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Abstract.
A differential inequality concerning holomorfic function is generalised

and improved. Several other differential inequalities are considered.

1 Introduction

Let H(U) be the set of holomorfic functions defined on the unit disc

U = {z ∈ C : |z| < 1}.

Y. Komatsu in [2] proved, the following implication:
If f ∈ H(U), f(z) = z + a2z

2 + a3z
3 + ... and Re

√
f ′(z) > 1

2 , z ∈ U, then
f(z)
z > 1

2 , z ∈ U.

The aim of this paper is to generalize this inequality.
In the paper each multiple-valued function is taken with the principal value.

2 Preliminaries

In our study we need the following definitions and lemmas:
Let X be a locally convex linear topological space. For a subset U ⊂ X the

closed convex hull of U is defined as the intersection of all closed convex sets
containing U and will be denoted by co(U). If U ⊂ V ⊂ X then U is called an
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extremal subset of V provided that whenever u = tx + (1 − t)y where u ∈ U,

x, y ∈ V and t ∈ (0, 1) then x, y ∈ U.

An extremal subset of U consisting of just one point is called an extreme
point of U.

The set of the extreme points of U will be denoted by EU.

Lemma 1 ([1], pp. 45) If J : H(U) → R is a real-valued, continuous convex
functional and F is a compact subset of H(U), then

max{J(f) : f ∈ co(F)} = max{J(f) : f ∈ F } = max{J(f) : f ∈ E(co(F))}.

In the particular case if J is a linear map then we also have:

min{J(f) : f ∈ co(F)} = min{J(f) : f ∈ F } = min{J(f) : f ∈ E(co(F))}.

Suppose that f, g ∈ H(U). The function f is subordinate to g if there exists
a function θ ∈ H(U) such that θ(0) = 0, |θ(z)| < 1, z ∈ U and f(z) = g(θ(z)),

z ∈ U.

The subordination will be denoted by f ≺ g.

Remark 1 Suppose that f, g ∈ H(U) and g is univalent. If f(0) = g(0) and
f(U) ⊂ g(U) then f ≺ g.

When F ∈ H(U) we use the notation

s(F) = {f ∈ H(U) : f ≺ F}.

Lemma 2 ([1] pp. 51) Suppose that Fα is defined by the equality

Fα(z) =

(
1 + cz

1 − z

)α

, |c| ≤ 1, c 6= −1.

If α ≥ 1 then co(s(Fα)) consists of all functions in H(U) represented by

f(z) =

∫2π

0

(
1 + cze−it

1 − ze−it

)α

dµ(t)

where µ is a positive measure on [0, 2π] having the property µ([0, 2π]) = 1 and

E(co(s(Fα))) =

{
1 + cze−it

1 − ze−it
| t ∈ [0, 2π]

}
.

Remark 2 If L : H(U) → H(U) is an invertible linear map and F ⊂ H(U)

is a compact subset, then L(co(F)) = co(L(F)) and the set E(co(F)) is in
one-to-one correspondence with EL(co(F)).
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3 The main result

Theorem 1 Let f ∈ H(U) be a function normalized by the conditions f(0) =

f ′(0) − 1 = 0 m, p ∈ N∗; ak ∈ R, k = 1, p and

Re
m

√
f ′(z) + a1zf ′′(z) + · · ·+ apzpf(p+1)(z) >

1

2
, z ∈ U, (1)

then

1 + inf
θ∈(0,2π)

( ∞∑

n=1

Cm−1
n+m−1

P(n + 1)
cosnθ

)
< Re

f(z)

z
< 1 +

+ sup
θ∈(0,2π)

( ∞∑

n=1

Cm−1
n+m−1

P(n + 1)
cosnθ

)

1 + inf
θ∈(0,2π)

( ∞∑

n=1

(n + 1)Cm−1
n+m−1

P(n + 1)
cosnθ

)
< Ref ′(z) < 1 +

+ sup
θ∈(0,2π)

( ∞∑

n=1

(n + 1)Cm−1
n+m−1

P(n + 1)
cosnθ

)

where P(x) = x + a1x(x − 1) + a2x(x − 1)(x − 2) + · · ·+ apx(x − 1) . . . (x − p).

