

 Acta Universitatis Sapientiae
 Electrical and Mechanical Engineering, 3 (2011) 51-60

Adaptation of Energy Production to Forecast
Values Using External Storage

Sándor KAZI

Department of Computer Science,
Faculty of Electrical Engineering and Informatics,

 Budapest University of Technology and Economics, Budapest, Hungary
e-mail: kazi@cs.bme.hu

Manuscript received November 20, 2011; revised December 20, 2011.

Abstract: This paper introduces a real-world optimization task of electrical energy
production. Electrical energy production and consumption relies in a large measure on
forecasts, the main difference among countries and among sectors is in the person or
organization who is supposed to make predictions. In some cases it is the responsibility of
the consumer or of the energy producer, in other cases there are specialized companies for
hire to make these forecasts (for ex. “Regelzonenführer”-s in Austria). This paper
considers the problem when the forecast is already given by the producer and they have to
predict almost the exact amount of electrical energy to be produced if they want to avoid
penalties. The problem in question is from a sector and from a country (wind turbines,
Hungary) where the forecast is made by the energy producer and large differences
between the predicted and the actually produced values are penalized. The optimization
problem is to use a storage facility effectively enough to increase the income of a wind
farm by the later submission of previously overproduced electrical energy. This paper
introduces this problem in details, and presents solutions for it. The steps to create a
reinforcement learning solution for this kind of a stochastic problem are presented besides
a simple and effective solution for this exact task. The reinforcement learning solution
consists of a modeling and an algorithm application step, and also of the incremental steps
to make the solution more effective by specialization.

Keywords: Wind energy, optimization, energy storage, reinforcement learning.

1. Detailed specification

In some countries energy producer companies are obligated to submit a
forecast of their next production period. This is a reasonable expectation,

52 S. Kazi

because the buyer (in most cases an electricity service provider) needs to know
how much energy can they count on. Because of that, this schedule has to be as
accurate as possible. Sometimes the companies are motivated by rewards or
penalties according to the accuracy of their predictions. If they apply a storage
facility they can balance the over- and underproduction by storing and
retrieving energy. This paper is about the strategy of effectively using storage to
enhance productivity and increase income by adaptation to the previous
prediction and by not being penalized.

The available data of the era is from a wind farm (Mosonszolnok, Hungary;
seven turbines), the owners of which have to submit predictions daily for each
quarter hour. The data records are historical and consist of a timestamp (interval
identifier), a forecast and the produced value.

The environment in question has law enforced buying prices for wind
energy. If the difference between the prediction and the production is less than a
previously specified threshold (currently that is fifty percent of the forecast), the
buying price is approximately 0.1€ per kilowatt-hour. If the produced value is
out of the margin the company has to pay a 0.04€ penalty per every kilowatt
hour of the difference between the forecast and the production; the buying price
remains the same.

Because of the structure of the data, we have to make a conversion from the
real life control problem into a discrete time decision problem. To reduce the
original optimization task into this kind of a mathematical form we should make
assumptions and disregard some components of it.

We disregard the continuance of the quarter hour periods – we assume that
decisions have to be made at the end of these periods where the forecast and the
produced value are known. At the end of each period we can decide the
submission rate of the production (how much should be stored and not
submitted) – this is not a real life assumption but a reinforcement learning
method designed to cope with this kind of problems can be a good
approximation of a continuous time alternative.

We disregard the nature of the storage technology (dissipation and
amortization) for this time, to test only the algorithms. There are three causes
for this decision: the “continuity assumption” does not really support this kind
of information (lifetime also depends on charging speed), this factor can also be
considered later by altering the reward function, and the third cause is that it
would be another stochastic factor added to the problem. It should be an
independent parameter in the decision of whether it is reasonable or not to apply
a storage facility, approximate costs can be calculated for these factors. The
storage technology was considered only through its boundaries. Corresponding
rated power and discharge time parameters belong to a storage which can be
either an accumulator (NaS-accumulator for example) or pumped storage

 Adaptation of Energy Production to Forecast Values Using External Storage 53

facility (energy stored in the potential energy of water). These parameters are
technology-dependent. In a step (quarter hour) the level of the storage can only
be changed by the quarter of its rated capacity.

