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Abstract levels of programming theorems
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Abstract. In this paper three abstract levels of programming theorems
are introduced. These levels depend on the form of the sequence of the
elements that are produced by a programming theorem. We are going
to investigate the difference between the solutions of the same problem
if these solutions are derived from altering abstract levels of the same
programming theorem. One of the famous programming theorems, the
maximum selection, is chosen as an example, all of its three versions will
be presented, and their usage will be shown in a case study.

1 Introduction

Programming theorems are used frequently to plan algorithms. A program-
ming theorem is a pattern, a problem-program (task-algorithm) pair where
a program can solve the problem. All the tasks that are similar to the prob-
lem of a theorem can be solved on the basis of the algorithm of the theorem.
Programming theorems (summation, counting, maximum selection, and linear
search, etc.) [2, 4] are well-known by all programmers but only a few of them
know that these theorems can be expressed in multiple ways. Most program-
mers consider programming theorems as sample solutions. When they want to
solve a task that is similar to the problem of a theorem, they try to repeat the
same activities that created the program of the theorem. Thus programming
theorems support their algorithmic way of thinking that is used to construct
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the algorithm of their task. However, there exists another method to create
programs. This is derivation [1, 4]. Starting from the exact comparison of the
task to be solved and of the problem of the candidate programming theorem,
the program of the theorem has to be updated according to the differences be-
tween the task and the problem. Thus, without algorithmic way of thinking,
the program by which the new task is solved can be produced almost auto-
maticly. This method is faster and guarantees the correctness of the algorithm
but it requires the formal description of the task. The whole of this paper can
be articulated from this single point of view, i.e. when algorithms are planned
with derivation.

The quality (efficiency and compactness) and, very often, the success of the
solution depend on the degree of the universality of the programming theorem.
According to the way that the problem of the theorem is generalized, different
versions of the theorem can be obtained. It is obvious that a good programming
theorem should be adequately universal so that the class of the tasks to be
solved is wide enough. But the theorem must preserve some specialty in order
that it can be identified in a simple way. The reason for this, for example,
is that counting is a separate theorem; nevertheless, it is a special case of
summation.

One of the common properties of programming theorems is that they process
a sequence of elementary values. The way these values are produced may differ.
Programming theorems may be distinguished according to these three levels.
Henceforth these levels are going to be defined, the versions of maximum
selection are going to be fully given, and various solutions of the same task
are going to be produced by using different levels of the same programming
theorem.

2 Different forms of the sequence of elements are
processed

A sequence of elementary values can be placed into a container such as a
sequential file or a linked list. The most widely-known container, however, is
the one-dimensional array. Most programmers use the programming theorems
processing the elements of an array. This is the lowest level of the programming
theorems.

A higher level is the one when an appropriate function gives the elements
that must be proccessed. The domain of this function is always an interval
of integers. (Hereafter [n..m] denotes the integer interval [n,m] ∩ Z for all
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n,m ∈ Z.) This function is more universal than an array: each array can be
interpreted as a function over integer interval.

The third level is when the elements are provided by a special activity, an
enumeration. The enumerator is an object that disposes the four enumeration
operators: First(), Next(), End(), Current() [5]. These operators permit
iterating the elements that must be processed. The elements of an array can
be iterated like the proper divisors of a natural number. This point of view
gives more universal definitions of programming theorems.

3 Different levels of the programming theorems

Now the maximum selection is going to be defined in three different forms.
Other programming theorems can be defined in this same way.

3.1 Maximum selection in an array

An array over the non-empty integer interval [m..n] is given where the ele-
ments on the array form a totally ordered set, set H (notation: Hm..n). The
greatest element of the array is sought, and one of the indexes should also be
given where this element occurs.

Specification:
In the formal specification used below the letter A denotes the state space

that enumerates the variables of the problem with their types. The letter Q is
the precondition and R is the postcondition of the problem. If v is a variable
of the state space, then the notation v ′ is an arbitrary, initial value of the
variable v. The variable i is the index variable of the for statement.

