

DOI: 10.2478/ausm-2019-0003

All intra-regular generalized hypersubstitutions of type (2)

Ampika Boonmee
Department of Mathematics,
Faculty of Science,
Chiang Mai University, Thailand
email: ampika.b.ku.src@gmail.com

Sorasak Leeratanavalee
Research Center in Mathematics and
Applied Mathematics, Department of
Mathematics, Faculty of Science,
Chiang Mai University, Thailand
email: sorasak.l@cmu.ac.th

Abstract. A generalized hypersubstitution of type τ maps each operation symbol of the type to a term of the type, and can be extended to a mapping defined on the set of all terms of this type. The set of all such generalized hypersubstitutions forms a monoid. An element α of a semigroup S is intra-regular if there is $b \in S$ such that $\alpha = b\alpha\alpha b$. In this paper, we determine the set of all intra-regular elements of this monoid for type $\tau = (2)$.

1 Introduction

A solid variety is a variety in which every identity holds as a hyperidentity, that is, we substitute not only elements for the variables but also term operations for the operation symbols. The notions of hyperidentities and hypervarieties of a given type τ without nullary operations were studied by J. Aczèl [1], V. D. Belousov [2], W.D. Neumann [8] and W. Taylor [13]. The main tool used to study hyperidentities and hypervarieties is the concept of a hypersubstitution, introduced by K. Denecke et al. [5]. The concept of a generalized hypersubstitution was introduced by S. Leeratanavalee and K. Denecke [7]. The authors

²⁰¹⁰ Mathematics Subject Classification: 20M05, 20M17

defined a binary operation on the set of all generalized hypersubstitutions and proved that this set together with the binary operation forms a monoid. In 2010, W. Puninagool and S. Leeratanavalee determined all regular elements of this monoid for type $\tau = (n)$, see [10]. The set of all completely regular elements of this monoid of type $\tau = (n)$ was determined by A. Boonmee and S. Leeratanavalee [3]. Furthermore, we found that every completely regular element is intra-regular. In the present paper, we show that the set of all completely regular elements and the set of all intra-regular elements of type $\tau = (2)$ are the same.

Let $n \geq 1$ be a natural number and let $X_n := \{x_1, x_2, \ldots, x_n\}$ be an nelement set which is called an nelement alphabet and let its elements be called variables. Let $X := \{x_1, x_2, \ldots\}$ be a countably infinite set of variables and $\{f_i \mid i \in I\}$ be a set of n_i -ary operation symbols, which is disjoint from X, indexed by the set I. To every n_i -ary operation symbol f_i we assign a natural number $n_i \geq 1$, called the arity of f_i . The sequence $\tau = (n_i)_{i \in I}$ is called the type. For $n \geq 1$, an n-ary term of type τ is defined in the following inductive way:

- (i) Every variable $x_i \in X_n$ is an n-ary term of type τ .
- (ii) If t_1, \ldots, t_{n_i} are n-ary terms of type τ then $f_i(t_1, \ldots, t_{n_i})$ is an n-ary term of type τ .

The smallest set which contains x_1, \ldots, x_n and is closed under any finite number of applications of (ii) is denoted by $W_{\tau}(X_n)$, and is called the set of all n- ary terms of type τ . The set $W_{\tau}(X) := \bigcup_{n=1}^{\infty} W_{\tau}(X_n)$ is called the set of all terms of type τ .

A generalized hypersubstitution of type $\tau = (\mathfrak{n}_i)_{i \in I}$ is a mapping $\sigma : \{f_i \mid i \in I\} \to W_\tau(X)$ which does not necessarily preserve the arity. Let $\mathsf{Hyp}_G(\tau)$ be the set of all generalized hypersubstitutions of type τ . In general, the usual composition of mappings can be used as a binary operation on mappings. But in the case of $\mathsf{Hyp}_G(\tau)$ this can not be done immediately. To define a binary operation on this set, we define inductively the concept of a generalized superposition of terms $S^m : W_\tau(X)^{m+1} \to W_\tau(X)$ by the following steps:

- (i) If $t = x_j$, $1 \le j \le m$, then $S^m(x_j, t_1, \ldots, t_m) := t_j$.
- (ii) If $t = x_j$, $m < j \in \mathbb{N}$, then $S^m(x_j, t_1, \dots, t_m) := x_j$.

We extend any generalized hypersubstitution σ to a mapping $\widehat{\sigma}:W_{\tau}(X)\to W_{\tau}(X)$ inductively defined as follows:

- (i) $\widehat{\sigma}[x] := x \in X$,
- (ii) $\widehat{\sigma}[f_i(t_1, t_2, \dots, t_{n_i})] := S^{n_i}(\sigma(f_i), \widehat{\sigma}[t_1], \dots, \widehat{\sigma}[t_{n_i}])$, for any n_i -ary operation symbol f_i assuming that $\widehat{\sigma}[t_i]$, $1 \le j \le n_i$ are already defined.

Now, we define a binary operation \circ_G on $\mathsf{Hyp}_G(\tau)$ by $\sigma_1 \circ_G \sigma_2 := \widehat{\sigma}_1 \circ \sigma_2$ where \circ denotes the usual composition of mappings. Let σ_{id} be the hypersubstitution which maps each \mathfrak{n}_i —ary operation symbol f_i to the term $f_i(x_1, x_2, \ldots, x_{\mathfrak{n}_i})$. Then $\mathsf{Hyp}_G(\tau) = (\mathsf{Hyp}_G(\tau), \circ_G, \sigma_{id})$ is a monoid [7].

