, |x| <

π

2
.

For more information on tangent numbers T2m−1, please refer to [1, 11, 14, 36]
and the closely related references therein.

Remark 2 It is worthwhile to recommending the paper [2] which was found
on 3 March 2017 by the authors.

Remark 3 Except the above-mentioned literature, there are other papers such
as [6, 7, 13, 15, 16, 17, 18, 19, 22, 23, 24, 25, 28, 29, 31, 34, 35, 36, 37] and
the closely related references therein to discuss derivative polynomials of other
elementary and applicable functions.
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