A = (x : Hm..n,max : H, ind : Z)
Q = ((x = x ′)∧ (n ≤ m))

R = ((x = x ′)∧ (ind ∈ [m..n])∧ (max = x[ind] =
n

MAX
i=m

x[i]))

Algorithm:

max, ind := x[m],m;
for i = m+1 . . . n do

if x[i] > max then
max, ind := x[i], i;

endif
endfor
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3.2 Maximum selection over interval

There are many problems, the solution of which can not be derived from a
programming theorem in an array but from the same programming theorem
over an interval. For example, suppose the average temperatures of successive
days are fixed in an array (its elements are indexed by the integer interval
[1..n]) and the neighboring pairs of temperature must be counted where the
first value of the pair is under freezing point and the second one is above
it. This task cannot be derived from the counting in an array because the
elements that must be checked in the counting are not elements of an array.
These elements are logical values provided by a logical function (condition)
that is defined over the integer interval [2..n], and these values depend on
the pairs of the original array of the task. Sometimes there is no array at all
in a problem. For example, if the proper divisors of a given natural number
have to be counted, then the function f(i) = i can divide n (which is defined
over the integer interval [2..n/2]) should be checked. Anyway programming
theorems on array are looked upon as special cases of programming theorems
over interval because each array can be interpreted as a function over integer
interval.

There is a non-empty integer interval [m..n] and a function f : [m..n]→ H,
where H is a totally ordered set. The greatest value of the function is sought,
and one of its arguments should also be given.

Specification:

A = (m : Z, n : Z,max : H, ind : Z)
Q = ((m = m ′)∧ (n = n ′)∧ (n ≤ m))
R = ((m = m ′)∧ (n = n ′)∧ (ind ∈ [m..n])

∧(max = f(ind) =
n

MAX
i=m

f(i)))

The postcondition can be written in a shorter form. In this notation, MAX is
a multi-valued function mapping from an interval to H and Z.

R = ((m = m ′)∧ (n = n ′)∧ ((max, ind) =
n

MAX
i=m

f(i)))

Algorithm:

max, ind := f(m),m;
for i = m+1 . . . n do

if f(i) > max then
max, ind := f(i), i;

endif
endfor
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3.3 Maximum selection on enumerator

There is an enumerator that can iterate the elements of a finite non-empty
sequence which belongs to set E (enor(E) notates the type of this enumer-
ator). A function is given f : E → H where H is a totally ordered set. The
greatest value over the values mapped from the elements of the enumerator
by the function f is sought, and one element should also be given where this
value occurs.

Specification:
A = (t : enor(E),max : H, ind : E)
Q = ((t = t ′)∧ (|t| 6= 0))

R = ((e ∈ t ′)∧ (max = f(ind) = MAX
e∈t ′

f(e)))

Algorithm:

t.First();
max, ind := f(t.Current()), t.Current();
t.Next();
while ¬t.End() do

if f(t.Current()) > max then
max, ind := f(t.Current()), t.Current();

endif
endwhile

4 Case study

Let us solve the following problems. There is a plan where n points are given.
Which is the greatest distance between pairs of points?

The points on the plan can be represented by their coordinates if there is a
fixed coordinate system. These coordinates are saved in two one-dimensional
arrays: x and y. The coordinates of the ith point are x[i] and y[i]. The distance
between the ith and jth points is

√
(x[i] − x[j])2 + (y[i] − y[j])2 but the greatest

distance is not wanted, so it will be enough to use their squares.
Let d(i, j) denote the square distance (x[i] − x[j])2 + (y[i] − y[j])2 (i = 1..n,

j = 1..n). These values can be arranged in an n× n symmetrical matrix. Our
task is to select the maximal element of the lower triangular part of this matrix
without its diagonal.

It seems that the solution can be created with a maximum selection but
the theorem of maximum selection can investigate only one-dimensional forms
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and here the values of d(i, j)
(
i, j ∈ [1..n]

)
are in a two-dimensional shape.

