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Abstract. A generalized hypersubstitution of type τ maps each oper-
ation symbol of the type to a term of the type, and can be extended
to a mapping defined on the set of all terms of this type. The set of all
such generalized hypersubstitutions forms a monoid. An element a of a
semigroup S is intra-regular if there is b ∈ S such that a = baab. In this
paper, we determine the set of all intra-regular elements of this monoid
for type τ = (2).

1 Introduction

A solid variety is a variety in which every identity holds as a hyperidentity, that
is, we substitute not only elements for the variables but also term operations
for the operation symbols. The notions of hyperidentities and hypervarieties
of a given type τ without nullary operations were studied by J. Aczèl [1], V. D.
Belousov [2], W.D. Neumann [8] and W. Taylor [13]. The main tool used to
study hyperidentities and hypervarieties is the concept of a hypersubstitution,
introduced by K. Denecke et al. [5]. The concept of a generalized hypersubsti-
tution was introduced by S. Leeratanavalee and K. Denecke [7]. The authors
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defined a binary operation on the set of all generalized hypersubstitutions and
proved that this set together with the binary operation forms a monoid. In
2010, W. Puninagool and S. Leeratanavalee determined all regular elements
of this monoid for type τ = (n), see [10]. The set of all completely regular
elements of this monoid of type τ = (n) was determined by A. Boonmee and
S. Leeratanavalee [3]. Furthermore, we found that every completely regular
element is intra-regular. In the present paper, we show that the set of all
completely regular elements and the set of all intra-regular elements of type
τ = (2) are the same.

Let n ≥ 1 be a natural number and let Xn := {x1, x2, . . . , xn} be an n-
element set which is called an n-element alphabet and let its elements be
called variables. Let X := {x1, x2, . . .} be a countably infinite set of variables
and {fi | i ∈ I} be a set of ni-ary operation symbols, which is disjoint from X,
indexed by the set I. To every ni-ary operation symbol fi we assign a natural
number ni ≥ 1, called the arity of fi. The sequence τ = (ni)i∈I is called the
type. For n ≥ 1, an n-ary term of type τ is defined in the following inductive
way:

(i) Every variable xi ∈ Xn is an n-ary term of type τ.

(ii) If t1, . . . , tni
are n-ary terms of type τ then fi(t1, . . . , tni

) is an n-ary
term of type τ.

The smallest set which contains x1, . . . , xn and is closed under any finite
number of applications of (ii) is denoted by Wτ(Xn), and is called the set of
all n- ary terms of type τ. The set Wτ(X) := ∪∞n=1Wτ(Xn) is called the set of
all terms of type τ.

A generalized hypersubstitution of type τ = (ni)i∈I is a mapping σ : {fi |
i ∈ I} → Wτ(X) which does not necessarily preserve the arity. Let HypG(τ)
be the set of all generalized hypersubstitutions of type τ. In general, the usual
composition of mappings can be used as a binary operation on mappings.
But in the case of HypG(τ) this can not be done immediately. To define a
binary operation on this set, we define inductively the concept of a generalized
superposition of terms Sm :Wτ(X)

m+1 →Wτ(X) by the following steps:

(i) If t = xj, 1 ≤ j ≤ m, then Sm(xj, t1, . . . , tm) := tj.

(ii) If t = xj, m < j ∈ N, then Sm(xj, t1, . . . , tm) := xj.

(iii) If t = fi(s1, s2, . . . , sni
), then

Sm(t, t1, . . . , tm) := fi(S
m(s1, t1, . . . , tm), . . . , S

m(sni
, t1, . . . , tm)).
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We extend any generalized hypersubstitution σ to a mapping σ̂ : Wτ(X) →
Wτ(X) inductively defined as follows:

(i) σ̂[x] := x ∈ X,

(ii) σ̂[fi(t1, t2, . . . , tni
)] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni

]), for any ni-ary opera-
tion symbol fi assuming that σ̂[tj], 1 ≤ j ≤ ni are already defined.

