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Abstract. A path decomposition of a graph is a collection of its edge
disjoint paths whose union is G. The pendant number Πp is the minimum
number of end vertices of paths in a path decomposition of G. In this
paper, we determine the pendant number of corona products and rooted
products of paths and cycles and obtain some bounds for the pendant
number for some specific derived graphs. Further, for any natural number
n, the existence of a connected graph with pendant number n has also
been established.

1 Introduction

We refer to West [1] and Harary[2] for terms and definitions in graph theory. All
graphs we consider in this paper are undirected, simple, finite and connected.
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Partition of a graph G into its subgraphs is also termed as decomposition of
G. A path-decomposition of a graph G is the partitioning of its edges into
subgraphs Si, 1 ≤ i ≤ n, where each of the subgraph Si is a path in G.

Definition 1 [3] The pendant number of a graph G, denoted by Πp(G), is the
least number of vertices in a graph such that they are the end vertices of a
path in a given path decomposition of a graph G. If Vp(G) denotes the set of
all u ∈ V(G) such that u is an end vertex of a path in P-decomposition in G,
then Πp(G) = min{|Vp(G)|}.

An introductory study on pendant number of graphs is available in [3].
A similar study on the star number of graphs can be seen in [4]. For the
discussions in this paper, we use the following theorems.

Theorem 2 [3] Let G be a connected graph with n vertices. If G has l odd
degree vertices, then l ≤ Πp(G) ≤ n.

Theorem 3 [3] Let T be tree on n vertices of which k vertices are of even
degree. Then, Πp(T) = n− k.

Theorem 4 [3] For a unicyclic graph G of order n; n ≥ 3 with l odd degree
vertices, we have

Πp(G) =


2 if m = 0;

l+ 1 if m = 1;

l otherwise,

where m is the number of vertices on C with deg(v) ≥ 2.

Proposition 5 [3] If G is the cycle Cn on n ≥ 3 vertices, then Πp(G) = 2.

2 Properties of pendant number

Even though there is no direct relation between the pendant number and other
known and popular graph parameters, it is observed that the pendant number
is highly influenced by the number of odd degree vertices in a graph. Moreover,
the pendant number of a graph G has plenty of interesting properties, some
of which, we deal with in the following discussion.

Definition 6 A Πp-realisation of a positive integer k ≥ 2 is a minimal con-
nected graph G, whose pendant number is k.
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By the one-point union of a collection of graphs (possibly with different
order), we mean a graph obtained by replacing some or all edges of a path P
by some graphs in the collection. In view of this notion, the following theorem
establishes the existence of Πp-realisation for any given positive integer.

Theorem 7 For every positive integer k ≥ 2, there exists a Πp-realisation for
k.

Proof. We can iteratively construct a (minimal) connected graph with pen-
dant number k using 1-point union of K2 and K3 (in alternative manner) as
shown in Figure 1. We note that for an even integer k, taking the one-point
union of k

2 number of K2’s and k
2 − 1 number of K3’s alternatively, we can

construct a graph with Πp(G) = k, whereas for an odd integer k, taking the
one-point union of k−12 number of K2’s and K3’s alternatively, we can construct
a graph with Πp(G) = k. This completes the proof.

(a) A graph with Πp = 2. (b) A graph with Πp = 3. (c) A graph with Πp = 4.

(d) A graph with Πp = 5. (e) A graph with Πp = 6.

Figure 1: A Πp realisation of the given positive integer k ≥ 2.

�

Remark 8 It has been determined that for every k ∈ N, there exists a graph
with Πp(G) = k. More precisely, for every k ∈ N, there exists a graph with
cycles such that Πp(G) = k and there exists an acyclic graph corresponding
to any even natural number.

Theorem 9 If u, v are two non-adjacent vertices in a graph G of order n,
then |Πp(G+ uv) − Πp(G)| ≤ 2.

Proof. Let G be a graph with Πp(G) > 2. Let u and v be two non-adjacent
vertices in G. Here, one may consider the following two cases:
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Case-1: If u and v are of even degree and neither of them is an end point of
a path in the decomposition of G, then in G + uv, u and v are of odd
degree and become end points of some path in G, while the degrees of
all other vertices remain the same as those in G. Hence, in this case,
Πp(G+ uv) = Πp(G) + 2 (see Figure 2 for illustration).

u v

(a) A graph G with no even degree ver-
tex as end point of a path.

u v

(b) A graph G+uv with Πp(G+uv) =
Πp(G) + 2.