From now on, we introduce some notations which will be used throughout this paper. For a type $\tau = (n)$ with an n-ary operation symbol f and f $\in W_{(n)}(X)$, we denote

 σ_t - the generalized hypersubstitution σ of type $\tau=(n)$ which maps f to the term t,

var(t) - the set of all variables occurring in the term t,

 $\mathrm{vb}^{\mathsf{t}}(x)$ - the total number of x-variable occurring in the term t .

For a term $t \in W_{(n)}(X)$, the set sub(t) of its subterms is defined as follows ([11], [12]):

- (i) if $t \in X$, then $sub(t) = \{t\}$,
- $(ii) \ \ \mathrm{if} \ t = f(t_1, \ldots, t_n), \ \mathrm{then} \ \mathrm{sub}(t) = \{t\} \cup \mathrm{sub}(t_1) \cup \ldots \cup \mathrm{sub}(t_n).$

Example 1 Let $\tau = (2)$ and $t \in W_{(2)}(X)$ where $t = f(t_1, t_2)$ with $t_1 = f(x_3, f(x_1, x_4))$ and $t_2 = f(f(x_7, x_1), f(x_2, x_1))$. Then $\operatorname{var}(t) = \{x_1, x_2, x_3, x_4, x_7\}$ $\operatorname{vb}^t(x_1) = 3$, $\operatorname{vb}^t(x_2) = 1$, $\operatorname{vb}^t(x_3) = 1$, $\operatorname{vb}^t(x_4) = 1$, $\operatorname{vb}^t(x_7) = 1$, $\operatorname{sub}(t_1) = \{t_1, f(x_1, x_4), x_1, x_3, x_4\}$, $\operatorname{sub}(t_2) = \{t_2, f(x_7, x_1), f(x_2, x_1), x_1, x_2, x_7\}$, $\operatorname{sub}(t) = \{t, t_1, t_2, f(x_1, x_4), f(x_7, x_1), f(x_2, x_1), x_1, x_2, x_3, x_4, x_7\}$.

2 Sequence of terms

In this section, we construct some tools used to characterize all intra-regular elements in $Hyp_G(2)$. These tools are called the **sequence** of a term and the depth of a term, respectively.

Definition 1 Let $t \in W_{(n)}(X) \setminus X$ where $t = f(t_1 \dots, t_n)$ for some $t_1, \dots t_n \in W_{(n)}(X)$. For each $s \in \mathrm{sub}(t)$, $s \neq t$, a set $\mathrm{seq}^t(s)$ of sequences of s in t is defined by where $\pi_{i_1} : W_{(n)}(X) \setminus X \to W_{(n)}(X)$ by the formula $\pi_{i_1}(f(t_1, \dots, t_n)) = t_{i_1}$. Maps π_{i_1} are defined for $i_1 = 1, 2, \dots, n$.

Lemma 1 ([4]) Let $t, s \in W_{(n)}(X) \setminus X$, $x \in \operatorname{var}(t)$ and $\operatorname{var}(s) \cap X_n = \{x_{z_1}, \dots, x_{z_k}\}$. If $(i_1, \dots, i_m) \in \operatorname{seq}^t(x)$ where $i_1, \dots, i_m \in \{z_1, \dots, z_k\}$ then $x \in \operatorname{var}(\widehat{\sigma}_s[t]) = \operatorname{var}(\sigma_s \circ_G \sigma_t)$ and there is $(a_{i_1}, \dots, a_{i_m}) \in \operatorname{seq}^{\widehat{\sigma}_s[t]}(x)$ where a_{i_j} is a sequence of natural numbers j_1, \dots, j_h such that $(j_1, \dots, j_h) \in \operatorname{seq}^s(x_{i_j})$ for all $j \in \{1, \dots, m\}$.

Let $t \in W_{(n)}(X) \setminus X$, and $t_i \in sub(t)$. It can be possible that t_i occurs in the term t more than once, we denote

 $t_i^{(j)}$ - subterm t_i occurring in the j^{th} order of t (from the left).

Definition 2 Let $t \in W_{(n)}(X) \setminus X$ where $t = f(t_1, \ldots, t_n)$ for some $t_1, \ldots, t_n \in W_{(n)}(X)$ and let $\pi_{i_l} : W_{(n)}(X) \setminus X \to W_{(n)}(X)$ by the formula $\pi_{i_l}(t) = \pi_{i_l}(f(t_1, \ldots, t_n)) = t_{i_l}$. Maps π_{i_l} are defined for $i_l = 1, 2, \ldots, n$. For each $s^{(j)} \in \operatorname{sub}(t)$ for some $j \in \mathbb{N}$, we denote the sequence of $s^{(j)}$ in t by $\operatorname{seq}^t(s^{(j)})$ and denote the depth of $s^{(j)}$ in t by $\operatorname{depth}^t(s^{(j)})$. If $s^{(j)} = \pi_{i_m} \circ \ldots \circ \pi_{i_1}(t)$ for some $m \in \mathbb{N}$, then

$$\operatorname{seq}^t(s^{(j)}) = (i_1, \dots, i_m) \quad \operatorname{and} \quad \operatorname{depth}^t(s^{(j)}) = m.$$