Now, we define a binary operation ◦G on HypG(τ) by σ1 ◦Gσ2 := σ̂1 ◦σ2 where
◦ denotes the usual composition of mappings. Let σid be the hypersubstitution
which maps each ni−ary operation symbol fi to the term fi(x1, x2, . . . , xni

).
Then HypG(τ) = (HypG(τ), ◦G, σid) is a monoid [7].

From now on, we introduce some notations which will be used throughout
this paper. For a type τ = (n) with an n−ary operation symbol f and t ∈
W(n)(X), we denote
σt - the generalized hypersubstitution σ of type τ = (n) which maps f to the
term t,
var(t) - the set of all variables occurring in the term t,
vbt(x) - the total number of x-variable occurring in the term t.

For a term t ∈ W(n)(X), the set sub(t) of its subterms is defined as follows
([11], [12]):

(i) if t ∈ X, then sub(t) = {t},

(ii) if t = f(t1, . . . , tn), then sub(t) = {t} ∪ sub(t1) ∪ . . . ∪ sub(tn).

Example 1 Let τ = (2) and t ∈ W(2)(X) where t = f(t1, t2) with t1 =
f(x3, f(x1, x4)) and t2 = f(f(x7, x1), f(x2, x1)). Then

var(t) = {x1, x2, x3, x4, x7}

vbt(x1) = 3, vb
t(x2) = 1, vb

t(x3) = 1, vb
t(x4) = 1, vb

t(x7) = 1,
sub(t1) = {t1, f(x1, x4), x1, x3, x4},
sub(t2) = {t2, f(x7, x1), f(x2, x1), x1, x2, x7},
sub(t) = {t, t1, t2, f(x1, x4), f(x7, x1), f(x2, x1), x1, x2, x3, x4, x7}.

2 Sequence of terms

In this section, we construct some tools used to characterize all intra-regular
elements in HypG(2). These tools are called the sequence of a term and the
depth of a term, respectively.
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Definition 1 Let t ∈W(n)(X) \ X where t = f(t1 . . . , tn) for some t1, . . . tn ∈
W(n)(X). For each s ∈ sub(t), s 6= t, a set seqt(s) of sequences of s in t is de-
fined by where πil :W(n)(X) \X→W(n)(X) by the formula πil(f(t1, . . . , tn)) =
til. Maps πil are defined for il = 1, 2, . . . , n.

Example 2 Let t ∈W(4)(X) where t = f(t1, t2, t3, t4) such that t1 = f(x3, x1, s,
x4), t2 = x4, t3 = (f(x7, s, x1, x4), x4, f(x8, f(x3, x1, s, x4), x2, f(x3, x1, s, x4)), s)
and t4 = s for some s ∈W(4)(X). Then

seqt(s) = {(1, 3), (3, 1, 2), (3, 3, 2, 3), (3, 3, 4, 3), (3, 4), (4)},
seqt3(s) = {(1, 2), (3, 2, 3), (3, 4, 3), (4)},
seqt(t1) = {(1), (3, 3, 2), (3, 3, 4)}
seqt(x4) = {(1, 4), (2), (3, 1, 3)}.

Lemma 1 ([4]) Let t, s ∈W(n)(X)\X, x ∈ var(t) and var(s)∩Xn = {xz1 , . . . , xzk}.
If (i1, . . . , im) ∈ seqt(x) where i1, . . . , im ∈ {z1, . . . , zk} then x ∈ var(σ̂s[t]) =
var(σs ◦G σt) and there is (ai1 , . . . , aim) ∈ seqσ̂s[t](x) where aij is a sequence
of natural numbers j1, . . . , jh such that (j1, . . . , jh) ∈ seqs(xij) for all j ∈
{1, . . . ,m}.

