

About a differential inequality

Robert Szász

Sapientia-Hungarian University of Transylvania Department of Mathematics and Informatics, Târgu Mureş, Romania email: rszasz@ms.sapientia.ro

Abstract.

A differential inequality concerning holomorfic function is generalised and improved. Several other differential inequalities are considered.

Introduction 1

Let $\mathcal{H}(U)$ be the set of holomorfic functions defined on the unit disc

$$U = \{z \in \mathbb{C} : |z| < 1\}.$$

Y. Komatsu in [2] proved, the following implication: If $f \in \mathcal{H}(U)$, $f(z) = z + a_2 z^2 + a_3 z^3 + ...$ and $\text{Re}\sqrt{f'(z)} > \frac{1}{2}$, $z \in U$, then $\frac{f(z)}{z}>\frac{1}{2},\,z\in U.$ The aim of this paper is to generalize this inequality.

In the paper each multiple-valued function is taken with the principal value.

2 **Preliminaries**

In our study we need the following definitions and lemmas:

Let X be a locally convex linear topological space. For a subset $U \subset X$ the closed convex hull of U is defined as the intersection of all closed convex sets containing U and will be denoted by co(U). If $U \subset V \subset X$ then U is called an

AMS 2000 subject classifications: 30C99

Key words and phrases: differential subordonation, extreme point, locally convex linear topological space, convex functional.

88 R. Szász

extremal subset of V provided that whenever u = tx + (1 - t)y where $u \in U$, $x, y \in V$ and $t \in (0, 1)$ then $x, y \in U$.

An extremal subset of U consisting of just one point is called an extreme point of U.

The set of the extreme points of U will be denoted by EU.

Lemma 1 ([1], pp. 45) If $J : \mathcal{H}(U) \to \mathbb{R}$ is a real-valued, continuous convex functional and \mathcal{F} is a compact subset of $\mathcal{H}(U)$, then

$$\max\{J(f):f\in co(\mathcal{F})\}=\max\{J(f):f\in \mathcal{F}\}=\max\{J(f):f\in E(co(\mathcal{F}))\}.$$

In the particular case if J is a linear map then we also have:

$$\min\{J(f):f\in co(\mathcal{F})\}=\min\{J(f):f\in \mathcal{F}\}=\min\{J(f):f\in E(co(\mathcal{F}))\}.$$

Suppose that $f, g \in \mathcal{H}(U)$. The function f is subordinate to g if there exists a function $\theta \in \mathcal{H}(U)$ such that $\theta(0) = 0$, $|\theta(z)| < 1$, $z \in U$ and $f(z) = g(\theta(z))$, $z \in U$.

The subordination will be denoted by $f \prec g$.

Remark 1 Suppose that $f, g \in \mathcal{H}(U)$ and g is univalent. If f(0) = g(0) and $f(U) \subset g(U)$ then $f \prec g$.

When $F \in \mathcal{H}(U)$ we use the notation

$$s(F) = \{ f \in \mathcal{H}(U) : f \prec F \}.$$

Lemma 2 ([1] pp. 51) Suppose that F_{α} is defined by the equality

$$F_{\alpha}(z) = \left(\frac{1+cz}{1-z}\right)^{\alpha}, \ |c| \le 1, \ c \ne -1.$$

If $\alpha \geq 1$ then $co(s(F_{\alpha}))$ consists of all functions in $\mathcal{H}(U)$ represented by

$$f(z) = \int_0^{2\pi} \left(\frac{1 + cze^{-it}}{1 - ze^{-it}} \right)^{\alpha} d\mu(t)$$

where μ is a positive measure on $[0,2\pi]$ having the property $\mu([0,2\pi])=1$ and

$$\mathsf{E}(\mathsf{co}(\mathsf{s}(\mathsf{F}_\alpha))) = \left\{ \frac{1 + \mathsf{cz} e^{-\mathsf{i} \mathsf{t}}}{1 - \mathsf{z} e^{-\mathsf{i} \mathsf{t}}} \mid \mathsf{t} \in [0, 2\pi] \right\}.$$

Remark 2 If $L: \mathcal{H}(U) \to \mathcal{H}(U)$ is an invertible linear map and $\mathcal{F} \subset \mathcal{H}(U)$ is a compact subset, then $L(co(\mathcal{F})) = co(L(\mathcal{F}))$ and the set $E(co(\mathcal{F}))$ is in one-to-one correspondence with $EL(co(\mathcal{F}))$.