Example 3 Let $\tau = (3)$ and let $t \in W_{(3)}(X) \setminus X$ where $t = f(t_1, t_2, t_3)$ such that $t_1 = x_5$, $t_2 = f(x_3, f(x_4, f(x_2, x_7, x_{10}), x_5), x_5)$ and $t_3 = f(f(x_5, x_4, f(x_2, x_7, x_{10})), x_1, x_6)$. Then

$$\begin{split} & \operatorname{seq^t}(x_5^{(1)}) = (1) \quad \operatorname{and} \quad \operatorname{depth^t}(x_5^{(1)}) = 1; \\ & \operatorname{seq^t}(x_5^{(2)}) = (2,2,3) \quad \operatorname{and} \quad \operatorname{depth^t}(x_5^{(2)}) = 3; \\ & \operatorname{seq^t}(x_5^{(3)}) = (2,3) \quad \operatorname{and} \quad \operatorname{depth^t}(x_5^{(3)}) = 2; \end{split}$$

$$\begin{split} \operatorname{seq}^t(x_5^{(4)}) &= (3,1,1) \quad \operatorname{and} \quad \operatorname{depth}^t(x_5^{(4)}) = 3; \\ \operatorname{seq}^t(f(x_2,x_7,x_{10})^{(1)}) &= (2,2,2) \quad \operatorname{and} \quad \operatorname{depth}^t(f(x_2,x_7,x_{10})^{(1)}) = 3; \\ \operatorname{seq}^t(f(x_2,x_7,x_{10})^{(2)}) &= (3,1,3) \quad \operatorname{and} \quad \operatorname{depth}^t(f(x_2,x_7,x_{10})^{(2)}) = 3; \\ \operatorname{seq}^{t_3}(f(x_2,x_7,x_{10})^{(1)}) &= (1,3) \quad \operatorname{and} \quad \operatorname{depth}^{t_3}(f(x_2,x_7,x_{10})^{(1)}) = 2; \\ \operatorname{seq}^t(x_{10}^{(1)}) &= (2,2,2,3) \quad \operatorname{and} \quad \operatorname{depth}^t(x_{10}^{(1)}) = (4); \\ \operatorname{seq}^t(x_{10}^{(2)}) &= (3,1,3,3) \quad \operatorname{and} \quad \operatorname{depth}^t(x_{10}^{(2)}) = 4; \\ \operatorname{seq}^{t_3}(x_{10}^{(1)}) &= (1,3,3) \quad \operatorname{and} \quad \operatorname{depth}^{t_3}(x_{10}^{(1)}) = 3. \end{split}$$

Let $t, s_1, s_2, \ldots, s_k \in W_{(n)}(X) \setminus X$ and $x_i \in \text{var}(t)$. We denote $x_i^{(j)}$ - variable x_i occurring in the j^{th} order of t (from the left); $x_i^{(j,j_1)}$ - variable $x_i^{(j)}$ occurring in the j_1^{th} order of $\widehat{\sigma}_{s_1}[t]$ (from the left); $x_i^{(j,j_1,j_2)}$ - variable $x_i^{(j,j_1)}$ occurring in the j_2^{th} order of $\widehat{\sigma}_{s_2}[\widehat{\sigma}_{s_1}[t]]$ (from the left).

Similarly,

 $x_i^{(j,j_1,j_2,\ldots,j_k)}$ - variable $x_i^{(j,j_1,\ldots,j_{k-1})}$ occurring in the j_k^{th} order of $\widehat{\sigma}_{s_k}[\widehat{\sigma}_{s_{k-1}}[\ldots[\widehat{\sigma}_{s_2}[\widehat{\sigma}_{s_1}[t]]\ldots]]$ (from the left).

Theorem 1 Let $t, s \in W_{(n)}(X) \setminus X$ and $x_i^{(j)} \in \mathrm{var}(t)$ for some $i, j \in \mathbb{N}$ and let $\mathrm{seq}^t(x_i^{(j)}) = i_1, \ldots, i_m$. Then $x_{i_1}, \ldots, x_{i_m} \in \mathrm{var}(s) \cap X_n$ if and only if $x_i^{(j,j_1)} \in \mathrm{var}(\widehat{\sigma}_s[t]) = \mathrm{var}(\sigma_s \circ_G \sigma_t)$ for some $j_1 \in \mathbb{N}$ and $\mathrm{seq}^{\widehat{\sigma}_s[t]}(x_i^{(j,j_1)}) = (a_{i_1}, \ldots, a_{i_m})$ where a_{i_1} is a sequence of natural number p_1, \ldots, p_q such that $(p_1, \ldots, p_q) = \mathrm{seq}^s(x_{i_1}^{h_1})$ for some $h_l \in \mathbb{N}$ and for all $l \in \{1, \ldots, m\}$.

Proof.(\Rightarrow) By Lemma 1.