Let t ∈ W(n)(X) \ X, and ti ∈ sub(t). It can be possible that ti occurs in the
term t more than once, we denote

t
(j)
i - subterm ti occurring in the jth order of t (from the left).

Definition 2 Let t ∈W(n)(X)\X where t = f(t1, . . . , tn) for some t1, . . . , tn ∈
W(n)(X) and let πil :W(n)(X)\X→W(n)(X) by the formula πil(t) = πil(f(t1, . . . ,

tn)) = til . Maps πil are defined for il = 1, 2, . . . , n. For each s(j) ∈ sub(t) for
some j ∈ N, we denote the sequence of s(j) in t by seqt(s(j)) and denote the
depth of s(j) in t by deptht(s(j)). If s(j) = πim ◦ . . . ◦ πi1(t) for some m ∈ N,
then

seqt(s(j)) = (i1, . . . , im) and deptht(s(j)) = m.

Example 3 Let τ = (3) and let t ∈W(3)(X)\X where t = f(t1, t2, t3) such that
t1 = x5, t2 = f(x3, f(x4, f(x2, x7, x10), x5), x5) and t3 = f(f(x5, x4, f(x2, x7, x10)),
x1, x6). Then

seqt(x
(1)
5 ) = (1) and deptht(x

(1)
5 ) = 1;

seqt(x
(2)
5 ) = (2, 2, 3) and deptht(x

(2)
5 ) = 3;

seqt(x
(3)
5 ) = (2, 3) and deptht(x

(3)
5 ) = 2;
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seqt(x
(4)
5 ) = (3, 1, 1) and deptht(x

(4)
5 ) = 3;

seqt(f(x2, x7, x10)
(1)) = (2, 2, 2) and deptht(f(x2, x7, x10)

(1)) = 3;

seqt(f(x2, x7, x10)
(2)) = (3, 1, 3) and deptht(f(x2, x7, x10)

(2)) = 3;

seqt3(f(x2, x7, x10)
(1)) = (1, 3) and deptht3(f(x2, x7, x10)

(1)) = 2;

seqt(x
(1)
10 ) = (2, 2, 2, 3) and deptht(x

(1)
10 ) = (4);

seqt(x
(2)
10 ) = (3, 1, 3, 3) and deptht(x

(2)
10 ) = 4;

seqt3(x
(1)
10 ) = (1, 3, 3) and deptht3(x

(1)
10 ) = 3.

Let t, s1, s2, . . . , sk ∈W(n)(X) \ X and xi ∈ var(t). We donote

x
(j)
i - variable xi occurring in the jth order of t (from the left);

x
(j,j1)
i - variable x

(j)
i occurring in the jth1 order of σ̂s1 [t] (from the left);

x
(j,j1,j2)
i - variable x

(j,j1)
i occurring in the jth2 order of σ̂s2 [σ̂s1 [t]] (from the

left).
Similarly,

x
(j,j1,j2,...,jk)
i - variable x

(j,j1,...,jk−1)
i occurring in the jthk order of

σ̂sk [σ̂sk−1
[. . . [σ̂s2 [σ̂s1 [t]] . . .] (from the left).

Theorem 1 Let t, s ∈W(n)(X) \ X and x
(j)
i ∈ var(t) for some i, j ∈ N and let

seqt(x
(j)
i ) = i1, . . . , im. Then xi1 , . . . , xim ∈ var(s) ∩ Xn if and only if x

(j,j1)
i ∈

var(σ̂s[t]) = var(σs ◦G σt) for some j1 ∈ N and seqσ̂s[t](x
(j,j1)
i ) = (ai1 , . . . , aim)

where ail is a sequence of natural number p1, . . . , pq such that (p1, . . . , pq) =

seqs(xhlil ) for some hl ∈ N and for all l ∈ {1, . . . ,m}.

Proof.(⇒) By Lemma 1.

