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Abstract: This paper introduces a real-world optimization task of electrical energy 
production. Electrical energy production and consumption relies in a large measure on 
forecasts, the main difference among countries and among sectors is in the person or 
organization who is supposed to make predictions. In some cases it is the responsibility of 
the consumer or of the energy producer, in other cases there are specialized companies for 
hire to make these forecasts (for ex. “Regelzonenführer”-s in Austria). This paper 
considers the problem when the forecast is already given by the producer and they have to 
predict almost the exact amount of electrical energy to be produced if they want to avoid 
penalties. The problem in question is from a sector and from a country (wind turbines, 
Hungary) where the forecast is made by the energy producer and large differences 
between the predicted and the actually produced values are penalized. The optimization 
problem is to use a storage facility effectively enough to increase the income of a wind 
farm by the later submission of previously overproduced electrical energy. This paper 
introduces this problem in details, and presents solutions for it. The steps to create a 
reinforcement learning solution for this kind of a stochastic problem are presented besides 
a simple and effective solution for this exact task. The reinforcement learning solution 
consists of a modeling and an algorithm application step, and also of the incremental steps 
to make the solution more effective by specialization. 
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1. Detailed specification 

In some countries energy producer companies are obligated to submit a 
forecast of their next production period. This is a reasonable expectation, 
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because the buyer (in most cases an electricity service provider) needs to know 
how much energy can they count on. Because of that, this schedule has to be as 
accurate as possible. Sometimes the companies are motivated by rewards or 
penalties according to the accuracy of their predictions. If they apply a storage 
facility they can balance the over- and underproduction by storing and 
retrieving energy. This paper is about the strategy of effectively using storage to 
enhance productivity and increase income by adaptation to the previous 
prediction and by not being penalized. 

The available data of the era is from a wind farm (Mosonszolnok, Hungary; 
seven turbines), the owners of which have to submit predictions daily for each 
quarter hour. The data records are historical and consist of a timestamp (interval 
identifier), a forecast and the produced value. 

The environment in question has law enforced buying prices for wind 
energy. If the difference between the prediction and the production is less than a 
previously specified threshold (currently that is fifty percent of the forecast), the 
buying price is approximately 0.1€ per kilowatt-hour. If the produced value is 
out of the margin the company has to pay a 0.04€ penalty per every kilowatt 
hour of the difference between the forecast and the production; the buying price 
remains the same. 

Because of the structure of the data, we have to make a conversion from the 
real life control problem into a discrete time decision problem. To reduce the 
original optimization task into this kind of a mathematical form we should make 
assumptions and disregard some components of it. 

We disregard the continuance of the quarter hour periods – we assume that 
decisions have to be made at the end of these periods where the forecast and the 
produced value are known. At the end of each period we can decide the 
submission rate of the production (how much should be stored and not 
submitted) – this is not a real life assumption but a reinforcement learning 
method designed to cope with this kind of problems can be a good 
approximation of a continuous time alternative. 

We disregard the nature of the storage technology (dissipation and 
amortization) for this time, to test only the algorithms. There are three causes 
for this decision: the “continuity assumption” does not really support this kind 
of information (lifetime also depends on charging speed), this factor can also be 
considered later by altering the reward function, and the third cause is that it 
would be another stochastic factor added to the problem. It should be an 
independent parameter in the decision of whether it is reasonable or not to apply 
a storage facility, approximate costs can be calculated for these factors. The 
storage technology was considered only through its boundaries. Corresponding 
rated power and discharge time parameters belong to a storage which can be 
either an accumulator (NaS-accumulator for example) or pumped storage 
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facility (energy stored in the potential energy of water). These parameters are 
technology-dependent. In a step (quarter hour) the level of the storage can only 
be changed by the quarter of its rated capacity. 

The algorithms consider the forecast to be fixed for each quarter hour and it 
is also considered out of scope: we assume that the prediction (which is based 
on meteorological data and personal expertise) is as close as possible. The aim 
of these algorithms is not to adjust the prediction but to develop a strategy to 
adjust to the forecasts using storage. 