 $(\Leftarrow) \text{ Assume that } x_i^{(j,j_1)} \in \operatorname{var}(\widehat{\sigma}_s[t]) = \operatorname{var}(\sigma_s \circ_G \sigma_t) \text{ for some } j_1 \in \mathbb{N} \text{ and } \operatorname{seq}^{\widehat{\sigma}_s[t]}(x_i^{(j,j_1)}) = (\alpha_{i_1},\ldots,\alpha_{i_m}) \text{ where } \alpha_{i_l} \text{ is a sequence of natural number } p_1,\ldots,p_q \text{ such that } (p_1,\ldots,p_q) = \operatorname{seq}^s(x_{i_l}^{h_l}) \text{ for some } h_l \in \mathbb{N} \text{ and for all } l \in \{1,\ldots,m\}. \text{ Then }$

$$\nu b^{\widehat{\sigma}_s[t]}(x_i^{(j)}) = \nu b^s(x_{i_1}) \times \nu b^s(x_{i_2}) \times \ldots \times \nu b^s(x_{i_m}).$$

Suppose that $x_{i_k} \notin \operatorname{var}(s) \cap X_n$ for some $1 \leq k \leq m$, so $\nu b^s(x_{i_z}) = 0$, i.e. $\nu b^{\widehat{\sigma}_s[t]}(x_i^{(j)}) = 0$, which contradicts to our assumption. Hence $x_{i_1}, \ldots, x_{i_m} \in \operatorname{var}(s) \cap X_n$.

Example 4 Let $\tau=(3)$ and let $t=f(x_2,f(x_4,x_5,x_2),f(x_2,x_6,x_7))$ and $s=f(x_3,x_1,x_3)$. Then $\operatorname{seq}^t(x_2^{(1)})=(1), \ \operatorname{seq}^t(x_2^{(2)})=(2,3), \ \operatorname{seq}^t(x_2^{(3)})=(3,1)$

and $\operatorname{seq}^t(x_7^{(1)})=(3,3).$ By Theorem 1 , there is $x_2^{(1,h)}, x_2^{(3,k_1)}, x_2^{(3,k_2)}, x_7^{(1,l_1)}, x_7^{(1,l_2)}, x_7^{(1,l_3)}, x_7^{(1,l_3)}, x_7^{(1,l_4)} \in \operatorname{var}(\widehat{\sigma}_s[t])$ for some $h, k_1, k_2, l_1, l_{2,3}, l_4 \in \mathbb{N}$ and

$$\begin{split} & \operatorname{seq}^{\widehat{\sigma}_s[t]}(x_2^{(1,h)}) = (2) = \operatorname{seq}^{\widehat{\sigma}_s[t]}(x_2^{(1,2)}) \text{ where } \operatorname{seq}^s(x_1^{(1)}) = (2) \\ & \operatorname{seq}^{\widehat{\sigma}_s[t]}(x_2^{(3,k_1)}) = (1,2) = \operatorname{seq}^{\widehat{\sigma}_s[t]}(x_2^{(3,1)}) \text{ where } \operatorname{seq}^s(x_3^{(1)}) = (1) \text{ and } \\ & \operatorname{seq}^s(x_1^{(1)}) = (2) \\ & \operatorname{seq}^{\widehat{\sigma}_s[t]}(x_2^{(3,k_2)}) = (3,2) = \operatorname{seq}^{\widehat{\sigma}_s[t]}(x_2^{(3,3)}) \text{ where } \operatorname{seq}^s(x_3^{(2)}) = (3) \text{ and } \\ & \operatorname{seq}^s(x_1^{(1)}) = (2) \\ & \operatorname{seq}^{\widehat{\sigma}_s[t]}(x_7^{(1,l_1)}) = (1,1) = \operatorname{seq}^{\widehat{\sigma}_s[t]}(x_7^{(1,1)}) \text{ where } \operatorname{seq}^s(x_3^{(1)}) = (1) \text{ and } \\ & \operatorname{seq}^s(x_3^{(1)}) = (1) \\ & \operatorname{seq}^{\widehat{\sigma}_s[t]}(x_7^{(1,l_2)}) = (1,3) = \operatorname{seq}^{\widehat{\sigma}_s[t]}(x_7^{(1,2)}) \text{ where } \operatorname{seq}^s(x_3^{(1)}) = (1) \text{ and } \\ & \operatorname{seq}^s(x_3^{(2)}) = (3) \\ & \operatorname{seq}^{\widehat{\sigma}_s[t]}(x_7^{(1,l_3)}) = (3,1) = \operatorname{seq}^{\widehat{\sigma}_s[t]}(x_7^{(1,3)}) \text{ where } \operatorname{seq}^s(x_3^{(2)}) = (3) \text{ and } \\ & \operatorname{seq}^s(x_3^{(1)}) = (1) \\ & \operatorname{seq}^{\widehat{\sigma}_s[t]}(x_7^{(1,l_4)}) = (3,3) = \operatorname{seq}^{\widehat{\sigma}_s[t]}(x_7^{(1,4)}) \text{ where } \operatorname{seq}^s(x_3^{(2)}) = (3) \text{ and } \\ & \operatorname{seq}^s(x_2^{(2)}) = (3). \end{split}$$

Since $x_2 \notin \operatorname{var}(s)$, so $x_2^{(2,i)} \notin \operatorname{var}(\widehat{\sigma}_s[t])$ for all $i \in \mathbb{N}$. Consider,

$$\begin{split} \widehat{\sigma}_s[t] &= \widehat{\sigma}_s[f(x_2^{(1)}, f(x_4, x_5, x_2^{(2)}), f(x_2^{(3)}, x_6, x_7^{(1)}))] \\ &= S^3(f(x_3, x_1, x_3), \widehat{\sigma}_s[x_2^{(1)}], \widehat{\sigma}_s[f(x_4, x_5, x_2^{(2)})], \widehat{\sigma}_s[f(x_2^{(3)}, x_6, x_7^{(1)})]) \\ &= f(f(x_7^{(1,1)}, x_2^{(3,1)}, x_7^{(1,2)}), x_2^{(1,2)}, f(x_7^{(1,3)}, x_2^{(3,3)}, x_7^{(1,4)})) \\ &= f(f(x_7, x_2, x_7), x_2, f(x_7, x_2, x_7)). \end{split}$$