(⇐) Assume that x
(j,j1)
i ∈ var(σ̂s[t]) = var(σs ◦G σt) for some j1 ∈ N and

seqσ̂s[t](x
(j,j1)
i ) = (ai1 , . . . , aim) where ail is a sequence of natural number

p1, . . . , pq such that (p1, . . . , pq) = seqs(xhlil ) for some hl ∈ N and for all
l ∈ {1, . . . ,m}. Then

vbσ̂s[t](x
(j)
i ) = vbs(xi1)× vbs(xi2)× . . .× vbs(xim).

Suppose that xik /∈ var(s) ∩ Xn for some 1 ≤ k ≤ m, so vbs(xiz) = 0, i.e.

vbσ̂s[t](x
(j)
i ) = 0, which contradicts to our assumption. Hence xi1 , . . . , xim ∈

var(s) ∩ Xn. �

Example 4 Let τ = (3) and let t = f(x2, f(x4, x5, x2), f(x2, x6, x7)) and s =

f(x3, x1, x3). Then seqt(x
(1)
2 ) = (1), seqt(x

(2)
2 ) = (2, 3), seqt(x

(3)
2 ) = (3, 1)
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and seqt(x
(1)
7 ) = (3, 3). By Theorem 1 , there is x

(1,h)
2 , x

(3,k1)
2 , x

(3,k2)
2 , x

(1,l1)
7 ,

x
(1,l2)
7 , x

(1,l3)
7 , x

(1,l4)
7 ∈ var(σ̂s[t]) for some h, k1, k2, l1, l2,3 , l4 ∈ N and

seqσ̂s[t](x
(1,h)
2 ) = (2) = seqσ̂s[t](x

(1,2)
2 ) where seqs(x

(1)
1 ) = (2)

seqσ̂s[t](x
(3,k1)
2 ) = (1, 2) = seqσ̂s[t](x

(3,1)
2 ) where seqs(x

(1)
3 ) = (1) and

seqs(x
(1)
1 ) = (2)

seqσ̂s[t](x
(3,k2)
2 ) = (3, 2) = seqσ̂s[t](x

(3,3)
2 ) where seqs(x

(2)
3 ) = (3) and

seqs(x
(1)
1 ) = (2)

seqσ̂s[t](x
(1,l1)
7 ) = (1, 1) = seqσ̂s[t](x

(1,1)
7 ) where seqs(x

(1)
3 ) = (1) and

seqs(x
(1)
3 ) = (1)

seqσ̂s[t](x
(1,l2)
7 ) = (1, 3) = seqσ̂s[t](x

(1,2)
7 ) where seqs(x

(1)
3 ) = (1) and

seqs(x
(2)
3 ) = (3)

seqσ̂s[t](x
(1,l3)
7 ) = (3, 1) = seqσ̂s[t](x

(1,3)
7 ) where seqs(x

(2)
3 ) = (3) and

seqs(x
(1)
3 ) = (1)

seqσ̂s[t](x
(1,l4)
7 ) = (3, 3) = seqσ̂s[t](x

(1,4)
7 ) where seqs(x

(2)
3 ) = (3) and

seqs(x
(2)
3 ) = (3).

Since x2 /∈ var(s), so x
(2,i)
2 /∈ var(σ̂s[t]) for all i ∈ N. Consider,

σ̂s[t] = σ̂s[f(x
(1)
2 , f(x4, x5, x

(2)
2 ), f(x

(3)
2 , x6, x

(1)
7 ))]

= S3(f(x3, x1, x3), σ̂s[x
(1)
2 ], σ̂s[f(x4, x5, x

(2)
2 )], σ̂s[f(x

(3)
2 , x6, x

(1)
7 )])

= f(f(x
(1,1)
7 , x

(3,1)
2 , x

(1,2)
7 ), x

(1,2)
2 , f(x

(1,3)
7 , x

(3,3)
2 , x

(1,4)
7 ))

= f(f(x7, x2, x7), x2, f(x7, x2, x7)).