Figure 2

Case-2: Let P and P ′ be two (vertex-) disjoint paths in G such that u is an end
vertex of P in G and v is an end vertex of P ′ in G. Join the edge uv.
Now the path P+uv+P ′ becomes a longer path, in which neither u nor
v is an end point. In this case, Πp(G+uv) = Πp(G)− 2 (see Figure 3 for
illustration).

u v

(a) A graph G with end vertices of
paths.

u v

(b) A graph G+uv with Πp(G+uv) =
Πp(G) − 2.

Figure 3

It can be verified that in all other possible cases, Πp(G + uv) lies between
Πp(G) − 2 and Πp(G) + 2. This completes the proof. �

Invoking the results mentioned, we discuss some immediate observations in
this section. By one-point union of cycles, we mean a graph obtained from a
path by replacing its edges by cycles (possibly of different order). The following
result provides the pendant number of one-point union of cycles.
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Proposition 10 If G is the one-point union of cycles, then Πp(G) = 2.

Proof. The proof is clear from Figure 4. The two edge disjoint (u, v)-paths of
the one-point union of cycles are illustrated in the figure. �

u v

P2

P1

Figure 4: One-point union of cycles.

Proposition 11 Let G be a graph, which is neither a cycle nor a one-point
union of cycles. Then, the one-point union of G and a cycle Cn has the pendant
number Πp(G) + 1.

Proof. Let G∗ be the one-point union of a given graph G and a cycle Cn and
let v be the vertex common to G and Cn in G∗. If v is a pendant vertex of any
path decomposition of G, it will be a pendant vertex of some paths in G∗ also.
It can be taken as an end vertex of a path in Cn too. The other end vertex of
this path can be arbitrarily chosen on Cn. If v is not a pendant vertex of any
path decomposition of G, some paths passing through v in G can be extended
to a vertex u of Cn in G∗. Hence, in this case also, one vertex of Cn will be a
pendant vertex in G∗, other than the pendant vertices in G.

Therefore, in both cases, the pendant number is Πp(G) + 1 (see Figure 5).
�

v u

(a) The one-point union of G and Cn

with v as an end vertex of paths.

v u

(b) The one-point union of G and Cn

with v not as an end vertex of paths.

Figure 5
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Proposition 12 If G is a graph with cycles such that v is an end vertex of
a path and G∗ is the one-point union of G and a path Pm joined at v, then
Πp(G) ≤ Πp(G∗) ≤ Πp(G) + 1.

Proof. If v is an end vertex of a single path, then the path can be extended
to Pm so that u ∈ Pm is the end vertex of the resultant path (see Figure 6a).
If v is the end vertex of more than one path, then v together with u ∈ Pm
become the end vertices of the new path (see Figure 6b). �

Example 13 Let G = Kn;n even and G∗ be the (n,m)-shovel graph, which
is the one-point union of Kn and Pm (that is, (Kn∪̇Pm)) [7]. Then, Πp(G

∗) =
Πp(G). Let G = Kn; n odd and G∗ be the (n,m)-shovel graph. Then, Πp(G

∗) =
Πp(G) + 1.

v

u

(a) A graph G with Πp(G
∗) = Πp(G)

u

v

(b) A graphG with Πp(G
∗) = Πp(G)+1.

Figure 6

A maximal, bi-connected, edge-disjoint subgraph of a graph G is called a
block of G. Note that two blocks may have utmost one vertex in common.

Proposition 14 If B1, B2, . . . , Bk are k distinct blocks of a graph G, then
Πp(G) ≤ Σki=1Πp(Bi).

The Figure 4 explains the case when the equality in the above result holds.
The next proposition establishes an illustration of the case where there is the
strict inequality in the above proposition.

Definition 15 A non-uniform friendship graph F∗n is defined as the graph
obtained by joining n cycles (need not be of same order) to a common vertex.
Cycles in this graph are called as petals of F∗n.
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The following result discusses the pendant number of non-uniform friendship
graphs.