Corollary 1 Let $t, s \in W_{(n)}(X) \setminus X$ and $x_i^{(j)} \in \text{var}(t)$ for some $i, j \in \mathbb{N}$ such that $\text{seq}^t(x_i^{(j)}) = (i_1, i_2, \dots, i_m)$ for some $i_1, i_2, \dots, i_m \in \{1, \dots, n\}$ and $x_{i_k} \in \text{var}(s)$ for all $1 \leq k \leq m$. Then there is $j_1 \in \mathbb{N}$ such that

$$\operatorname{depth}^{\widehat{\sigma}_s[t]}(x_i^{(j,j_1)}) = \operatorname{depth}^s(x_{i_1}^{(l_1)}) + \operatorname{depth}^s(x_{i_2}^{(l_2)}) + \ldots + \operatorname{depth}^s(x_{i_m}^{(l_m)})$$

for some $l_1, l_2, \ldots, l_m \in \mathbb{N}$, and

$$\nu b^{\widehat{\sigma}_s[t]}(x_i^{(j)}) = \nu b^s(x_{i_1}) \times \nu b^s(x_{i_2}) \times \ldots \times \nu b^s(x_{i_m}).$$

Let $vb^{t}(x_{i}) = d$.

$$\mathit{If}\ x_i \in X_n,\ \mathit{then}\ \nu b^{\widehat{\sigma}_s[t]}(x_i) = \sum_{i=1}^d \nu b^{\widehat{\sigma}_s[t]}(x_i^{(j)}).$$

$$\mathit{If}\ x_i \in X \setminus X_n\ \mathit{where}\ x_i \notin \mathrm{var}(s),\ \mathit{then}\ \nu b^{\widehat{\sigma}_s[t]}(x_i) = \sum_{j=1}^d \nu b^{\widehat{\sigma}_s[t]}(x_i^{(j)}).$$

3 Main results

In this section, we will show that the set of all completely regular elements and the set of all intra-regular elements in $Hyp_G(2)$ are the same. First, we recall definitions of regular and completely regular elements and then we characterize all completely regular elements in $Hyp_G(2)$.

Definition 3 [6] An element α of a semigroup S is called *regular* if there exists $x \in S$ such that $\alpha x \alpha = \alpha$.

Definition 4 [9] An element a of a semigroup S is called *completely regular* if there exists $b \in S$ such that a = aba and ab = ba.

```
\begin{split} \text{Let } \sigma_t \in \text{Hyp}_G(2). \text{ We denote} \\ R_1 &:= \{\sigma_{x_i} | x_i \in X\}; \\ R_2 &:= \{\sigma_t | \operatorname{var}(t) \cap X_2 = \emptyset\}; \\ R_3 &:= \{\sigma_t | t = f(t_1, t_2) \text{ where } t_i = x_j \text{ for some } i, j \in \{1, 2\} \text{ and } \operatorname{var}(t) \cap X_2 = \{x_j\}\} \cup \{\sigma_{f(x_1, x_2)}, \ \sigma_{f(x_2, x_1)}\} \\ & \text{CR}(R_3) := \{\sigma_t | t = f(t_1, t_2) \text{ where } t_i = x_i \text{ for some } i \in \{1, 2\} \text{ and } \operatorname{var}(t) \cap X_2 = \{x_i\}\} \cup \{\sigma_{f(x_1, x_2)}, \ \sigma_{f}(x_2, x_1)\}. \end{split}
```

It was shown in [10] and [3] that $\bigcup_{i=1}^{\infty} R_i$ is the set of all regular elements in $\text{Hyp}_G(2)$ and $\text{CR}(\text{Hyp}_G(2)) := \text{CR}(R_3) \cup R_1 \cup R_2$ is the set of all completely regular elements in $\text{Hyp}_G(2)$, respectively.

Definition 5 [9] An element a of a semigroup S is called *intra-regular* if there is $b \in S$ such that a = baab.

Theorem 2 [3] Let S be a semigroup and $a \in S$. If a is completely regular, then a is intra-regular.

Corollary 2 [3] Let $\sigma_t \in CR(Hyp_G(2))$. Then σ_t is intra-regular in $Hyp_G(2)$.

Lemma 2 Let $t = f(t_1, x_1)$ where $t_1 \in W_{(2)}(X) \setminus X_2$. Then σ_t is not intra-regular in $\mathsf{Hyp}_G(2)$.