With these assumptions we have a discrete time environment, a decision is 
needed each step which defines the exact values to sell and to store into or to 
use up from the storage. 

2. Reinforcement learning and modeling 

Those who are not familiar with the concept of reinforcement learning can 
check the online1 or printed version of an introduction book written by Richard 
S. Sutton and Andrew G. Barto [1]. This book clarifies the main ideas and 
methods of the area by the use of both mathematical reasoning and examples. 

To apply a reinforcement learning method a Markov decision process is 
required. In most of the cases the aim of the algorithms is to discover the 
uncertain parts of the model or to develop a “valuable” strategy. 

With the assumptions made in the previous section we have a discrete time 
stochastic environment which cannot be affected by our decisions, but has its 
own internal states and transitions among them. If we expand the 
“environment” with the current state of our storage it can be modeled with a 
discrete time Markov chain (the Markov-property is present). With actions 
taken into consideration it implies Markov decision processes (MDP for short) 
[1]. The “expanded environment” denomination mentioned above also has 
states, but they can be partly affected by our decisions. 

 
Figure 1: A common notation for a Markov decision process. 

                                                           
1  An HTML version of the book can be found at the webpage of the author: 

http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html 
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It was clarified above, that this problem can be modeled by a Markov 
decision process. The next step in the modeling phase is to specify the 
parameters describing the state, the action and the reward (or the reward 
function). It is clear that if these parameters are given the parts missing from the 
figure above are the transition probabilities (P) and the policy (π). The policy is 
driven by the algorithms so it is not a question of modeling, but the probabilities 
clearly depend on the definition of states and actions. 

To specify the Markov decision process we have to assign meaning for the 
state and action parts. The reward function can be different for each algorithm; 
therefore it will be defined among the algorithms and in the evaluation section. 
The state can contain most of the information about the “expanded” 
environment like: previous and current production and forecast values, current 
storage level and also forecasts for the upcoming intervals. It is a matter of 
modeling what we choose to represent a state. In most of the following methods 
the state contains all the previously mentioned information: it has a backward 
window for forecasts and production, a forward window for forecasts and 
contains the actual values of the storage, forecast and produced energy. 

It is clear that the action has to represent the choice we make. It can be 
specified in a few equivalent ways. I chose it to be the one of the most similar 
ones to the state description: the action is represented by the new storage level 
(caused by our choice). 

After examination a person could notice that in this environment we have 
more information than in a general case. We can calculate the rewards for all 
actions that we did not choose – it can be a great deal of information for a 
learning algorithm and lead to faster convergence. 

3. Algorithms 

1. Algorithms “by the book” [1] 

Algorithm planning can be an iterative process, as it was this time. There 
were a few less successful algorithms in coping with the above described 
problem, and a few which can be counted as a success. The first algorithm I 
used to test the applicability of reinforcement learning on the task was a well-
known dynamic programming method [1]. This method had two flaws to fall 
back on: the accuracy of the transition probabilities, and the fact that it needs 
final (exit) states or an episodic MDP to calculate the reward backwards. After a 
conversional step to an episodic MDP (1 episode ~ one or a few days) the only 
uncertainty is the lack of information about transitions. This information can be 
gathered runtime, but the granularity (20000 different production values) and 
the quantity (9000 rows) of the data do not make it possible to gather enough 
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empirical information about the transition probabilities. Because of these factors 
I applied quantification in my dynamic programming method, which is 
compromise, because the margin is stiff, only a difference of 1kWh-s can make 
a difference. 

I also applied an R-learning algorithm [1] on the model, which is an average 
reward maximization method. The flaw of the model is that it can be used 
effectively only if the forecast or the margin width is constant. The lack of 
information about transition probabilities is also present. 