Corollary 1 Let t, s ∈W(n)(X)\X and x
(j)
i ∈ var(t) for some i, j ∈ N such that

seqt(x
(j)
i ) = (i1, i2, . . . , im) for some i1, i2, . . . , im ∈ {1, . . . , n} and xik ∈ var(s)

for all 1 ≤ k ≤ m. Then there is j1 ∈ N such that

depthσ̂s[t](x
(j,j1)
i ) = depths(x

(l1)
i1

) + depths(x
(l2)
i2

) + . . .+ depths(x
(lm)
im

)

for some l1, l2, . . . , lm ∈ N, and

vbσ̂s[t](x
(j)
i ) = vbs(xi1)× vbs(xi2)× . . .× vbs(xim).

Let vbt(xi) = d.

If xi ∈ Xn, then vbσ̂s[t](xi) =
d∑
j=1

vbσ̂s[t](x
(j)
i ).
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If xi ∈ X \ Xn where xi /∈ var(s), then vbσ̂s[t](xi) =
d∑
j=1

vbσ̂s[t](x
(j)
i ).

3 Main results

In this section, we will show that the set of all completely regular elements
and the set of all intra-regular elements in HypG(2) are the same. First, we
recall definitions of regular and completely regular elements and then we char-
acterize all completely regular elements in HypG(2).

Definition 3 [6] An element a of a semigroup S is called regular if there exists
x ∈ S such that axa = a.

Definition 4 [9] An element a of a semigroup S is called completely regular
if there exists b ∈ S such that a = aba and ab = ba.

Let σt ∈ HypG(2). We denote
R1 := {σxi |xi ∈ X};
R2 := {σt|var(t) ∩ X2 = ∅};
R3 := {σt|t = f(t1, t2) where ti = xj for some i, j ∈ {1, 2} and var(t)∩X2 =

{xj}}∪ {σf(x1,x2), σf(x2,x1)}
CR(R3) := {σt|t = f(t1, t2) where ti = xi for some i ∈ {1, 2} and var(t) ∩

X2 = {xi}}∪ {σf(x1,x2), σf(x2, x1)}.

It was shown in [10] and [3] that
3⋃
i=1

Ri is the set of all regular elements

in HypG(2) and CR(HypG(2)) := CR(R3)∪ R1 ∪ R2 is the set of all completely
regular elements in HypG(2), respectively.

Definition 5 [9] An element a of a semigroup S is called intra-regular if there
is b ∈ S such that a = baab.

Theorem 2 [3] Let S be a semigroup and a ∈ S. If a is completely regular,
then a is intra-regular.

Corollary 2 [3] Let σt ∈ CR(HypG(2)). Then σt is intra-regular in HypG(2).

Lemma 2 Let t = f(t1, x1) where t1 ∈ W(2)(X) \ X2. Then σt is not intra-
regular in HypG(2).



36 A. Boonmee, S. Leeratanavalee

Proof. Let t = f(t1, x1) where t1 ∈W(2)(X) \ X2. For each u ∈ X, we get

σu ◦G σ2t ◦G σv 6= σt and σv ◦G σ2t ◦G σu 6= σt for all v ∈ W(2)(X). Let u, v ∈
W(2)(X) \ X where u = f(u1, u2) and v = f(v1, v2) for some u1, u2, v1, v2 ∈
W(2)(X), we will show that σu ◦G σ2t ◦G σv 6= σt. If t1 ∈ X \ X2 then x2 /∈
var(t). By Theorem 1, x1 /∈ var(σ̂t[t]) = var(σ2t), i.e. var(σ2t) ∩ X2 = ∅. Hence
σu ◦G σ2t ◦G σv 6= σt. If t1 ∈W(2)(X) \ X,