3 The main result

Theorem 1 Let $f \in \mathcal{H}(U)$ be a function normalized by the conditions f(0) = f'(0) - 1 = 0 $m, p \in \mathbb{N}^*$; $a_k \in \mathbb{R}$, $k = \overline{1, p}$ and

$$\text{Re } \sqrt[m]{f'(z) + a_1 z f''(z) + \dots + a_p z^p f^{(p+1)}(z)} > \frac{1}{2}, \ z \in \mathbb{U}, \tag{1}$$

then

$$\begin{split} &1 + \inf_{\theta \in (0,2\pi)} \left(\sum_{n=1}^{\infty} \frac{C_{n+m-1}^{m-1}}{P(n+1)} \cos n\theta \right) < \mathrm{Re} \frac{f(z)}{z} < 1 + \\ &+ \sup_{\theta \in (0,2\pi)} \left(\sum_{n=1}^{\infty} \frac{C_{n+m-1}^{m-1}}{P(n+1)} \cos n\theta \right) \\ &1 + \inf_{\theta \in (0,2\pi)} \left(\sum_{n=1}^{\infty} \frac{(n+1)C_{n+m-1}^{m-1}}{P(n+1)} \cos n\theta \right) < \mathrm{Re} f'(z) < 1 + \\ &+ \sup_{\theta \in (0,2\pi)} \left(\sum_{n=1}^{\infty} \frac{(n+1)C_{n+m-1}^{m-1}}{P(n+1)} \cos n\theta \right) \end{split}$$

where $P(x) = x + a_1x(x-1) + a_2x(x-1)(x-2) + \cdots + a_px(x-1) \dots (x-p)$.

Proof. The condition (1) is equivalent to:

$$\sqrt[m]{f'(z) + a_1 z f''(z) + \dots + a_p z^p f^{(p+1)}(z)} \prec \frac{1}{1-z}$$

and this can be rewritten as follows:

$$f'(z) + a_1 z f''(z) + \dots a_p z^p f^{(p+1)}(z) \prec \frac{1}{(1-z)^m}.$$

According to the Lemma 2,

$$f'(z) + a_1 z f''(z) + \dots + a_p z^p f^{(p+1)}(z) = \int_0^{2\pi} \frac{1}{(1 - z e^{-it})^m} d\mu(t) = h(z)$$

where $\mu([0, 2\pi]) = 1$.

Denoting

$$f(z) = z + \sum_{n=2}^{\infty} b_n z^n, \ z \in U$$

90 R. Szász

we get

$$f'(z) + a_1 z f''(z) + \dots + a_p z^p f^{(p+1)}(z) = 1 + \sum_{n=2}^{\infty} b_n P(n) z^{n-1},$$

on the other hand

$$\int_0^{2\pi} \frac{1}{(1-ze^{-it})^m} d\mu(t) = 1 + \sum_{n=2}^\infty C_{n+m-2}^{m-1} z^{n-1} \cdot \int_0^{2\pi} e^{-i(n-1)t} d\mu(t).$$

The above two developments in power series imply that:

$$1 + \sum_{n=2}^{\infty} b_n P(n) z^{n-1} = 1 + \sum_{n=2}^{\infty} C_{n+m-2}^{m-1} z^{n-1} \int_0^{2\pi} e^{-i(n-1)t} d\mu(t),$$

and

$$b_n = \frac{C_{n+m-2}^{m-1}}{P(n)} \int_0^{2\pi} e^{-i(n-1)t} d\mu(t), \ n \in \mathbb{N}, n \geq 2.$$

Thus

$$f(z) = z + \sum_{n=2}^{\infty} \frac{C_{n+m-2}^{m-1}}{P(n)} z^n \int_0^{2\pi} e^{-i(n-1)t} d\mu(t)$$
 (2)

and we deduce:

$$\begin{split} &\frac{f(z)}{z} = 1 + \sum_{n=1}^{\infty} \frac{C_{n+m-1}^{m-1}}{P(n+1)} z^n \int_{0}^{2\pi} e^{-int} d\mu(t) \\ &f'(z) = 1 + \sum_{n=1}^{\infty} \frac{(n+1)C_{n+m-1}^{m-1}}{P(n+1)} z^n \int_{0}^{2\pi} e^{-int} d\mu(t). \end{split}$$