Proof. Let $\mathbf{t} = \mathbf{f}(\mathbf{t}_1, \mathbf{x}_1)$ where $\mathbf{t}_1 \in W_{(2)}(X) \setminus X_2$. For each $\mathbf{u} \in X$, we get $\sigma_{\mathbf{u}} \circ_{\mathbf{G}} \sigma_{\mathbf{t}}^2 \circ_{\mathbf{G}} \sigma_{\mathbf{v}} \neq \sigma_{\mathbf{t}}$ and $\sigma_{\mathbf{v}} \circ_{\mathbf{G}} \sigma_{\mathbf{t}}^2 \circ_{\mathbf{G}} \sigma_{\mathbf{u}} \neq \sigma_{\mathbf{t}}$ for all $\mathbf{v} \in W_{(2)}(X)$. Let $\mathbf{u}, \mathbf{v} \in W_{(2)}(X) \setminus X$ where $\mathbf{u} = \mathbf{f}(\mathbf{u}_1, \mathbf{u}_2)$ and $\mathbf{v} = \mathbf{f}(\mathbf{v}_1, \mathbf{v}_2)$ for some $\mathbf{u}_1, \mathbf{u}_2, \mathbf{v}_1, \mathbf{v}_2 \in W_{(2)}(X)$, we will show that $\sigma_{\mathbf{u}} \circ_{\mathbf{G}} \sigma_{\mathbf{t}}^2 \circ_{\mathbf{G}} \sigma_{\mathbf{v}} \neq \sigma_{\mathbf{t}}$. If $\mathbf{t}_1 \in X \setminus X_2$ then $\mathbf{x}_2 \notin \mathrm{var}(\mathbf{t})$. By Theorem 1, $\mathbf{x}_1 \notin \mathrm{var}(\widehat{\sigma}_{\mathbf{t}}[\mathbf{t}]) = \mathrm{var}(\sigma_{\mathbf{t}}^2)$, i.e. $\mathrm{var}(\sigma_{\mathbf{t}}^2) \cap X_2 = \emptyset$. Hence $\sigma_{\mathbf{u}} \circ_{\mathbf{G}} \sigma_{\mathbf{t}}^2 \circ_{\mathbf{G}} \sigma_{\mathbf{v}} \neq \sigma_{\mathbf{t}}$. If $\mathbf{t}_1 \in W_{(2)}(X) \setminus X$,

$$\sigma_t^2(f) = \widehat{\sigma}_t[t] = S^2(f(t_1, x_1), \widehat{\sigma}_t[t_1], x_1) = f(w_1, w_2)$$

where $w_1 = S^2(t_1, \widehat{\sigma}_t[t_1], x_1)$ and $w_2 = S^2(x_1, \widehat{\sigma}_t[t_1], x_1) = \widehat{\sigma}_t[t_1]$. Let $w = f(w_1, w_2)$. Since $t_1 \notin X$, so $w_1 \notin X$ and $w_2 = \widehat{\sigma}_t[t_1] \notin X$. Consider

$$\sigma_t^2\circ_G\sigma_\nu(f)=\widehat{\sigma}_w[\nu]=S^2(f(w_1,w_2),\widehat{\sigma}_w[\nu_1],\widehat{\sigma}_w[\nu_2])=f(s_1,s_2)$$

where $s_i = S^2(w_i, \widehat{\sigma}_w[v_1], \widehat{\sigma}_w[v_2])$ for all $i \in \{1, 2\}$. Since $w_i \notin X$ for all $i \in \{1, 2\}$, $s_i \notin X$ for all $i \in \{1, 2\}$. Then $\widehat{\sigma}_u[s_i] \notin X$ for all $i \in \{1, 2\}$. Consider

$$\sigma_u\circ_G\sigma_t^2\circ_G\sigma_v(f)=S^2(f(u_1,u_2),\widehat{\sigma}_u[s_1],\widehat{\sigma}_u[s_2])=f(r_1,r_2)$$

where $r_i = S^2(u_i, \widehat{\sigma}_u[s_1], \widehat{\sigma}_u[s_2])$ for all $i \in \{1, 2\}$. If $u_2 \in W_{(2)}(X) \setminus X$ or $u_2 \in X_2$ then $r_2 \notin X$. If $u_2 \in X \setminus X_2$ then $u_2 = r_2$. So $r_2 \neq x_1$. Therefore $\sigma_u \circ_G \sigma_t^2 \circ_G \sigma_v \neq \sigma_t$. Hence σ_t is not intra-regular in $\text{Hyp}_G(2)$.

Lemma 3 Let $t = f(x_2, t_2)$ where $t_2 \in W_{(2)}(X) \setminus X_2$. Then σ_t is not intra-regular in $\text{Hyp}_G(2)$.

Proof. The proof is similar to the proof of Lemma 2.

Lemma 4 Let $t = f(x_1, t_2)$ where $t_2 \in W_{(2)}(X) \setminus X_2$ and $x_2 \in var(t)$. Then σ_t is not intra-regular in $Hyp_G(2)$.

Proof. Assume that $t = f(x_1, t_2)$ where $t_2 \in W_{(2)}(X) \setminus X_2$ and $x_2 \in \text{var}(t)$. Let $m = \max\{\text{depth}^t(x_2^{(i)}) | x_2^{(i)} \in \text{var}(t) \text{ for some } i \in \mathbb{N}\}$ (*), then there exists $h \in \mathbb{N}$ such that $\text{seq}^t(x_2^{(h)}) = (i_1, i_2, \dots, i_m)$ where $i_1, i_2, \dots, i_m \in \{1, 2\}$. It means $x_2^{(h)} = \pi_{i_m} \circ \pi_{i_{m-1}} \circ \dots \circ \pi_{i_1}(t)$ where maps $\pi_{i_1}, \dots, \pi_{i_{m-1}}, \pi_{i_m}$ are defined on $W_{(2)}(X) \setminus X_2$ to $W_{(2)}(X)$. Since $x_2^{(h)} \in \text{var}(t_2)$, $\pi_{i_1}(t) = t_2$, i.e. $i_1 = 2$. So $\text{seq}^t(x_2^{(h)}) = (2, i_2, \dots, i_m)$. By Theorem 1, there is $x_2^{(h,h_1)} \in \text{var}(\widehat{\sigma}_t[t]) = \text{var}(\sigma_t^2)$ for some $h_1 \in \mathbb{N}$ such that