Proof. The condition (1) is equivalent to:

m

√
f ′(z) + a1zf ′′(z) + · · ·+ apzpf(p+1)(z) ≺ 1

1 − z

and this can be rewritten as follows:

f ′(z) + a1zf
′′(z) + . . . apzpf(p+1)(z) ≺ 1

(1 − z)m .

According to the Lemma 2,

f ′(z) + a1zf
′′(z) + · · ·+ apzpf(p+1)(z) =

∫2π

0

1

(1 − ze−it)
m dµ(t) = h(z)

where µ([0, 2π]) = 1.

Denoting

f(z) = z +

∞∑

n=2

bnzn, z ∈ U
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we get

f ′(z) + a1zf
′′(z) + · · ·+ apzpf(p+1)(z) = 1 +

∞∑

n=2

bnP(n)zn−1,

on the other hand
∫2π

0

1

(1 − ze−it)
m dµ(t) = 1 +

∞∑

n=2

Cm−1
n+m−2z

n−1 ·
∫2π

0
e−i(n−1)tdµ(t).

The above two developments in power series imply that:

1 +

∞∑

n=2

bnP(n)zn−1 = 1 +

∞∑

n=2

Cm−1
n+m−2z

n−1

∫2π

0
e−i(n−1)tdµ(t),

and

bn =
Cm−1

n+m−2

P(n)

∫2π

0
e−i(n−1)tdµ(t), n ∈ N, n ≥ 2.

Thus

f(z) = z +

∞∑

n=2

Cm−1
n+m−2

P(n)
zn

∫2π

0
e−i(n−1)tdµ(t) (2)

and we deduce:

f(z)

z
= 1 +

∞∑

n=1

Cm−1
n+m−1

P(n + 1)
zn

∫2π

0
e−intdµ(t)

f ′(z) = 1 +

∞∑

n=1

(n + 1)Cm−1
n+m−1

P(n + 1)
zn

∫2π

0
e−intdµ(t).

If

B =

{
h ∈ H(U) | h(z) =

∫2π

0

1

(1 − ze−it)
m dµ(t), z ∈ U, µ([0, 2π]) = 1

}
,

C =

{
f ∈ H(U) | Re

(
m

√
f(z) + a1zf ′(z) + · · ·+ apzpf(p)(z)

)
> 0, z ∈ U

}

then the correspondence L : B → C, L(h) = f defines an invertible linear map
and according to the Observation 2 the extreme points of the class C are

ft(z) = z +

∞∑

n=1

Cm−1
n+m−1

P(n + 1)
zn+1e−int.

This result, Lemma 1 and the minimum and maximum principle for harmonic
functions imply the assertion of Theorem 1. ¥
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4 Particular cases

Let A be the class of analytic functions defined by the equality:

A = {f ∈ H : f(0) = f ′(0) − 1 = 0}.

If we put p = 2, a1 = a2 = m = 1 in Theorem 1 then we get:

Corollary 1 (Komatu) [2]) If f ∈ A and Re
√

f ′(z) > 1
2 , z ∈ U, then

Re f(z)
z > 1

2 , z ∈ U, and the result is sharp.

Proof.
We apply Theorem 1 in the particular case a1 = 1, a2 = a3 = . . . = ap = 0

i m = 2. We get P(n + 1) = (n + 1)2 and

Re
f(z)

z
> 1 + inf

z∈U
Re

∞∑

n=1

C1
n+1

(n + 1)2
zn = 1 +

∞∑

n=1

(−1)n

n + 1
= ln 2, z ∈ U.

The other case can be proved as follows:

Ref ′(z) > 1 + inf
z∈U

Re
∞∑

n=1

(n + 1)C1
n+1

(n + 1)2
zn = 1 + inf

z∈U
Re

z

1 − z
=

1

2
, z ∈ U.

