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Abstract. A generalized hypersubstitution of type T maps each oper-
ation symbol of the type to a term of the type, and can be extended
to a mapping defined on the set of all terms of this type. The set of all
such generalized hypersubstitutions forms a monoid. An element a of a
semigroup S is intra-regular if there is b € S such that a = baab. In this
paper, we determine the set of all intra-regular elements of this monoid
for type T = (2).

1 Introduction

A solid variety is a variety in which every identity holds as a hyperidentity, that
is, we substitute not only elements for the variables but also term operations
for the operation symbols. The notions of hyperidentities and hypervarieties
of a given type T without nullary operations were studied by J. Aczel [1], V. D.
Belousov [2], W.D. Neumann [8] and W. Taylor [13]. The main tool used to
study hyperidentities and hypervarieties is the concept of a hypersubstitution,
introduced by K. Denecke et al. [5]. The concept of a generalized hypersubsti-
tution was introduced by S. Leeratanavalee and K. Denecke [7]. The authors
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defined a binary operation on the set of all generalized hypersubstitutions and
proved that this set together with the binary operation forms a monoid. In
2010, W. Puninagool and S. Leeratanavalee determined all regular elements
of this monoid for type T = (n), see [10]. The set of all completely regular
elements of this monoid of type T = (n) was determined by A. Boonmee and
S. Leeratanavalee [3]. Furthermore, we found that every completely regular
element is intra-regular. In the present paper, we show that the set of all
completely regular elements and the set of all intra-regular elements of type
T = (2) are the same.

Let n > 1 be a natural number and let X, := {x1,%2,...,xn} be an n-
element set which is called an n-element alphabet and let its elements be
called variables. Let X := {x1,x2,...} be a countably infinite set of variables
and {fi | 1 € I} be a set of nj-ary operation symbols, which is disjoint from X,
indexed by the set I. To every ni-ary operation symbol f; we assign a natural
number n; > 1, called the arity of f;. The sequence T = (ny)icr is called the
type. For n > 1, an n-ary term of type T is defined in the following inductive
way:

(i) Every variable x; € Xy, is an n-ary term of type T.

(ii) If t1,...,tn, are n-ary terms of type T then fi(ty,...,tn,) is an n-ary

term of type T.

The smallest set which contains x1,...,Xxn and is closed under any finite
number of applications of (ii) is denoted by Wr(Xy), and is called the set of
all n- ary terms of type T. The set Wx(X) 1= Up2 ;W (Xy) is called the set of
all terms of type T.

A generalized hypersubstitution of type T = (ni)ier is a mapping o : {f; |
i € I} — Wi(X) which does not necessarily preserve the arity. Let Hypg(T)
be the set of all generalized hypersubstitutions of type T. In general, the usual
composition of mappings can be used as a binary operation on mappings.
But in the case of Hypg(t) this can not be done immediately. To define a
binary operation on this set, we define inductively the concept of a generalized
superposition of terms S™ : W (X)™! — W, (X) by the following steps:

(i) Ift:Xj, 1 <j <m, then Sm(Xj,th...,tm) =t
(i) If t =%5, m <j € N, then S™(xj, t1,...,tm) :==X;.

(iii) If t = fi(s1,52y...,5n,), then
Sm(t)th---)tm) = fi(sm(shth--->tm))---»Sm(snpth---)tm))'
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We extend any generalized hypersubstitution o to a mapping ¢ : W (X) —
W, (X) inductively defined as follows:

(i) olx] =x € X,

(ii) olfi(tr, tz,...,tn)] == S™(0(fi), Olt1], ..., Oltn,]), for any ni-ary opera-
tion symbol f; assuming that o[t;], 1 <j < n; are already defined.

Now, we define a binary operation og on Hypg(T) by 070G 02 := 0700, where
o denotes the usual composition of mappings. Let oiq be the hypersubstitution
which maps each ny—ary operation symbol f; to the term fi(x1,%2,...,%n,)-
Then Hypg(t) = (Hypg(T), oG, 0i4) is a monoid [7].

From now on, we introduce some notations which will be used throughout
this paper. For a type T = (n) with an n—ary operation symbol f and t €
W) (X), we denote
0t - the generalized hypersubstitution o of type T = (n) which maps f to the
term t,
var(t) - the set of all variables occurring in the term t,
vb'(x) - the total number of x-variable occurring in the term t.