Tf

$$\begin{split} \mathcal{B} &= \left. \left\{ h \in \mathcal{H}(U) \mid h(z) = \int_0^{2\pi} \frac{1}{(1-ze^{-it})^m} d\mu(t), \ z \in U, \ \mu([0,2\pi]) = 1 \right\}, \\ \mathcal{C} &= \left. \left\{ f \in \mathcal{H}(U) \mid \operatorname{Re} \left(\sqrt[m]{f(z) + \alpha_1 z f'(z) + \dots + \alpha_p z^p f^{(p)}(z)} \right) > 0, \ z \in U \right\} \end{split}$$

then the correspondence $L: \mathcal{B} \to \mathcal{C}$, L(h) = f defines an invertible linear map and according to the Observation 2 the extreme points of the class \mathcal{C} are

$$f_t(z) = z + \sum_{n=1}^{\infty} \frac{C_{n+m-1}^{m-1}}{P(n+1)} z^{n+1} e^{-int}.$$

This result, Lemma 1 and the minimum and maximum principle for harmonic functions imply the assertion of Theorem 1.

Particular cases 4

Let \mathcal{A} be the class of analytic functions defined by the equality:

$$\mathcal{A} = \{ f \in \mathcal{H} : f(0) = f'(0) - 1 = 0 \}.$$

If we put p = 2, $a_1 = a_2 = m = 1$ in Theorem 1 then we get:

Corollary 1 (Komatu) [2]) If $f \in A$ and $Re\sqrt{f'(z)} > \frac{1}{2}$, $z \in U$, then $\text{Re} \frac{f(z)}{z} > \frac{1}{2}, \ z \in U, \ \text{and the result is sharp}.$

We apply Theorem 1 in the particular case $a_1 = 1$, $a_2 = a_3 = \ldots = a_p = 0$ i m = 2. We get $P(n + 1) = (n + 1)^2$ and

$$\mathrm{Re}\frac{f(z)}{z} > 1 + \inf_{z \in U} \mathrm{Re} \sum_{n=1}^{\infty} \frac{C_{n+1}^1}{(n+1)^2} z^n = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{n+1} = \ln 2, \ z \in U.$$

The other case can be proved as follows:

$$\mathrm{Ref}'(z) > 1 + \inf_{z \in U} \mathrm{Re} \sum_{n=1}^{\infty} \frac{(n+1)C_{n+1}^1}{(n+1)^2} z^n = 1 + \inf_{z \in U} \mathrm{Re} \frac{z}{1-z} = \frac{1}{2}, \ z \in U.$$

Corollary 2 If $f \in \mathcal{A}$ and $Re\sqrt{f'(z) + zf''(z)} > \frac{1}{2}$, $z \in U$ then 1) $Re\frac{f(z)}{z} > \ln 2$, $z \in U$ 2) $Ref'(z) > \frac{1}{2}$, $z \in U$ and the results are sharp.

Proof. We apply again Theorem 1 in case of $a_1 = 1$, $a_2 = a_3 = \ldots = a_p = 0$ and m = 2. It is easily seen that $P(n + 1) = (n + 1)^2$ and

$$\mathrm{Re}\frac{f(z)}{z} > 1 + \inf_{z \in U} \mathrm{Re} \sum_{n=1}^{\infty} \frac{C_{n+1}^{1}}{(n+1)^{2}} z^{n} = 1 + \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+1} = \ln 2, \ z \in U.$$

In the other case:

$$\operatorname{Ref}'(z) > 1 + \inf_{z \in U} \operatorname{Re} \sum_{n=1}^{\infty} \frac{(n+1)C_{n+1}^1}{(n+1)^2} z^n = 1 + \inf_{z \in U} \operatorname{Re} \frac{z}{1-z} = \frac{1}{2}, \ z \in U.$$

92 R. Szász

Corollary 3 Let $p \in \mathbb{N}$, $p \geq 3$. If $f \in \mathcal{A}$ and S(p,k), $p \geq k$ are the numbers of Stirling of the second kind defined by

$$S(p,k) = \frac{1}{k!} \sum_{l=1}^{k-1} (-1)^l C_k^l (k-l)^p, \ k = \overline{1,p},$$

then the inequality

$$Re\left(\sqrt{\sum_{k=1}^{p} S(p,k)z^{k-1}f^{(k)}(z)}\right) > \frac{1}{2}, \ z \in U$$
(3)

implies that

$$Re\frac{f(z)}{z} > \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{p-1}}, \ z \in U,$$

and the result is sharp.