σ2t(f) = σ̂t[t] = S
2(f(t1, x1), σ̂t[t1], x1) = f(w1, w2)

where w1 = S2(t1, σ̂t[t1], x1) and w2 = S2(x1, σ̂t[t1], x1) = σ̂t[t1]. Let w =
f(w1, w2). Since t1 /∈ X, so w1 /∈ X and w2 = σ̂t[t1] /∈ X. Consider

σ2t ◦G σv(f) = σ̂w[v] = S2(f(w1, w2), σ̂w[v1], σ̂w[v2]) = f(s1, s2)

where si = S
2(wi, σ̂w[v1], σ̂w[v2]) for all i ∈ {1, 2}. Since wi /∈ X for all i ∈ {1, 2},

si /∈ X for all i ∈ {1, 2}. Then σ̂u[si] /∈ X for all i ∈ {1, 2}. Consider

σu ◦G σ2t ◦G σv(f) = S2(f(u1, u2), σ̂u[s1], σ̂u[s2]) = f(r1, r2)

where ri = S
2(ui, σ̂u[s1], σ̂u[s2]) for all i ∈ {1, 2}. If u2 ∈W(2)(X)\X or u2 ∈ X2

then r2 /∈ X. If u2 ∈ X\X2 then u2 = r2. So r2 6= x1. Therefore σu ◦Gσ2t ◦Gσv 6=
σt. Hence σt is not intra-regular in HypG(2). �

Lemma 3 Let t = f(x2, t2) where t2 ∈ W(2)(X) \ X2. Then σt is not intra-
regular in HypG(2).

Proof. The proof is similar to the proof of Lemma 2. �

Lemma 4 Let t = f(x1, t2) where t2 ∈W(2)(X) \X2 and x2 ∈ var(t). Then σt
is not intra-regular in HypG(2).

Proof. Assume that t = f(x1, t2) where t2 ∈W(2)(X)\X2 and x2 ∈ var(t). Let

m = max{deptht(x
(i)
2 )|x

(i)
2 ∈ var(t) for some i ∈ N} (∗), then there exists h ∈ N

such that seqt(x
(h)
2 ) = (i1, i2, . . . , im) where i1, i2, . . . , im ∈ {1, 2}. It means

x
(h)
2 = πim ◦ πim−1

◦ . . . ◦ πi1(t) where maps πi1 , . . . , πim−1
, πim are defined

on W(2)(X) \ X2 to W(2)(X). Since x
(h)
2 ∈ var(t2), πi1(t) = t2, i.e. i1 = 2.

So seqt(x
(h)
2 ) = (2, i2, . . . , im). By Theorem 1, there is x

(h,h1)
2 ∈ var(σ̂t[t]) =

var(σ2t) for some h1 ∈ N such that

seqσ
2
t (x

(h,h1)
2 ) = (2, i2, . . . , im, ai2 , . . . , aim)
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where (2, i2, . . . , im) = seqt(x
(h)
2 ) and aiz is a sequence of natural numbers such

that (aiz) = seqs(x
(hiz )
iz

) for some hiz ∈ N and for all 2 ≤ z ≤ m.
[
Note: x

(h)
2

is a variable x2 occurring in the hth order of t (from the left) and x
(h,h1)
2 is

a variable x
(h)
2 occurring in the hth1 order of σ2t (from the left)

]
. Instead of a

sequence ai2 , . . . , aim , we write a sequence of natural numbers w1, . . . , wd for
some d ∈ N and w1, . . . , wd ∈ {1, 2}. Then

seqσ
2
t (x

(h,h1)
2 ) = (2, i2, . . . , im, w1, . . . , wd).