For a term t € W,,)(X), the set sub(t) of its subterms is defined as follows

([11], [12}):
(i) if t € X, then sub(t) = {t},

(ii) if t = f(t1,...,tn), then sub(t) = {t} Usub(t;) U...Usub(t,).

Example 1 Let T = (2) and t € W(3)(X) where t = f(t;,tz) with t; =
f(x3, f(x1,%4)) and ty = f(f(x7,%1), f(x2,%1)). Then

var(t) = {x1,x2, X3, X4, X7}

vbt(x1) =3, vbi(x2) =1, vbi(x3) =1, vb(x4) =1, vb(xy) =1,

sub(ty) = {t1, f(x1,%4), %1, %3, X4},

Sub(tZ) = {tZ) f(X7, X1 )) f(XZ) X1 )) X1y X2, X7}7

SUb(t) = {t,t],tz,f(X],X4),f(X7,X]),f(Xz,X]),X],Xz,Xg,X4,X7}.

2 Sequence of terms
In this section, we construct some tools used to characterize all intra-regular

elements in Hypg(2). These tools are called the sequence of a term and the
depth of a term, respectively.
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Definition 1 Let t € W(,, ( J\ X where t = f(t1 .oytn) for some ty,...t, €
W) (X). For each s € Sub , s #t, a set seqt(s) of sequences of s in t is de-
fined by where 1y, : Wy (X )\X — Wi (X) by the formula m (f(t1,...,tn)) =
ti,. Maps m;, are deﬁned fori = 1,2, R

Example 2 Lett € Wy (X) where t = f(t,t2, 13, t4) such that t; = f(x3,%1, s,
X4); t =x4, t3 = (f(X7,S,X],X4),X4,f(X8,f(Xg,,X],S,X4),X2,f(X3,X1,S,X4)),S)
and t4 = s for some s € W4)(X). Then
seqt(s) :{(])3)) (3) 1)2) (3 3 2 3))(
Seqts(s) :{(])2 a(3)2)3) (3 4 3) (4
Seqt(tl) = {(1 )) (3) 3)2)> (3v 3)4)}
seqt(m) = {“)4)3 (2)) ( y ])3)}

Lemma 1 ([4]) Lett,s € W(;,)(X)\X, x € var(t) and var(s)NXn = {Xz;, ..., %Xz }-

3,3,4,3),(3,4), (4)},
)

)

If (i1,...,im) € seqt(x) where i1,...,im € {z1,..., 2z} then x € var(os[t]) =
var(os og 0¢) and there is (ai],...,alm) € seq’ H( ) where ai; is a sequence
of natural numbers j1,...,jn such that (j1,...,jn) € seq®(xy;) for all j €
{1,...,m}.

Let t € W) (X) \ X, and t; € sub(t). It can be possible that t; occurs in the
term t more than once, we denote

tg]) - subterm t; occurring in the j*" order of t (from the left).
Definition 2 Let t € W(y,)(X)\ X where t = f(ty,...,ty) for some t;,...,ty €
W) (X) and let 7y, : W) (X)\X — W) (X) by the formula 7, (t) =m, (f(t1,...,
tn)) = ti,. Maps m;, are defined for iy = 1,2,...,n. For each st e sub(t) for
some j € N, we denote the sequence of s( in t by seq'(sU)) and denote the
depth of sU) in t by depth®(s?). If s0) = m_o...0 i, (t) for some m € N,
then

seqt(s") = (i1,...,im) and depth(s¥)) =m.

Example 3 Let T = (3) and let t € W(3)(X)\X where t = f(ty, t2,t3) such that
t1 =xs, t2 = f(x3, f(xa, f(x2,%7,%10), X5), X5) and t3 = f(f(xs, x4, f(x2, %7, %10)),
X],Xg). Then

Y =(1) and depth'(x.”) =1
) and deptht(xéz): ;
(

3
seq X53)) :( ) ) and deptht(x;’ ) :2;
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seqt (xg‘) and depth® (xg

4
) )
seq' (f(x2, x7, x10)!")) = and depth'(f
@) =
(

) =3;

) (x2,%7,x10)""
seq'(f(x2, X7, X10) ) and deptht(f(xz,m,x]o)(z
seq' (f(x2,x7,x10)") = (1,3) and  depth' (f(x2,x7, x10)'

)

)

)

—

seq'(x\p) =(2,2,2,3) and depth(x\})) = (4);
seq (xm) (3,1,3,3) and deptht(x%]) =4
seq" (xgy) =(1,3,3) and deptht3(x%)) =3.