Proposition 16 For a non-uniform friendship graph F∗n on n petals, Πp(F
∗
n) =

n.

Proof. Let there be n petals in F∗n. Let v0 be the common vertex and choose
n vertices v1, v2, . . . , vn randomly from each petal. Join the path from v1 to
v2 through v0. Then, v1 and v2 becomes the end vertices of a path. Similarly,
construct the paths from v2 to v3, from v3 to v4, . . . , from vn−1 to vn, and
from vn to v1. There are n such paths with end vertices of every path is a
starting point of another path. Hence, Πp(G) = n. �

This class of non-uniform friendship graphs is another example for Πp-
realisation of positive integers. This fact is immediate from the above result.
We consider δ(G) as the lowest degree among all the degrees of the vertices of
the graph G.

Theorem 17 There exists a connected graph G with δ(G) ≥ 2 corresponding
to any natural number k ≥ 2.

Proof. A (minimal) connected graph G with δ(G) ≥ 2 can be iteratively
constructed corresponding to any natural number k ≥ 2. Consider a cycle Ck
with chords and a cycle C3 in alternative manner. For an even integer 2k, take
the cycle C2k with every vertex has exactly one chord results in an even number
as pendant number. For an odd integer 2k+1, take the one point union of the
cycle C2k with every vertex have exactly one chord and a C3 attached to any
one of its vertices, result in an odd number as pendant number (by Theorem
11). That is, consider the cycle C3 to get the pendant number 2 (see Figure
7a). The one-point union of a diamond with C3 has the pendant number 3
(see Figure 7b). The cycle C4 with every vertex having exactly one chord has
the pendant number 4 (see Figure 7c). The one point union of the above C4
and a C3 has the pendant number 5 (see Figure 7d). The cycle C6 with every
vertex having exactly one chord has the pendant number 6 (see Figure 7e).
The one point union of the above C6 and a C3 has the pendant number 7 (see
Figure 7f). This process gives the pendant number of a (minimal) connected
graph with δ(G) ≥ 2 for any natural number. This completes the proof. �

In view of the Theorem 17, instead of taking C3, if one takes a cycle of
desired length, then it leads to the existence of a graph with desired pendant
number and desired number of vertices. Note that to get the required pendant



A study on the pendant number of graph products 31

(a) A graph with κ ≥ 2
and Πp = 2.

(b) A graph with κ ≥ 2
and Πp = 3.

(c) A graph with κ ≥ 2
and Πp = 4.

(d) A graph with κ ≥
2 and Πp = 5.

(e) A graph with κ ≥ 2
and Πp = 6.

(f) A graph with κ ≥ 2
and Πp = 7.

Figure 7

number, one must have at least the same number of odd vertices. It leads to
the following result.

Corollary 18 There exists a connected graph G of order n with δ(G) ≥ 2

corresponding to any natural number k ≥ 2 and corresponding to any order
n ≥ 3 with desired pendant number.

Theorem 19 A graph G of order n ≥ 3, with at least one even degree vertex
has the pendant number at most n− 1.

Proof. Since the result has already been proved for acyclic graphs (see Theo-
rem 3), it is sufficient to prove the result for cyclic graphs on n vertices using
the method of induction on the number of vertices.

The smallest graph with cycles with at least one even degree vertex is C3
and Πp(C3) = 2. Hence the result is true for n = 3. Assume the result is true
for n = k. Let G be a graph with k vertices and Πp(G) ≤ k− 1. Let v1 be an
even degree vertex, which is not an end vertex of any path in G.

Now let n = k+1. Add one more vertex vk+1 to the above graph G. Connect
any number of vertices of G except v1 to vk+1 (if v1 is joined to vk+1, then
degree of v1 becomes odd). For v1 is not an end vertex of any path in G,
Πp(G) ≤ k. Hence, the proof. �

Theorem 20 Let G be a graph of order n, consisting of cycles and k > 0

even degree vertices. Then, n− k ≤ Πp(G).
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Proof. Let us use the induction on k, viz., k = 1, n − 1 and n. Let k = 1.
Then, by Theorem 19, n−1 ≤ Πp(G) ≤ n−1. Let k = n−1 then, n−(n−1) =
1 ≤ Πp(G). Let k = n then, n− n = 0 ≤ Πp(G). Hence the result is true.