4.1 First solution: numerous maximum selections in an array

The rows of the virtual lower triangular matrix can be seen as many one-
dimensional arrays with increasing size. If the greatest element is selected
from every row and put into an auxiliary array, then a new maximum selec-
tion in this array can solve the original problem. More precisely, this auxiliary
array indexed by the interval [2..n] (denoted by z) should store value-index
pairs (rec(m : R, k : N)) and the ith element of this array can show the great-
est value and its index in the ith row. By definition z[i] > z[j] if z[i].m > z[j].m.

Specification:

A = (x, y : Rn, z : rec(m : R, k : N)2..n,max : R, ind, jnd : N)
Q = ((x = x ′)∧ (y = y ′)∧ (n ≥ 2))

R = ((x = x ′)∧ (y = y ′)∧ (∀i ∈ [2..n] : z[i] =
i−1

MAX
j=1

d(i, j))

∧((max, jnd), ind) =
n

MAX
i=2

z[i]))

This problem can be solved with n maximum selections. The first n–1 max-
imum selections fill an auxiliary array z and the last one selects the maximal
elements of this array.

Each of the first n–1 maximum selections works in one of the rows of the
virtual lower triangular matrix. The ith row of this matrix is considered as
an array indexed by the interval [1..i–1], and the jth element of this array
is the value d(i, j). Obviously these maximum selections can be derived from
the programming theorem in an array. The assignment z[i] := (d(i, j), j) is a
shorter form of the assignments z[i].m, z[i].k := d(i, j), j

for i = 2 . . . n do
z[i] := (d(i, 1), 1);
for j = 2 . . . i–1 do

if d(i, j) > z[i].m then
z[i] := (d(i, j), j);

endif
endfor

endfor

The last maximum selection is also derived from the programming theorem
in an array because it uses the auxiliary array z. The variables i and j are the
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index-variables of the for statements.

(max, jnd), ind := z[2], 2;
for i = 3 . . . n do

if z[i].m > max then
(max, jnd), ind := z[i], i;

endif
endfor

Finally, the whole solution is repeated with minor modifications. Hence the
second row of the lower triangular matrix contains only one element, this is the
z[2] which can be calculated without maximum selection: z[2] := (d(2, 1), 1).
Moreover the assigment (max, jnd) := z[i] is equivalent to the assigment
max, jnd := z[i].m, z[i].k, and the value of the variable jnd is enough to
be set at the end of the algorithm. At the end the local auxiliary variable s is
introduced to contain the value of d(i, j).

z[2] := (d(2, 1), 1);
for i = 3 . . . n do

z[i] := (d(i, 1), 1);
for j = 2 . . . i–1 do

s := d(i, j);
if s > z[i].m then

z[i] := (s, j);
endif

endfor
endfor
max, ind := z[2].m, 2;
for i = 3 . . . n do

if z[i].m > max then
max, ind := z[i].m, i;

endif
endfor
jnd := z[ind].k;

Note that the auxiliary array can be eliminated from this program if the
two outsider loops (where i goes from 3 to n) are combined. However, this
solution can be produced in a simpler way if a more generalized programming
theorem is used.
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4.2 Second solution: several maximum selections over interval

Let us follow the previous line of thought but instead of the auxiliary array, a
function is going to be defined which gives the greatest element and its index
from every row of the virtual lower triangular matrix.

Specification:
A = (x, y : Rn,max : R, ind, jnd : N)
Q = ((x = x ′)∧ (y = y ′)∧ (n ≥ 2))

R = ((x = x ′)∧ (y = y ′)∧ ((max, jnd), ind) =
n

MAX
i=2

g(i)))

where g : [2..n]→ R× N and g(i) =
i−1

MAX
j=1

d(i, j))

This problem can be solved with the maximum selection over interval 2..n
with the function g. By definition, g(i) > g(j) if g(i)1 > g(j)1. The variable
i is the index-variable of the for statement, the variable m and k are local
auxiliary variables.