Let t,51,82,...,5k € W()(X) \ X and x; € var(t). We donote

x? ) _ variable x; occurring in the j™ order of t (from the left);
x?‘m variable x?) occurring in the ji* order of Gy, [t] (from the left);
x?’“’m - variable xgj’m occurring in the ji* order of Gy, [0, [t]] (from the
left).
Similarly,
xgj’j"jz""’jk) - variable xgj’j"""j"") occurring in the j* order of

Gy, [0, L...[54,[8s, [t]] ..] (from the left).

Theorem 1 Let t,s € W) (X) \ X and x ) e var(t) for some i,j € N and let
seqt(x?)) =11,...yim. Then Xq,,...,xi,, € var(s) N Xy if and only if x?‘j‘) €
var(Gg[t]) = var(os og o) for some j; € N and seq®s¥ (x?’j‘)) = (ai;y.--) Qi)
where a11 is a sequence of natural number p1,...,Pq such that (p1,...,pq) =
seq ( ) for some hy € N and for all1 €{1,...,m}.

Proof.(=) By Lemma 1.
(&) Assume that x?’“) € var(0s[t]) = var(os og o) for some j; € N and
seqOs!t! (X?’“)) = (aiy...,q,) where aj is a sequence of natural number

P1y-..,Pq such that (p1,...,pq) = seq( ) for some hy € N and for all
Le{1,...,m}. Then

v (X)) = ybs(x, ) x vbS(xi,) X ... x vbS(xy,, ).
Suppose that x;, ¢ var(s) N X, for some 1 < k < m, so vb®(x;,) = 0, i.e.

vbOs [t](x?)) = 0, which contradicts to our assumption. Hence xi,,...,Xi,, €

m

var(s) N Xn. d

Example 4 Let T = (3) and let t = f(x2, f(x4,xs5,%2), T(x2,%6,%7)) and s =
f(x3,x1,%3). Then seq'(xy") = (1), seq'(x}’)) = (2,3), seq'(xy”) = (3,1)
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and seqt(x(;)) = (3,3). By Theorem 1 , there is x(zl‘h) ng ki) X? kZ), (7]’1‘),

x;]’h),x[71’13), x(7]’14) € var(og[t]) for some h, ki,k2,11,15,3, 14 € N and
seqs(t (xg’h)) = (2) = seqst (xg]’z ) where seq (xg”) =(2)

seqslt (x?’k”) =(1,2) = seq®:M (xgs’ where seq (Xé”) = (1) and

seqslt (xés’kﬂ) = (3,2) = seq®sM (xé3 )Y where seq (xgz)) = (3) and

=

where seq® (Xg”) = (1) and

seqs(xg]) = (1)
seqs(t (x“’m) =(1,3) = seq®s (x;]’z) where seq® (Xg)) = (1) and
seq*(xy)) = (3)

seq® (g )) = (3,1) = seq™ (") where seq?(x;”) = (3) and
seqs(xg)) =
seqas [t (X(71’14]) =(3,3) = seqas [t (X(71’4)

w
)
where seq® (xgz) ) =(3) and
seq® (xgz)) = (3).

Since x, € var(s), so Xz gé var(0;[t]) for all 1 € N. Consider,

Gt = Glf(x), Fxa, x5, x07), £(x5 %6, X))
s3

[
(f(Xg,X],X:;) [ é)] /0\— [f(X4>XS»XEZ))]»as[f(X£3)>XG»X;”)])

1) B0 _0,2), (0, 13) _(33) (14
= f(f(x; )xé )x; )) xé ),f(x; ),xé ),x; )

= f(f(X7, X2, X7), X2, f(x7) X2, X7))'

Corollary 1 Lett,s € W) (X)\X and x?) € var(t) for somei,j € N such that

seqt(xgj)) = (i1, 12y ...y im) for some i1,1,...,im €{1,...,n} and x;, € var(s)
for all 1 <k <m. Then there is j1 € N such that

Gs Gig1)y _ (1) (12) (lm)
depth®H (x") = depth®(x;,"") + depth®(x;,*') + ... + depth®(x; ™)
for some L1, 1p,...,lin € N, and
vbOs(t (x?)) =Vb3(xi,) X Vb3 (xi,) X ... X Vb (xi, ).
Let vbt(xy) = d.