�

Combining Theorem 19 and Theorem 20, it follows:

Theorem 21 If a graph G, with n ≥ 3 vertices, has k even degree vertices,
then n− k ≤ Πp(G) ≤ n− 1.

Proposition 22 If both G and its complement G are connected graphs with
odd degree, then |V(G)| ≥ 5.

Proof. Let a graph G and its complement G be connected graphs such that
all their vertices are of odd degree. Then, at least two vertices each of G and
G will be with degree ≥ 3. If all vertices except one is of degree one in G, then
this vertex must be isolated in G. It implies that the number of vertices of G
must be at least 5. �

A pineapple graph [9], denoted by Kmn , is a graph obtained by appending
m pendant edges to a vertex of a complete graph Kn;m ≥ 1, n ≥ 3. Let A be
the collection of graphs given in Figure 8 and Figure 9. Even though Km3 ⊆
one-point union of a triangle and an odd degree tree, K

m
3 is disconnected.

Moreover, it is clear that the complement of one-point union of triangle and
an odd degree tree always has Πp ≤ n− 2 (see Theorem 3 and Theorem 4).

Figure 8: The graph Km
3 ;m odd.

The next proposition can be proved in a similar manner as that of Theorem
19.

Proposition 23 Let G be a graph G of order n ≥ 4 and G /∈ A. If G has at
least two even degree vertices, then Πp(G) ≤ n− 2.

Using Proposition 22 and Proposition 23, we have the next result associated
a graph G and its complement G.
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Figure 9: One-point union of K3 and an odd degree tree.

Theorem 24 If both the graphs G and its complement G are connected, then
4 ≤ Πp(G) + Πp(G) ≤ 2(n− 1).

Proof. The lower bound of Πp(G) for any graph G is 2. Therefore, 2 ≤ Πp(G)
and 2 ≤ Πp(G). Hence, 4 ≤ Πp(G) + Πp(G).
To prove the other part, one may consider the following two cases:

Case-1: The number of vertices n of the graph G is odd. Since n is odd,
at least one vertex each of G and G must be even. Thus, the result
can be determined by using the Theorem 19, as Πp(G) ≤ n − 1 and
Πp(G) ≤ n− 1.

Case-2: The number of vertices n of the graph G is even. Let all the vertices
of G be odd degree vertices. Hence, Πp(G) = n. Thus, the degree of G
must be even. By Proposition 22, |V(G)| ≥ 5 and by Proposition 23,
Πp(G) = n− 2.

In both cases, it is determined that Πp(G) + Πp(G) ≤ 2(n− 1), completing
the proof. �

3 Pendant number of graph products

The rooted product of two graphs G1 and G2, denoted by G1 ◦G2, is the graph
obtained by taking |V(G1)| copies of G2 and identifying one vertex (root)
of each copy of G2 to the corresponding vertex of G1. The following result
discusses the pendant number of the rooted products of cycles and paths.

Theorem 25 Let Pn and Pm be any two paths and Cn and Cm be any two
cycles. Then the pendant number of their rooted products are given by;

(i) For Pn ◦ Pm,

Πp(Pn ◦ Pm) =

{
2(n− 1) if the root vertex is a pendant vertex ;

2(n+ 1) if the root vertex is an internal vertex.
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(ii) For Cn ◦ Pm, Πp(Cn ◦ Pm) = 2n.

(iii) For Cn ◦ Cm, Πp(Cn ◦ Cm) = n.

Proof.

(i) Let u1, u2, . . . , un be the vertices of Pn and v1, v2, . . . , vm be the vertices
of Pm.

Case-1: Let the root vertex of Pm be a pendant vertex. Then, in the rooted
product Pn◦Pm, one copy of Pm is joined to each of the vertices u1, u2, . . . , un.
The longest path includes the one-point union of Pn between two copies
of Pm (situated at the end points of Pn), yielding 2 pendant vertices.
The remaining n−2 vertices of Pn together with the pendant vertices in
the remaining n− 2 copies of Pm result in 2(n− 2) pendant vertices (see
Figure 10 for illustration). Therefore, Πp(G) = 2+ 2(n− 2) = 2(n− 1).