(max, jnd), ind := g(2), 2;
for i = 3 . . . n do

(m,k) := g(i);
if m > max then

max, jnd, ind := m,k, i;
endif

endfor

The subproblem (m,k) := g(i) is also a maximum selection but its interval
is [1..i–1] and its function is d(i, j). The variable j is the index-variable of the
for statement. The variable s is a local auxiliary variable. The main program
calls this subprogram twice.

m,k := d(i, 1), 1;
for j = 2 . . . i–1 do

s := d(i, j);
if s > m then

m,k := s, j;
endif

endfor

We can compare this solution with the previous one if this program is com-
bined. The value of g(2) can be calculated as d(2, 1) and 1; hence, the initial
assignment will be max, jnd, ind := d(2, 1), 1, 2.
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max, jnd, ind := d(2, 1), 1, 2;
for i = 3 . . . n do

m,k := d(i, 1), 1;
for j = 2 . . . i–1 do

s := d(i, j);
if s > m then

m,k := s, j;
endif

endfor
if m > max then

max, jnd, ind := m,k, i;
endif

endfor

4.3 Third solution: one maximum selection over interval

Let us imagine that the elements of the lower triangular matrix are in a se-
quence. The first element of this sequence is the single element of the second
row (it is indexed with (2, 1)), the 2nd element is the one on the (3, 1) posi-
tion, the 3rd is the (3, 2), 4th is (4, 1)] and so on. The size of this sequence is
n(n–1)/2. How can the ith element of this sequence be found in the matrix?

It is easy to see that the (i, j)th element of the lower triangular matrix (j < i)
is the ((i–1)(i–2)/2 + j)th element of the sequence because there are (i–1)(i–
2)/2 elements in front of the ith row in the lower triangular matrix. But where
can the kth element of the sequence be found in the matrix?

Lemma 1 The kth element of the sequence is the (i, j)th element of the matrix
where j = 2k−(i−1)(i−2) and if 2k > d

√
2ke(d

√
2ke−1), then i = d

√
2ke+1,

otherwise i = d
√
2ke.

Proof. Because of k = (i− 1)(i− 2)/2+ j(j < i), we get

(i− 1)(i− 2) < 2k ≤ i(i− 1). (1)

It follows that (i − 2) <
√
2k < i, so the value d

√
2ke (upper integer part)

may be i or i − 1. If 2k > d
√
2ke(d

√
2ke − 1), then d

√
2ke = i − 1 because

supposing d
√
2ke = i we get 2k > i(i − 1) that is a contradiction of (1). If

2k ≤ d
√
2ke(d

√
2ke − 1), then i = d

√
2ke because supposing d

√
2ke = i − 1,

we get 2k ≤ (i− 1)(i− 2) that is also a contradiction. �

Based on this lemma, the following function can be defined:



256 T. Gregorics

h : [1..n(n–1)/2]→ N× N

h(k) =

{
(d
√
2ke+ 1, 2kd

√
2ke(d

√
2ke− 1)) if 2k > (d

√
2ke− 1)d

√
2ke

(d
√
2ke, 2k(d

√
2ke− 1)(d

√
2ke− 2) if 2k ≤ (d

√
2ke− 1)d

√
2ke

Now the problem can be re-specified. We introduce the auxiliary variable
knd.

A = (x, y : Rn,max : R, ind, jnd, knd : N)
Q = ((x = x ′)∧ (y = y ′)∧ (n ≥ 2))

R = ((x = x ′)∧ (y = y ′)∧ ((max, knd) =
n(n−1)/2

MAX
k=1

d(h(k)))

∧((ind, jnd) = h(knd)))

This problem can be derived to the maximum selection over the interval
[1..n(n–1)/2] with the function h. In the initial assignment, the expression
d(h(1)) can be changed to d(2, 1). The variable k is the index-variable of the
for statement, the variable s is a local auxiliary variable.

max, knd := d(2, 1), 1;
for k = 2 . . . n(n–1)/2 do

if d(h(k)) > max then
max, knd := s, k;

endif
endfor
(ind, jnd) := h(knd)