2. SARSA algorithms 

The methods presented above had their flaws which made them ineffective. 
The algorithm class I applied next is the SARSA approach which is a different 
point of view among reinforcement learning methods. It considers state-action-
reward-state-action tuples and operates by maintaining a value estimate for 
state-action pairs (instead of states). This algorithm in its basic form [1] still has 
the flaw that it needs a good estimate of transition probabilities. We still cannot 
provide these estimates to be accurate enough because of the quantity of the 
data. Yet again, quantification is an option, but it still makes the approximate 
values unreliable. 

To improve the SARSA solution by the means of the learning process itself I 
transformed it into an algorithm using eligibility traces (SARSA(λ)). The 
eligibility traces are supposed to make the learning process faster by using the 
information from one step to update more than one value estimates. It is also 
important to shake off the problem of the unknown probabilities. It is easy to 
see, that close values represents similar states and actions. This fact calls for 
exploitation of generalization. Function approximation is a common technique 
for this kind of task, the linear, gradient-descent SARSA(λ) (for an algorithm 
using binary features, check [1]) suits these expectations. The effectiveness of 
linear, gradient-descent function approximation methods depends on the 
selection method of features. 

The method which brought success is a linear, gradient-descent method 
using Gauss-functions as features. We need a method to select the appropriate 
feature which divides the state-action space by the features how they can best 
express the similarity among the state-action pairs. If we divide the space in 
every dimension for a grid-like Gauss-function placement, we will be stricken 
by the curse of dimensionality (for n attributes representing the state-action 
space, we need kn features to set two values in each dimension). The number of 
the features is clearly a factor in the runtime of an algorithm, so it is 
recommended to keep the number of features lower. There are references on the 
effectiveness of random feature selection [2]. This method chooses a specified 
number of features randomly from the set of possible values. For the random 
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selection to be enough, the state and the action representations are also needed 
to be bounded in every dimension. Luckily, the building blocks of the state and 
the action representations are bounded variables or a realistic upper and lower 
bound can be selected. According to the dataset, the upper bound production 
value is approximately 25000 kWh, but it can be specified as 20000 kWh 
because with a probability of 0.98 it is also an upper bound. Disregarding very 
rare events in the feature selection can lead to a better model. 

The pseudo-code for the first version of my SARSA(λ) algorithm can be 
seen on the figure below. The xi-s are the Gauss functions used for the 
calculations of φ vectors, Iacc is an indicator distribution (equals to 1 in case of 
“accumulating traces” and to 0 in case of “replacing traces” mode [1]), ,  is 
the scalar product of the two parameters. All other notations have the same 
meaning as in the original SARSA(λ) variant [1]. 

 
Figure 2: The pseudo-code of a linear, gradient descent SARSA(λ) solution  

with eligibility traces and Gauss features. 
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As already noted there is more information about the process itself than 
usually. We can calculate the rewards not only for the chosen action but for all 
of them. If we make the adjustment of eligibility traces according to all of the 
actions, not only to the chosen action, it can lead to a better approximation. This 
is a manipulation of the tenth line of the pseudo-code: instead of the addition of 
one specific (chosen action) φ vector, the added value is the average of all φ 
vectors for each eligible action.  

The feature selection method can also be specialized. One method of 
specialization is that the distribution used for feature center generation is not a 
uniform distribution but the distribution of the data or a special distribution 
which is dense where we want to distinguish states more and sparse where we 
do not want to. There is another similar method to specialize: we can use taller 
(and narrower) Gaussian functions in the dimension where it is more important 
to distinguish states and lower ones otherwise. These two methods can lead to a 
better feature generation algorithm. 

Another modification to upgrade the performance of the algorithm is to 
avoid penalties by narrowing the set of the actions for each state. If we avoid 
penalties every time we can, it is a greedy-like minimization of the penalty, and 
by that a greedy-like maximization of income. The action to choose is still not 
trivial, so the optimization problem will change, but henceforward needs a 
solution. This modification can be placed between the twelfth line and the 
thirteenth line (or we can adjust the model itself) as a step narrowing the set of 
actions eligible at the current state. 