Suppose that there exist u, v ∈W(2)(X) such that σu ◦G σ2t ◦G σv = σt (∗∗), i.e.
u = f(x1, u2) and v = f(x1, v2) for some u2, v2 ∈ W2(X) where x2 ∈ var(u2) ∩
var(v2). Choose x

(j)
2 ∈ var(v) for some j ∈ N. Then seqv(x

(j)
2 ) = (2, p1, . . . , pq)

for some p1, . . . , pq ∈ {1, 2} and for some q ∈ N. By Theorem 1, there is

x
(j,j1)
2 ∈ var(σ2t ◦G σv) for some j1 ∈ N such that

seqσ
2
t◦Gσv(x

(j,j1)
2 ) = (2, i2, . . . , im, w1, . . . , wd, ap1 , . . . , apq)

where (2, i2, . . . , im, w1, . . . , wd) = seqσ
2
t (x

(h,h1)
2 ) and apz is a sequence of natu-

ral numbers such that (apz) = seqs(x
(lz)
pz ) for some lz ∈ N and for all 1 ≤ z ≤ q.[

Note: x
(j)
2 is a variable x2 occurring in the jth order of v (from the left) and

x
(j,j1)
2 is a variable x

(j)
2 occurring in the jth1 order of σ2t ◦G σv (from the left)

]
.

Instead of a sequence ap1 , . . . , apq we write a sequence of natural numbers
wd+1, . . . , wk for some k ∈ N and wd+1, . . . , wk ∈ {1, 2}. Then

seqσ
2
t◦Gσv(x

(j,j1)
2 ) = (2, i2, . . . , im, w1, . . . , wd, wd+1, . . . , wk).

By Theorem 1, we have x
(j,j1,j2)
2 ∈ var(σu ◦G σ2t ◦G σv) for some j2 ∈ N. By

Corollary 1, we have

depthσu◦Gσ
2
t◦Gσv(x

(j,j1,j2)
2 )= depthu(x

(b1)
2 )+ depthu(x

(b2)
i2

)+ . . .+ depthu(x
(bm)
im

)

+ depthu(x
(bm+1)
w1

) + . . .+ depthu(x
(bm+d)
wd

)

+ depthu(x
(bm+d+1)
wd+1

) + . . .+ depthu(x
(bm+k)
wk

)

> m

for some b1, . . . , bm, bm+1, . . . , bm+d, bm+d+1, . . . , bm+k ∈ N, which contradicts
to (∗) and (∗∗). Therefore σt is not intra-regular in HypG(2). �

Lemma 5 Let t = f(t1, x2) where t1 ∈W(2)(X) \X2 and x1 ∈ var(t). Then σt
is not intra-regular in HypG(2).
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Proof. The proof is similar to the proof of Lemma 4. �

Lemma 6 If t = f(t1, t2) where t1, t2 ∈W(2)(X) \X2 and var(t)∩X2 6= ∅ then
σt is not intra-regular in HypG(2).

Proof. Let t = f(t1, t2) where t1, t2 ∈W(2)(X) \ X2 and var(t) ∩ X2 6= ∅.
Case1: var(t) ∩ X2 = {xi} for some i ∈ {1, 2}. Let j ∈ {1, 2} where i 6= j.

If j is occurring in seqt(x
(h)
i ) for all x

(h)
i ∈ var(t) then var(σ2t) ∩ X2 = ∅, i.e.

σu ◦G σ2t ◦G σv 6= σt for all u, v ∈W(2)(X).

If j is not occurring in seqt(x
(h)
i ) for some x

(h)
i ∈ var(t) then seqt(x

(h)
i ) =

(i1, i2, . . . , im) where i1, i2, . . . , im ∈ {i} for some m ∈ N. We can prove similar
to the proof of Lemma 4, then σu ◦G σ2t ◦G σv 6= σt for all u, v ∈W(2)(X).
Case2: var(t)∩X2 = X2. We can prove similar to the proof of Lemma 4, then
σu ◦G σ2t ◦G σv 6= σt for all u, v ∈W(2)(X).

Therefore σt is not intra-regular in HypG(2). �

Theorem 3 CR(HypG(2)) is the set of all intra-regular elements in HypG(2).

Proof. By Corollary 2 and by Lemma 2 to 6. �
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