The algorithms consider the forecast to be fixed for each quarter hour and it
is also considered out of scope: we assume that the prediction (which is based
on meteorological data and personal expertise) is as close as possible. The aim
of these algorithms is not to adjust the prediction but to develop a strategy to
adjust to the forecasts using storage.

With these assumptions we have a discrete time environment, a decision is
needed each step which defines the exact values to sell and to store into or to
use up from the storage.

2. Reinforcement learning and modeling

Those who are not familiar with the concept of reinforcement learning can
check the online1 or printed version of an introduction book written by Richard
S. Sutton and Andrew G. Barto [1]. This book clarifies the main ideas and
methods of the area by the use of both mathematical reasoning and examples.

To apply a reinforcement learning method a Markov decision process is
required. In most of the cases the aim of the algorithms is to discover the
uncertain parts of the model or to develop a “valuable” strategy.

With the assumptions made in the previous section we have a discrete time
stochastic environment which cannot be affected by our decisions, but has its
own internal states and transitions among them. If we expand the
“environment” with the current state of our storage it can be modeled with a
discrete time Markov chain (the Markov-property is present). With actions
taken into consideration it implies Markov decision processes (MDP for short)
[1]. The “expanded environment” denomination mentioned above also has
states, but they can be partly affected by our decisions.

Figure 1: A common notation for a Markov decision process.

1 An HTML version of the book can be found at the webpage of the author:

http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html

54 S. Kazi

It was clarified above, that this problem can be modeled by a Markov
decision process. The next step in the modeling phase is to specify the
parameters describing the state, the action and the reward (or the reward
function). It is clear that if these parameters are given the parts missing from the
figure above are the transition probabilities (P) and the policy (π). The policy is
driven by the algorithms so it is not a question of modeling, but the probabilities
clearly depend on the definition of states and actions.

To specify the Markov decision process we have to assign meaning for the
state and action parts. The reward function can be different for each algorithm;
therefore it will be defined among the algorithms and in the evaluation section.
The state can contain most of the information about the “expanded”
environment like: previous and current production and forecast values, current
storage level and also forecasts for the upcoming intervals. It is a matter of
modeling what we choose to represent a state. In most of the following methods
the state contains all the previously mentioned information: it has a backward
window for forecasts and production, a forward window for forecasts and
contains the actual values of the storage, forecast and produced energy.

It is clear that the action has to represent the choice we make. It can be
specified in a few equivalent ways. I chose it to be the one of the most similar
ones to the state description: the action is represented by the new storage level
(caused by our choice).

After examination a person could notice that in this environment we have
more information than in a general case. We can calculate the rewards for all
actions that we did not choose – it can be a great deal of information for a
learning algorithm and lead to faster convergence.

3. Algorithms

1. Algorithms “by the book” [1]

Algorithm planning can be an iterative process, as it was this time. There
were a few less successful algorithms in coping with the above described
problem, and a few which can be counted as a success. The first algorithm I
used to test the applicability of reinforcement learning on the task was a well-
known dynamic programming method [1]. This method had two flaws to fall
back on: the accuracy of the transition probabilities, and the fact that it needs
final (exit) states or an episodic MDP to calculate the reward backwards. After a
conversional step to an episodic MDP (1 episode ~ one or a few days) the only
uncertainty is the lack of information about transitions. This information can be
gathered runtime, but the granularity (20000 different production values) and
the quantity (9000 rows) of the data do not make it possible to gather enough

 Adaptation of Energy Production to Forecast Values Using External Storage 55

empirical information about the transition probabilities. Because of these factors
I applied quantification in my dynamic programming method, which is
compromise, because the margin is stiff, only a difference of 1kWh-s can make
a difference.

I also applied an R-learning algorithm [1] on the model, which is an average
reward maximization method. The flaw of the model is that it can be used
effectively only if the forecast or the margin width is constant. The lack of
information about transition probabilities is also present.

2. SARSA algorithms

The methods presented above had their flaws which made them ineffective.
The algorithm class I applied next is the SARSA approach which is a different
point of view among reinforcement learning methods. It considers state-action-
reward-state-action tuples and operates by maintaining a value estimate for
state-action pairs (instead of states). This algorithm in its basic form [1] still has
the flaw that it needs a good estimate of transition probabilities. We still cannot
provide these estimates to be accurate enough because of the quantity of the
data. Yet again, quantification is an option, but it still makes the approximate
values unreliable.