Case-2: Let the root vertex of Pm be an internal vertex. Then, both end
vertices of all the n copies of Pm and the end vertices of Pn are the end
vertices of some paths in the path decomposition of Pn ◦ Pm (see Figure
11 for illustration). Hence, Πp(G) = 2(n+ 1).

(ii) For Cn ◦Pm, the collection Vp(G) (see 1) is constituted by all the vertices
of Cn together with one end vertex of each of the n copies of the paths
Pm on the other end as seen in Figure 12. Hence, Πp(G) = 2n.

(iii) In the rooted product Cn ◦ Cm, one copy of Cm is joined at each vertex
of Cn. Now take any vertex of degree 2 of Cn ◦Cm as the first vertex of
a path. This path passes through some vertices of the same copy of Cm,
say Cm(i), passes through two adjacent vertices of Cn and passes through
some vertices of the next copy Cm(i+1) before it terminates at some vertex
of Cm(i+1). The next path starts from this end vertex in Cm(i+1) and will
end at some vertex of the next copy Cm(i+2). Continuing like this, one
can find out paths which cover all edges of Cn ◦Cm, as shown in Figure
13. Hence, Πp(Cn ◦ Cm) = n.

�

The corona product G � H of two graphs G and H is obtained by taking
one copy of G and |V(G)| copies of H; and by joining each vertex of the ith

copy of H to the ith vertex of G; 1 ≤ i ≤ |V(G)| (see [8]). When we consider
the corona of two paths, for certain initial values of n and m, the pendant
numbers of Pn � Pm have already determined (see [3],[6]). They are:
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Figure 10: A rooted product Pn ◦Pm with the root vertex as a pendant vertex.

Figure 11: A rooted product Pn◦Pm with the root vertex as an internal vertex.

Figure 12: A rooted product Cn ◦ Pm.

Figure 13: A rooted product Cn ◦ Cm.

(i) We can exclude the cases P1� P1 = K2, P1� P2 = C3, P2� P1 = P4, whose
pendant number is already determined in [3] as 2.

(ii) Since, P1� Pm; m ≥ 3 is the n− fan graph on n+ 2 vertices, its pendant
number is determined in [6] as;

Πp(P1 � Pm) =

{
m− 1 if m is odd;

m− 2 if m is even.

(iii) Pn�P1; n ≥ 3 is the comb tree T , whose pendant number is Πp(Pn�P1) =
2(n− 1) (see[6]).
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(iv) Pn�P2; n ≥ 2 is the lever graph Ln with pendant number Πp(Pn�P2) =
n+ 2 (see [6]).

(v) Since Pn � P3; n ≥ 2 is the diamond neckalce graph Dn, the pendant
number is Πp(Pn � P3) = 2n (see[6]).

Theorem 26 The pendant number of the corona product Pn�Pm with n ≥ 2
and m ≥ 4 of two paths Pn and Pm is given by

Πp(Pn � Pm) =

{
n(m− 1) − 2 if m is odd;

n(m− 2) + 2 if m is even.

Proof. Let u1, u2, . . . , un be the vertices of Pn and v1, v2, . . . , vm be the ver-
tices of Pm. Let u1, u2, . . . , un be the vertices on the root and v11, v12, . . . , v1m,
v21, v22, . . . , v2m, . . ., vn1, vn2, . . . , vnm be the vertices on the crown. Then, the
total number of vertices is n(m + 1). Let the jth vertex of the ith copy of Pm
be denoted by vi,j. The corona product of Pn � Pm where n ≥ 2 and m ≥ 4
has two cases:

Case-1: Let m be odd. Since vi1, vim; 1 ≤ i ≤ n and u1, un are even degree (=
2n+2) and all other vertices are odd, one can make a path decomposition
with the odd degree vertices as the end vertices of every path (see Figure
14) and it will be the least (see Theorem 2). Hence, Πp(G) = n(m+1)−
(2n+ 2) = n(m− 1) − 2.