Proof.According to Theorem 1 follows that:

$$\operatorname{Re}\frac{f(z)}{z} > 1 + \inf_{z \in U} \operatorname{Re}\left(\sum_{n=1}^{\infty} \frac{C_{n+1}^{1}}{P(n+1)} z^{n}\right)$$
(4)

and we have:

$$P(x) = \sum_{k=1}^{p} S(p,k)x(x-1)\dots(x-k+1) = x^{p}.$$
 (5)

We have to determine:

$$\inf_{z\in U}\operatorname{Re}\left(\sum_{n=1}^{\infty}\frac{C_{n+1}^{1}}{P(n+1)}z^{n}\right)=\inf_{\theta\in(0,2\pi)}\operatorname{Re}\left(\sum_{n=1}^{\infty}\frac{e^{in\theta}}{(n+1)^{p-1}}\right).$$

We will use the following integral representation:

$$\begin{split} &\sum_{n=1}^{\infty} \frac{e^{in\theta}}{(n+1)^{p-1}} = \underbrace{\int_{0}^{1} \int_{0}^{1} \dots \int_{0}^{1} (t_{1}t_{2} \dots t_{p-1}e^{i\theta})^{n} dt_{1} dt_{2} \dots dt_{p-1}}_{p-1} = \\ &= \underbrace{\int_{0}^{1} \int_{0}^{1} \dots \int_{0}^{1} t_{1}t_{2} \dots t_{p-1}}_{p-1} \frac{e^{i\theta} - t_{1}t_{2} \dots t_{p-1}}{1 + t_{1}^{2}t_{2}^{2} \dots t_{p-1}^{2} - 2t_{1}t_{2} \dots t_{p-1} \cos \theta} dt_{1} dt_{2} \dots dt_{p-1} \end{split}$$

If we denote $t_1t_2...t_{p-1} = u$, then $u \in [0, 1]$ and

$$\frac{\cos\theta-u}{1+u^2-2u\cos\theta}\geq\frac{-1}{1+u},\theta\in[0,2\pi]. \tag{6}$$

We get from (6) the inequality:

$$\begin{split} &\int_{0}^{1} \dots \int_{0}^{1} t_{1} \dots t_{p-1} \frac{\cos \theta - t_{1} \dots t_{p-1}}{1 + t_{1}^{2} \dots t_{p-1}^{2} - 2t_{1} \dots t_{p-1} \cos \theta} dt_{1} \dots dt_{p-1} \geq \\ &\geq - \int_{0}^{1} \dots \int_{0}^{1} \frac{t_{1} \dots t_{p-1}}{1 + t_{1} \dots t_{p-1}} dt_{1} \dots dt_{p-1} \end{split}$$

where in case of $\theta = \pi$ the equality holds. This implies that:

$$\begin{split} &\inf_{\theta \in (0,2\pi)} \operatorname{Re} \sum_{n=1}^{\infty} \frac{e^{\mathrm{i} n \theta}}{(n+1)^{p-1}} = \\ &= \inf_{\theta \in (0,2\pi)} \int_{0}^{1} \dots \int_{0}^{1} t_{1} \dots t_{p-1} \frac{\cos \theta - t_{1} \dots t_{p-1}}{1 + t_{1}^{2} \dots t_{p-1}^{2} - 2t_{1} \dots t_{p-1} \cos \theta} \, dt_{1} \dots dt_{p-1} = \\ &= - \int_{0}^{1} \int_{0}^{1} \dots \int_{0}^{1} \frac{t_{1} \dots t_{p-1}}{1 + t_{1} \dots t_{p-1}} \, dt_{1} \dots dt_{p-1} = \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n+1)^{p-1}}, \end{split}$$

and the proof is done.

References

- [1] D.J. Hallenbeck, T.H. MAc Gregor, *Linear problems and convexity techniques in geometric function theory*, Monograph and Studies in Mathematics, 22, Pitman, Boston, 1984.
- [2] Y. Komatu, On starlike and convex mappings of a unit circle, Kodai Math. Sem. Rep., 13 (1961), 123-126.
- [3] S.S. Miller, P.T. Mocanu, *Differential Subordinations*, Marcel Decker Inc., New York., Basel, 2000.

Received: December 12, 2008