¥

Corollary 2 If f ∈ A and Re
√

f ′(z) + zf ′′(z) > 1
2, z ∈ U then

1) Re f(z)
z > ln 2, z ∈ U

2) Ref ′(z) > 1
2 , z ∈ U and the results are sharp.

Proof. We apply again Theorem 1 in case of a1 = 1, a2 = a3 = . . . = ap = 0

and m = 2. It is easily seen that P(n + 1) = (n + 1)2 and

Re
f(z)

z
> 1 + inf

z∈U
Re

∞∑

n=1

C1
n+1

(n + 1)2
zn = 1 +

∞∑

n=1

(−1)n

n + 1
= ln 2, z ∈ U.

In the other case :

Ref ′(z) > 1 + inf
z∈U

Re
∞∑

n=1

(n + 1)C1
n+1

(n + 1)2
zn = 1 + inf

z∈U
Re

z

1 − z
=

1

2
, z ∈ U.
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Corollary 3 Let p ∈ N, p ≥ 3. If f ∈ A and S(p, k), p ≥ k are the numbers
of Stirling of the second kind defined by

S(p, k) =
1

k!

k−1∑

l=1

(−1)lCl
k(k − l)p, k = 1, p,

then the inequality

Re




√√√√
p∑

k=1

S(p, k)zk−1f(k)(z)


 >

1

2
, z ∈ U (3)

implies that

Re
f(z)

z
>

∞∑

n=1

(−1)n−1

np−1
, z ∈ U,

and the result is sharp.

Proof.According to Theorem 1follows that:

Re
f(z)

z
> 1 + inf

z∈U
Re

( ∞∑

n=1

C1
n+1

P(n + 1)
zn

)
(4)

and we have:

P(x) =

p∑

k=1

S(p, k)x(x − 1) . . . (x − k + 1) = xp. (5)

We have to determine:

inf
z∈U

Re

( ∞∑

n=1

C1
n+1

P(n + 1)
zn

)
= inf

θ∈(0,2π)
Re

( ∞∑

n=1

einθ

(n + 1)p−1

)
.

We will use the following integral representation:

∞∑

n=1

einθ

(n + 1)p−1
=

∫1

0

∫1

0
. . .

∫1

0︸ ︷︷ ︸
p−1

(t1t2 . . . tp−1e
iθ)ndt1dt2 . . . dtp−1 =

=

∫1

0

∫1

0
. . .

∫1

0︸ ︷︷ ︸
p−1

t1t2 . . . tp−1
eiθ − t1t2 . . . tp−1

1 + t2
1t

2
2 . . . t2

p−1 − 2t1t2 . . . tp−1 cosθ
dt1dt2 . . . dtp−1
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If we denote t1t2 . . . tp−1 = u, then u ∈ [0, 1] and

cosθ − u

1 + u2 − 2u cosθ
≥ −1

1 + u
, θ ∈ [0, 2π]. (6)

We get from (6) the inequality:

∫1

0
. . .

∫1

0
t1 . . . tp−1

cosθ − t1 . . . tp−1

1 + t2
1 . . . t2

p−1 − 2t1 . . . tp−1 cosθ
dt1 . . . dtp−1 ≥

≥ −

∫1

0
. . .

∫1

0

t1 . . . tp−1

1 + t1 . . . tp−1
dt1 . . . dtp−1

where in case of θ = π the equality holds. This implies that:

inf
θ∈(0,2π)

Re
∞∑

n=1

einθ

(n + 1)p−1
=

= inf
θ∈(0,2π)

∫1

0
. . .

∫1

0
t1 . . . tp−1

cosθ − t1 . . . tp−1

1 + t2
1 . . . t2

p−1 − 2t1 . . . tp−1 cosθ
dt1 . . . dtp−1 =

= −

∫1

0

∫1

0
. . .

∫1

0

t1 . . . tp−1

1 + t1 . . . tp−1
dt1 . . . dtp−1 =

∞∑

n=1

(−1)n

(n + 1)p−1
,

and the proof is done. ¥
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