Let us take some minor modifications. The knd auxiliary variable can be
eliminated but the local auxiliary variables i, j and s are introduced.

max, ind, jnd := d(2, 1), 2, 1;
for k = 2 . . . n(n–1)/2 do

(i, j) := h(k);
s := d(i, j);
if s > max then

max, ind, jnd := s, i, j;
endif

endfor
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4.4 Fourth solution: one maximum selection on enumerator

The specification of the problem can be rewritten:
A = (x, y : Rn,max : R, ind, jnd : N)
Q = ((x = x ′)∧ (y = y ′)∧ (n ≥ 2))

R = ((x = x ′)∧ (y = y ′)∧ ((max, (ind, jnd)) =
n

MAX
i=2

(
i−1

MAX
j=1

d(i, j))))

= ((x = x ′)∧ (y = y ′)∧ ((max, (ind, jnd)) =
n,j−1

MAX
i=2,j=1

d(i, j))).

The last expression of this specification resembles a two-dimensional enu-
meration [5]. This enumeration should traverse the elements of a virtual lower
triangular matrix, i.e. the sequence of index pairs (2, 1), (3, 1), (3, 2), (4, 1), . . . ,
(n, 1), (n, 2), . . . , (n,n–1) should be enumerated. Let us take this enumerator
into the state space.

A = (t : enor(N× N),max : R, ind, jnd : N)
Q = ((t = t ′)∧ (|t| 6= 0))

R = ((max, (ind, jnd)) = MAX
(i,j)∈t ′

d(i, j))).

The enumerator handles two indexes: i and j. The operator First() set them
to the pair (2, 1), the operator Next() increases the variable j if j < i–1,
otherwise (j = i–1) increases the variable i and set j to 1. The operator End()
gives true if i > n. (This process produces the same sequence of index pairs as
in the previous solution.) This enumeration can be implemented with a double
loop and can be combined with the maximum selection [5]. The local auxiliary
variable s is also introduced.

max, ind, jnd := d(2, 1), 2, 1;
for i = 3 . . . n do

for j = 2 . . . i–1 do
s := d(i, j);
if s > max then

max, ind, jnd := s, i, j;
endif

endfor
endfor

5 Discussion

The first two solutions in the case study are very similar. It is easy to see
that the second algorithm can be received from the first one through applying
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equivalent transformations [3]. But the second solution, which is based on a
more universal programming theorem, avoids these transformations. We em-
phasize that using a more universal programming theorem results in a more
efficient algorithm (it does not require an auxiliary array, so its memory space
is smaller).

The second and third solutions are based on the programming theorem over
interval but the third one uses a function abstraction. Therefore, in the third
solution, it is enough to apply the theorem of maximum selection only once.
Here the structure of the solving algorithm is simpler than the algorithm of
the second solution; moreover, it is the simplest structure among all solutions.

The relationship between the third and fourth algorithm can be seen clearly.
Both of them are founded on the same idea, that is, they traverse the elements
of the lower triangular matrix row by row. Actually the third solution is com-
plicated. It uses a function abstraction but this function is not trivial. The
fourth solution uses a data abstraction when it defines and implements an
appropiate enumerator. The structure of the algorithm of the fourth solution
is a loop in the loop which is more difficult than the single loop of the third
algorithm, but this double loop is the routine algorithm among matrices. Nev-
ertheless, the enumeration could have been implemented in other ways (as we
have pointed out) and in this case the algorithm would be a simple loop. The
cost of the production of the fourth solution is surely cheaper than that of the
third one.

On the whole we can deduct that the more universal programming theorem
is used the cheaper the solution is. The cost of production may be cheaper, the
structure of the result algorithm may be simpler or its efficient may be better.
Then again, to learn and to use an advanced tool is always more difficult than
a simple one. Bescause of this in the teaching of programming, gradation must
be followed: firstly, programming theorems in an array are to be taught, then
the ones over interval, and at the end the theorems on enumerator.
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