To improve the SARSA solution by the means of the learning process itself I
transformed it into an algorithm using eligibility traces (SARSA(λ)). The
eligibility traces are supposed to make the learning process faster by using the
information from one step to update more than one value estimates. It is also
important to shake off the problem of the unknown probabilities. It is easy to
see, that close values represents similar states and actions. This fact calls for
exploitation of generalization. Function approximation is a common technique
for this kind of task, the linear, gradient-descent SARSA(λ) (for an algorithm
using binary features, check [1]) suits these expectations. The effectiveness of
linear, gradient-descent function approximation methods depends on the
selection method of features.

The method which brought success is a linear, gradient-descent method
using Gauss-functions as features. We need a method to select the appropriate
feature which divides the state-action space by the features how they can best
express the similarity among the state-action pairs. If we divide the space in
every dimension for a grid-like Gauss-function placement, we will be stricken
by the curse of dimensionality (for n attributes representing the state-action
space, we need kn features to set two values in each dimension). The number of
the features is clearly a factor in the runtime of an algorithm, so it is
recommended to keep the number of features lower. There are references on the
effectiveness of random feature selection [2]. This method chooses a specified
number of features randomly from the set of possible values. For the random

56 S. Kazi

selection to be enough, the state and the action representations are also needed
to be bounded in every dimension. Luckily, the building blocks of the state and
the action representations are bounded variables or a realistic upper and lower
bound can be selected. According to the dataset, the upper bound production
value is approximately 25000 kWh, but it can be specified as 20000 kWh
because with a probability of 0.98 it is also an upper bound. Disregarding very
rare events in the feature selection can lead to a better model.

The pseudo-code for the first version of my SARSA(λ) algorithm can be
seen on the figure below. The xi-s are the Gauss functions used for the
calculations of φ vectors, Iacc is an indicator distribution (equals to 1 in case of
“accumulating traces” and to 0 in case of “replacing traces” mode [1]), , is
the scalar product of the two parameters. All other notations have the same
meaning as in the original SARSA(λ) variant [1].

Figure 2: The pseudo-code of a linear, gradient descent SARSA(λ) solution

with eligibility traces and Gauss features.

 Adaptation of Energy Production to Forecast Values Using External Storage 57

As already noted there is more information about the process itself than
usually. We can calculate the rewards not only for the chosen action but for all
of them. If we make the adjustment of eligibility traces according to all of the
actions, not only to the chosen action, it can lead to a better approximation. This
is a manipulation of the tenth line of the pseudo-code: instead of the addition of
one specific (chosen action) φ vector, the added value is the average of all φ
vectors for each eligible action.

The feature selection method can also be specialized. One method of
specialization is that the distribution used for feature center generation is not a
uniform distribution but the distribution of the data or a special distribution
which is dense where we want to distinguish states more and sparse where we
do not want to. There is another similar method to specialize: we can use taller
(and narrower) Gaussian functions in the dimension where it is more important
to distinguish states and lower ones otherwise. These two methods can lead to a
better feature generation algorithm.

Another modification to upgrade the performance of the algorithm is to
avoid penalties by narrowing the set of the actions for each state. If we avoid
penalties every time we can, it is a greedy-like minimization of the penalty, and
by that a greedy-like maximization of income. The action to choose is still not
trivial, so the optimization problem will change, but henceforward needs a
solution. This modification can be placed between the twelfth line and the
thirteenth line (or we can adjust the model itself) as a step narrowing the set of
actions eligible at the current state.

 3. Decision tree

The above mentioned greedy-like method had been tested before the success
of the SARSA variants. We can call this simple algorithm a decision tree
method. Let there be a preferred storage level (cpref), set the new storage level
(action) to this level. Now we are going to fit it into the specification (if it is
required) by moving it backwards in the direction of the previous storage level.
Let the possible action set be the set of all actions possible in all states (from the
minimum level, to the maximum). Narrow this action state to the reachable
actions: the maximum difference between the actual and the next state of the
storage is the quarter of the rated power parameter. Then choose the action from
set which is the nearest to the preferred storage level.