If xi € Xn, then vbosltl( va“s ]



All intra-regular generalized hypersubstitutions of type (2) 35

d
If xi € X\ Xn where xi ¢ var(s), then vbot(x;) = Z\)bas[ﬂ (x?)).
j=1

3 Main results

In this section, we will show that the set of all completely regular elements
and the set of all intra-regular elements in Hypg(2) are the same. First, we
recall definitions of regular and completely regular elements and then we char-
acterize all completely regular elements in Hypg(2).

Definition 3 [6] An element a of a semigroup S is called regular if there exists
x € S such that axa = a.

Definition 4 [9] An element a of a semigroup S is called completely regular
if there exists b € S such that a = aba and ab = ba.

Let ot € Hypg(2). We denote
Ry == {0y [xi € X};
Ry :={otlvar(t) N X3 = 0}
R3 = {o¢[t = f(ty,t2) where t; = x; for some 1,j € {1, 2} and var(t)NX; =
{Xj}}u {Gf(x1,x2)7 Gf(xz,x1)}
CR(R3) := {oy|t = f(t1,t2) where t; = x; for some 1 € {1,2} and var(t) N
X2 = {(xiHU {0¢(x; xz)5 O (X2, %1) )
3
It was shown in [10] and [3] that U R; is the set of all regular elements
in Hypg(2) and CR(Hypg(2)) == CR(RI3)] U Ry UR; is the set of all completely
regular elements in Hypg(2), respectively.

Definition 5 [9] An element a of a semigroup S is called intra-regular if there
is b € S such that a = baab.

Theorem 2 [3| Let S be a semigroup and a € S. If a is completely regular,
then a is intra-reqular.

Corollary 2 [3] Let oy € CR(Hypg(2)). Then oy is intra-regular in Hypg(2).

Lemma 2 Let t = f(t1,%) where t; € W(3)(X) \ Xz. Then oy is not intra-
regular in Hypg(2).



36 A. Boonmee, S. Leeratanavalee

Proof. Let t = f(t1,%;) where t; € W) (X) \ Xa. For each u € X, we get

Ou °G cr% og 0y # ot and oy, og (r% og Oy # oy for all v .€ Wy)(X). Let u,v €
W) (X) \ X where u = f(uy,uz) and v = f(vq,v2) for some wy,uz,vi,v; €
W(2)(X), we will show that oy og G% og 0y # 0¢. If t1 € X\ X3 then x; ¢
var(t). By Theorem 1, x1 ¢ var(c¢[t]) = var(o?), i.e. var(o?) N X = ). Hence
Oy °G O'% og Oy # 0p. If £ € W(z)(X) \ X,

G%(f) = a-t[ﬂ = Sz(f(t1yx1))8t[t1])x1) = f(WhWZ)

where wy = Sz(t1,8t[t1],7(]) and w; = SZ(X1,6}[’£1],X1) = 0¢[t7]. Let w =
f(wi,wW3). Since t; ¢ X, so wy ¢ X and w, = 0y[t;] € X. Consider

0—% oG Gv(f) = aw[v] = Sz(f(whwl))aw[\)]])a-w[VZ]) = f(ShSZ)

where s; = $2(wy, Owlvi], Gwlva]) for all i € {1,2}. Since w; ¢ X for all i € {1,2},
si ¢ X for all i € {1,2}. Then 0y [s;] ¢ X for all i € {1,2}. Consider

0w 0G 07 oG 0y(f) = S(f(w1, u2), Ouls1], Oulsal) = f(r1,12)

where 1; = S2(uq, Oy[s1], Oulsa]) foralli € {1,2}. If u, € W (X)\ X oru; € X;
then 1, ¢ X. If uy € X\ X, then uy; = 1. So 12 # x1. Therefore oy, oG 0% og Oy #
ot. Hence oy is not intra-regular in Hypg(2). O

Lemma 3 Let t = f(xz,t2) where t; € W(3)(X) \ Xz. Then oy is not intra-
regular in Hypg(2).

Proof. The proof is similar to the proof of Lemma 2. O

Lemma 4 Let t = f(x7,t2) where t; € W5 (X) \ Xz and x; € var(t). Then oy
is not intra-regular in Hypg(2).