$$\operatorname{seq}^{\sigma_t^2}(x_2^{(h,h_1)}) = (2,i_2,\ldots,i_m,\alpha_{i_2},\ldots,\alpha_{i_m})$$

where $(2, i_2, \ldots, i_m) = \operatorname{seq}^t(x_2^{(h)})$ and a_{i_z} is a sequence of natural numbers such that $(a_{i_z}) = \operatorname{seq}^s(x_{i_z}^{(h_{i_z})})$ for some $h_{i_z} \in \mathbb{N}$ and for all $2 \le z \le m$. [Note: $x_2^{(h)}$ is a variable x_2 occurring in the h^{th} order of t (from the left) and $x_2^{(h,h_1)}$ is a variable $x_2^{(h)}$ occurring in the h_1^{th} order of σ_t^2 (from the left)]. Instead of a sequence a_{i_2}, \ldots, a_{i_m} , we write a sequence of natural numbers w_1, \ldots, w_d for some $d \in \mathbb{N}$ and $w_1, \ldots, w_d \in \{1, 2\}$. Then

$$\operatorname{seq}^{\sigma_{\mathfrak{t}}^2}(x_2^{(\mathfrak{h},\mathfrak{h}_1)}) = (2,\mathfrak{i}_2,\ldots,\mathfrak{i}_{\mathfrak{m}},w_1,\ldots,w_d).$$

Suppose that there exist $u, v \in W_{(2)}(X)$ such that $\sigma_u \circ_G \sigma_t^2 \circ_G \sigma_v = \sigma_t$ (**), i.e. $u = f(x_1, u_2)$ and $v = f(x_1, v_2)$ for some $u_2, v_2 \in W_2(X)$ where $x_2 \in \mathrm{var}(u_2) \cap \mathrm{var}(v_2)$. Choose $x_2^{(j)} \in \mathrm{var}(v)$ for some $j \in \mathbb{N}$. Then $\mathrm{seq}^v(x_2^{(j)}) = (2, p_1, \dots, p_q)$ for some $p_1, \dots, p_q \in \{1, 2\}$ and for some $q \in \mathbb{N}$. By Theorem 1, there is $x_2^{(j,j_1)} \in \mathrm{var}(\sigma_t^2 \circ_G \sigma_v)$ for some $j_1 \in \mathbb{N}$ such that

$$\operatorname{seq}^{\sigma_t^2\circ_G\sigma_\nu}(x_2^{(j,j_1)}) = (2,i_2,\ldots,i_m,w_1,\ldots,w_d,\alpha_{p_1},\ldots,\alpha_{p_q})$$

where $(2, i_2, \ldots, i_m, w_1, \ldots, w_d) = \operatorname{seq}^{\sigma_t^2}(x_2^{(h,h_1)})$ and \mathfrak{a}_{p_z} is a sequence of natural numbers such that $(\mathfrak{a}_{p_z}) = \operatorname{seq}^s(x_{p_z}^{(l_z)})$ for some $\mathfrak{l}_z \in \mathbb{N}$ and for all $1 \leq z \leq q$. [Note: $\mathfrak{x}_2^{(j)}$ is a variable \mathfrak{x}_2 occurring in the \mathfrak{j}^{th} order of \mathfrak{v} (from the left) and $\mathfrak{x}_2^{(j,j_1)}$ is a variable $\mathfrak{x}_2^{(j)}$ occurring in the \mathfrak{j}_1^{th} order of $\mathfrak{a}_t^2 \circ_G \mathfrak{a}_v$ (from the left)]. Instead of a sequence $\mathfrak{a}_{p_1}, \ldots, \mathfrak{a}_{p_q}$ we write a sequence of natural numbers $\mathfrak{w}_{d+1}, \ldots, \mathfrak{w}_k$ for some $k \in \mathbb{N}$ and $\mathfrak{w}_{d+1}, \ldots, \mathfrak{w}_k \in \{1, 2\}$. Then

$$\operatorname{seq}^{\sigma_t^2\circ_G\sigma_\nu}(x_2^{(j,j_1)})=(2,i_2,\ldots,i_m,w_1,\ldots,w_d,w_{d+1},\ldots,w_k).$$

By Theorem 1, we have $x_2^{(j,j_1,j_2)} \in \operatorname{var}(\sigma_u \circ_G \sigma_t^2 \circ_G \sigma_v)$ for some $j_2 \in \mathbb{N}$. By Corollary 1, we have

$$\begin{split} \operatorname{depth}^{\sigma_{u} \circ_{G} \sigma_{t}^{2} \circ_{G} \sigma_{v}}(x_{2}^{(j,j_{1},j_{2})}) &= \operatorname{depth}^{u}(x_{2}^{(b_{1})}) + \operatorname{depth}^{u}(x_{i_{2}}^{(b_{2})}) + \ldots + \operatorname{depth}^{u}(x_{i_{m}}^{(b_{m})}) \\ &+ \operatorname{depth}^{u}(x_{w_{1}}^{(b_{m+1})}) + \ldots + \operatorname{depth}^{u}(x_{w_{d}}^{(b_{m+d})}) \\ &+ \operatorname{depth}^{u}(x_{w_{d+1}}^{(b_{m+d+1})}) + \ldots + \operatorname{depth}^{u}(x_{w_{k}}^{(b_{m+d})}) \\ &> m \end{split}$$

for some $b_1, \ldots, b_m, b_{m+1}, \ldots, b_{m+d}, b_{m+d+1}, \ldots, b_{m+k} \in \mathbb{N}$, which contradicts to (*) and (**). Therefore σ_t is not intra-regular in $Hyp_G(2)$.