4. Evaluation and conclusion

We have the forecasts and real produced values of three months which
leaves us with 8736 records having 5506 different forecast and 1672 different
production values from the interval between 0 and 24000. The modus of each is

58 S. Kazi

0 (1513 and 1617 times), because of the predicted “windless” intervals and
maintenance shutdowns.

Long zero sequences are not really useful for comparison: if we predicted
zero we are penalized if we sell any of our production, if we produce zero, than
we have to use energy from the storage to occasionally avoid penalty. Both
ways, we can get stuck on a full or an empty storage while the zeros are still
coming. On the other hand, if the prediction is rarely bad for a long interval (or
commute between high and low) then the decision tree method would be
absolutely enough to solve the problem.

It’s visible on the forecast and production comparison diagrams, that there is
a positive correlation between the two parameters, so it is not impossible to
develop a strategy, but it is also a warning of “commute” mentioned above.

The methods described above were tested using three different reward
functions. The first type of reward was the exact income which could be
negative in case of a large underproduction. The second type of reward was an
indicator-like function: 1 if the there are no penalties, -1 otherwise. The third
type was similar to the second, but it was multiplied by the forecast value.

Figure 3: Forecast and production values compared to each other for each test set

(horizontal axis represents the number of the interval, the vertical axis is the
production or forecast value in kWhs).

 Adaptation of Energy Production to Forecast Values Using External Storage 59

But why do they represent the quality of the decision? The answer is trivial
for the first one, because it is the income. The second one is not as obvious, and
not always represents the real value of a decision, because a penalty can be
associated with different values from a large interval. The third one represents
the lost value by the penalty – it is twice as the margin size, so it is twice as the
value which is sold or not sold on the highest price corresponding to the fact
that we are penalized or not (if our prediction was 1000 and we sell 1500 we are
not penalized, but if we sell another 500, then we get a penalty for the other 500
too, so we lose an amount directly proportional to the forecast).

More than one test is required to make assumptions, so I created three
smaller histories (1500 rows each) and tested the SARSA and decision tree
methods I created to cope with the problem. I also tested the “by the book”
methods mentioned in the previous section, but the flaws already mentioned
made them ineffective. R-learning performed better than dynamic programming
(because of that, only R-learning is shown on the diagrams), but it still did not
bring success. The biggest problem with them was the loss of accuracy because
of the quantification.

Figure 4: The sum of additional income over time divided by the original value

(M stands for “multiple adjustments”, P stands for “penalty avoidance”).

60 S. Kazi

There are higher values at the begging of two charts, the cause of these is the
fact that one penalty avoidance step at the beginning can bring a huge additional
income pro rata. All of the lines fall back after that, and stay on the displayed
interval.

The best efficiency is presented by the decision tree algorithm, it brings from
five to nine percent in addition, which is more than 8000€ for this less than 16
days long interval. Then it is not a surprise that penalty avoidance is also
rewarding as a part of a SARSA algorithm: the two reinforcement learning
algorithms using this bring approximately half of the success of the decision
tree algorithm. The other tree algorithm types are slightly above (the other
SARSA variants) or below (R-learning) 0.

Conclusion

The decision tree algorithm is simple, but effective. The SARSA algorithms
with this upgrade can reach a reasonable additional income. It is clear that on
these datasets the decision tree algorithm is better in this discrete time approach.

To make a real-world application the continuity assumption of the
specification section has to be omitted. There are reinforcement learning
methods to handle a continuous time problems ([3], [4]) and in these cases this
model can be a good discrete model to start at.

References

[1] Sutton, R. S., Barto, A. G., “Reinforcement learning: An introduction”, MIT Press,
Cambridge, MA, 1998.

[2] Szepesvári, Cs., “Reinforcement learning: dynamic programming”, University of Alberta,
MLSS’08, Kioloa, 2008.

[3] Bradtke, S. J., Duff, M. O., “Reinforcement Learning In Continuous Time and Space”,
Advances in Neural Information Processing Systems, MIT Press, pp. 393-400, 1994.

[4] Doya, K., “Reinforcement Learning In Continuous Time and Space”, Neural Computation,
vol. 12, pp. 219-245, 2000.