Proof. Assume that t = f(x1,t2) where t; € W(5)(X)\ Xz and x; € var(t). Let

m= max{deptht(xéi))lxgi) € var(t) for some i € N} (*), then there exists h € N

such that seqt (xéh) )

(h)

= (i1,1i2y...,1m) where i1,12,...,1im € {1,2}. It means

X, = T, o™, ©°...07y(t) where maps 7 ,...,m, ,,m,, are defined
on Wiz (X) \ X2 to Wg)(X). Since x\ € var(ty), m, (t) = tp, ie i1 = 2.
So seqt(xgh)) = (2,12,...,1im). By Theorem 1, there is xgh’h‘) € var(oy[t]) =

Var(cr%) for some h; € N such that

20 (hh . :
Seqct(xé ])):(2)127---)1m)aiz)--waim)
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(h)

where (2,12, ...,im) = seq Y(x;") and aj, is a sequence of natural numbers such
that (ai,) = seq®(x; ( ) for some hi, € N and for all 2 <z < m. [Note: xgh)
is a variable x; occurring in the hth order of t (from the left) and Xgh’h]) is

a variable xéh) occurring in the hi" order of o7 (from the left)]. Instead of a

sequence Qi,,..., di,, we write a sequence of natural numbers wy,...,wq for
some d € N and wy,...,wq € {1,2}. Then

hh . .
Seq ( : 1)):(2>12v--->1m>wh---)wd)-

Suppose that there exist u,v € W(3)(X) such that oy, og 070G Oy = Oy (%%), i.e.
u = f(x3,uy) and v = f(x1,vz) for some uy,v; € W5(X) where x; € var(uz) N
var(v;). Choose xg] € var(v) for some j € N. Then seq"(xg])) = (2,p1y..-,Pq)

for some py,...,pq € {1,2} and for some q € N. By Theorem 1, there is

(J’m IS V&I‘(G% og 0y) for some j; € N such that

0Zogo Gyir)y _ . .
5eqt?C M (x;7 1) = (2,12, vy lny Wiy ooy Way Qppy e e ey Gpy)

( (hhl))

where (2,12, ..., im,W1,...,Wq) = seq and ay, is a sequence of natu-

ral numbers such that (ap,) = seq (xpz ) for some |, € Nand forall 1 <z < q.

[Note. Xg ) is a variable X2 occurring in the j*" order of v (from the left) and
xg’m is a variable Xg ) occurring in the ji" order of o7 og oy (from the left)].
Instead of a sequence ap,,...,ap, we write a sequence of natural numbers

Wdil, ..., Wk for some k € N and wqy1,...,wg € {1,2}. Then

2 (]»)1) . .
seqatoeov (Xz ) = (2) Vyeooy by Wiy oo o yWay, W41y . )Wk)-
By Theorem 1, we have X;J»sz)
Corollary 1, we have

€ var(oy og 0‘% og 0y) for some j; € N. By

depth®u°6 ofoG oy (ng,)'mz )= depthu( 1)y 4 depthu( ))—i- _— depth“(xi(:"‘))
+ depth*(x\e™ ) 4+ .. 4+ depth”(xx(ﬁ real)

+ depthu(xw;’f]d“ ]) .+ depthu(xwg”k))

>m
for some by,...,bm, bty .-y Dmtdy Omtd+ly - - -y Omak € N, which contradicts
to (%) and (xx). Therefore oy is not intra-regular in Hypg(2). O

Lemma 5 Let t = f(ty,x2) where t; € W5y (X) \ Xz and x;1 € var(t). Then oy
is not intra-reqular in Hypg(2).
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Proof. The proof is similar to the proof of Lemma 4. O

Lemma 6 Ift = f(ty,t2) where t1,t; € W5y (X)\ Xz and var(t)NX; # 0 then
ot s not intra-reqular in Hypg(2).

Proof. Let t = f(ty, t2) where t1,t, € W(5)(X) \ Xz and var(t) N X, # 0.
Casel: var(t) N X; = {x;} for some 1 € {1,2}. Let j € {1, 2} where i #j.

If j is occurring in seqt(xgh)) for all xi(h) € var(t) then var(c2) N X = 0, i.e.
Oy OG O'% oG Oy 75 ot for all u,v € W(z)(X)

If j is not occurring in Seqt(xgh)) for some xgh) € var(t) then seqt(xgh))

(i1,12y...,1m) where 11,12, ...,im € {i} for some m € N. We can prove similar
to the proof of Lemma 4, then oy, og 07 og 0y # 0y for all u,v € Wy (X).
Case2: var(t) N X; = X5. We can prove similar to the proof of Lemma 4, then
Oy Og (T% og 0Oy # oy for all u,v € W(z)(X)

Therefore oy is not intra-regular in Hypg(2). O

Theorem 3 CR(Hypg(2)) is the set of all intra-regular elements in Hypg(2).

Proof. By Corollary 2 and by Lemma 2 to 6. O
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