Lemma 5 Let $t = f(t_1, x_2)$ where $t_1 \in W_{(2)}(X) \setminus X_2$ and $x_1 \in \mathrm{var}(t)$. Then σ_t is not intra-regular in $\mathsf{Hyp}_G(2)$.

Proof. The proof is similar to the proof of Lemma 4.

Lemma 6 If $t = f(t_1, t_2)$ where $t_1, t_2 \in W_{(2)}(X) \setminus X_2$ and $var(t) \cap X_2 \neq \emptyset$ then σ_t is not intra-regular in $Hup_G(2)$.

Proof. Let $t = f(t_1, t_2)$ where $t_1, t_2 \in W_{(2)}(X) \setminus X_2$ and $var(t) \cap X_2 \neq \emptyset$. Case1: $var(t) \cap X_2 = \{x_i\}$ for some $i \in \{1, 2\}$. Let $j \in \{1, 2\}$ where $i \neq j$.

If j is occurring in $\operatorname{seq}^t(x_i^{(h)})$ for all $x_i^{(h)} \in \operatorname{var}(t)$ then $\operatorname{var}(\sigma_t^2) \cap X_2 = \emptyset$, i.e. $\sigma_u \circ_G \sigma_t^2 \circ_G \sigma_v \neq \sigma_t$ for all $u, v \in W_{(2)}(X)$.

If j is not occurring in $\operatorname{seq}^t(x_i^{(h)})$ for some $x_i^{(h)} \in \operatorname{var}(t)$ then $\operatorname{seq}^t(x_i^{(h)}) = (i_1, i_2, \ldots, i_m)$ where $i_1, i_2, \ldots, i_m \in \{i\}$ for some $m \in \mathbb{N}$. We can prove similar to the proof of Lemma 4, then $\sigma_u \circ_G \sigma_t^2 \circ_G \sigma_v \neq \sigma_t$ for all $u, v \in W_{(2)}(X)$.

Case2: $var(t) \cap X_2 = X_2$. We can prove similar to the proof of Lemma 4, then $\sigma_u \circ_G \sigma_t^2 \circ_G \sigma_v \neq \sigma_t$ for all $u, v \in W_{(2)}(X)$.

Therefore σ_t is not intra-regular in $Hyp_G(2)$.

Theorem 3 $CR(Hyp_G(2))$ is the set of all intra-regular elements in $Hyp_G(2)$.

Proof. By Corollary 2 and by Lemma 2 to 6.

Acknowledgements

This research was supported by Chiang Mai University, Chiang Mai 50200, Thailand.

References

- [1] J. Aczèl, Proof of a Theorem of Distributive Type Hyperidentities, *Algebra Universalis*, **1** (1971), 1–6.
- [2] V.D. Belousov, System of Quasigroups with Generalized Identities, *Uspechi Mat. Nauk.*, **20** (1965), 75–146.
- [3] A. Boonmee, S. Leeratanavalee, All Completely Regular Elements in Hyp_G(n), Discussiones Mathematicae General Algebra and Applications, 33 (2013), 211–219.
- [4] A. Boonmee, S. Leeratanavalee, Factorisable Monoid of Generalized Hypersubstitutions of Type τ = (n), Acta Mathematica Universitatis Comenianae, 85 (1) (2016), 1–7.

- [5] K. Denecke, D. Lau, R. Pöschel, D. Schweigert, Hyperidentities, Hyperequational Classes and Clone Congruences, Contribution to General Algebra 7, Verlag Hölder-Pichler-Temsky, Wein, (1991), 97–118.
- [6] J.M. Howie, Fundamentals of Semigroup Theory, Academic Press, London, (1995).
- [7] S. Leeratanavalee, K. Denecke, Generalized Hypersubstitutions and Strongly Solid Varieties, General Algebra and Applications, Proc. of the "59th Workshop on General Algebra", "15th Conference for Young Algebraists Potsdam 2000", Shaker Verlag, (2000), 135–145
- [8] W. D. Neumann, Mal'cev Conditions, Spectra and Kronecker Product, J. Austral. Math. Soc. (A), 25 (1987), 103–117.
- [9] M. Petrich, N. R. Reilly, Completely Regular Semigroups, John Wiley and Sons, Inc., New York, (1999).
- [10] W. Puninagool, S. Leeratanavalee, The Monoid of Generalized Hypersubstitutions of type $\tau = (n)$, Discussiones Mathematicae General Algebra and Applications, **30** (2010), 173–191.
- [11] Sl. Shtrakov, Essential Variables and Positions in Terms, *Algebra Universalis*, **61** (3-4) (2009), 381–397.
- [12] Sl. Shtrakov, J. Koppitz, Stable Varieties of Semigroups and Groupoids, Algebra Universalis, 75 (1) (2016), 85–106.
- [13] W. Taylor, Hyperidentities and Hypervarieties, Aequationes Math., 23 (1981), 111–127.

Received: September 5, 2016