 3. Decision tree 

The above mentioned greedy-like method had been tested before the success 
of the SARSA variants. We can call this simple algorithm a decision tree 
method. Let there be a preferred storage level (cpref), set the new storage level 
(action) to this level. Now we are going to fit it into the specification (if it is 
required) by moving it backwards in the direction of the previous storage level. 
Let the possible action set be the set of all actions possible in all states (from the 
minimum level, to the maximum). Narrow this action state to the reachable 
actions: the maximum difference between the actual and the next state of the 
storage is the quarter of the rated power parameter. Then choose the action from 
set which is the nearest to the preferred storage level. 

4. Evaluation and conclusion 

We have the forecasts and real produced values of three months which 
leaves us with 8736 records having 5506 different forecast and 1672 different 
production values from the interval between 0 and 24000. The modus of each is 
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0 (1513 and 1617 times), because of the predicted “windless” intervals and 
maintenance shutdowns. 

Long zero sequences are not really useful for comparison: if we predicted 
zero we are penalized if we sell any of our production, if we produce zero, than 
we have to use energy from the storage to occasionally avoid penalty. Both 
ways, we can get stuck on a full or an empty storage while the zeros are still 
coming. On the other hand, if the prediction is rarely bad for a long interval (or 
commute between high and low) then the decision tree method would be 
absolutely enough to solve the problem. 

It’s visible on the forecast and production comparison diagrams, that there is 
a positive correlation between the two parameters, so it is not impossible to 
develop a strategy, but it is also a warning of “commute” mentioned above.  

The methods described above were tested using three different reward 
functions. The first type of reward was the exact income which could be 
negative in case of a large underproduction. The second type of reward was an 
indicator-like function: 1 if the there are no penalties, -1 otherwise. The third 
type was similar to the second, but it was multiplied by the forecast value. 

 
Figure 3: Forecast and production values compared to each other for each test set 

(horizontal axis represents the number of the interval, the vertical axis is the  
production or forecast value in kWhs). 
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But why do they represent the quality of the decision? The answer is trivial 
for the first one, because it is the income. The second one is not as obvious, and 
not always represents the real value of a decision, because a penalty can be 
associated with different values from a large interval. The third one represents 
the lost value by the penalty – it is twice as the margin size, so it is twice as the 
value which is sold or not sold on the highest price corresponding to the fact 
that we are penalized or not (if our prediction was 1000 and we sell 1500 we are 
not penalized, but if we sell another 500, then we get a penalty for the other 500 
too, so we lose an amount directly proportional to the forecast). 

More than one test is required to make assumptions, so I created three 
smaller histories (1500 rows each) and tested the SARSA and decision tree 
methods I created to cope with the problem. I also tested the “by the book” 
methods mentioned in the previous section, but the flaws already mentioned 
made them ineffective. R-learning performed better than dynamic programming 
(because of that, only R-learning is shown on the diagrams), but it still did not 
bring success. The biggest problem with them was the loss of accuracy because 
of the quantification. 

 
Figure 4: The sum of additional income over time divided by the original value  

(M stands for “multiple adjustments”, P stands for “penalty avoidance”). 
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There are higher values at the begging of two charts, the cause of these is the 
fact that one penalty avoidance step at the beginning can bring a huge additional 
income pro rata. All of the lines fall back after that, and stay on the displayed 
interval. 

The best efficiency is presented by the decision tree algorithm, it brings from 
five to nine percent in addition, which is more than 8000€ for this less than 16 
days long interval. Then it is not a surprise that penalty avoidance is also 
rewarding as a part of a SARSA algorithm: the two reinforcement learning 
algorithms using this bring approximately half of the success of the decision 
tree algorithm. The other tree algorithm types are slightly above (the other 
SARSA variants) or below (R-learning) 0. 

Conclusion 

The decision tree algorithm is simple, but effective. The SARSA algorithms 
with this upgrade can reach a reasonable additional income. It is clear that on 
these datasets the decision tree algorithm is better in this discrete time approach. 

To make a real-world application the continuity assumption of the 
specification section has to be omitted. There are reinforcement learning 
methods to handle a continuous time problems ([3], [4]) and in these cases this 
model can be a good discrete model to start at. 
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