Case-2: Let m be even. Since vi1, vim; 1 ≤ i ≤ n and u2, u3, . . . , un−1 are
even degree (= 2n + (n − 2)) and all other vertices are odd, the path
decomposition with minimum number of end vertices be the path de-
composition with odd degree vertices as the end vertices of every path
(see Figure 15). Hence,Πp(G) = n(m+ 1)− (2n+n− 2) = n(m− 2)+ 2.

�

vn5vn4vn3vn2vn1v25v24v23v22v21v15v14v13v12v11

unu2u1

Figure 14: A corona product Pn � Pm;m odd.
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vn6vn5vn4vn3vn2vn1v26v25v24v23v22v21v16v15v14v13v12v11

unu2u1

Figure 15: A corona product Pn � Pm;m even.

Theorem 27 The pendant number of the corona product of cycles and paths
is given as:

(i) For Cn � Pm,

Πp(Cn � Pm) =


2n if m = 1;

n if m = 2;

2nbm−1
2 c if m 6= 1, 2.

(ii) The pendant number of the corona product Cn � Cm is given by,

Πp(Cn � Cm) =

{
nm if m is even;

n(m+ 1) if m is odd.

Proof.

(i) The first two parts of the result follow respectively from Part-(ii) and
Part-(iii) of Theorem 25.

Let us now consider the corona product Cn � Pm;m 6= 1, 2. Note that
for every vertex v of Cn, the degree of v in Cn � Pm is m + 2 and for
every vertex of each copy of Pm has degree one more than the degree of
the corresponding vertex in Pm. Hence, the following two cases must be
considered:

Case-1: Let m be odd. Then, in Cn � Pm, every vertex of Cn becomes
odd degree vertex and all vertices of each copy of Pm, except two
(corresponding to the end vertices of Pm) become odd. It is pos-
sible to find edge-disjoint paths in Cn � Pm in such a way that
the vertices of degree two are not pendant vertices of paths in the
path decomposition of Cn�Pm (see Figure 16 for example). Hence,
Πp(Cn � Pm) = n+ n(m− 2) = n(m− 1).
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Case-2: Let m be even. Then, in Cn � Pm, every vertex of Cn remains
as an even degree vertex and all vertices of each copy of Pm, except
two (corresponding to the end vertices of Pm) become odd. It is
possible to find edge-disjoint paths in Cn � Pm in such a way that
the even degree vertices are not pendant vertices of paths in the
path decomposition of Cn�Pm (see Figure 17 for example). Hence,
Πp(Cn � Pm) = n(m− 2).

Combining the above two cases, it is clear that Πp(Cn�Pm) = 2nbm−1
2 c.

Figure 16: A corona product Cn � Pm;m odd.

Figure 17: A corona product Cn � Pm;m even.

(ii) Let u1, u2, . . . , un be the vertices of Cn and v1, v2, . . . , vm be the vertices
of Cm. Let u1, u2, . . . , un be the vertices on the root and v11, v12, . . . , v1m,
v21, v22, . . . , v2m, . . ., vn1, vn2, . . . , vnm be the vertices on the crown. In
Cn�Cm, vi1, vi2, vim; 1 ≤ i ≤ n always have odd degree with deg(vij) =
3; 1 ≤ j ≤ m. The total number of vertices in the corona product is
n(m+ 1). There are two possibilities for Cn � Cm.

Case-1: Let m be even. Since every vertex of each copy of Cm is joined
to each vertex of Cn, the degree of Cn remains even, one can make
a path decomposition in such a way that none of the vertices of
Cn is the end vertex of any path (see Figure 18) and it will be
the least too (see Theorem 2). Thus the pendant number becomes
n(m+ 1) − n = nm.
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Figure 18: A corona product Cn � Cm; m even.

Figure 19: A corona product Cn � Cm; m odd.

Case-2: Let m be odd. Then, all the vertices of Cn � Cm become odd.
Thus, by Theorem 2, pendant number is n(m+ 1) (see Figure 19),
the entire vertex set of the resultant graph.

�



40 J. K. Sebastian, J. V. Kureethara, S. Naduvath, C. Dominic

4 Conclusion

In this paper, we discussed certain properties of the pendant number of a
given graph G. We have determined the pendant number of corona products
and rooted products of paths and cycles. We have also obtained some bounds
for the pendant number for some specific derived graphs. Corresponding to any
natural number n, the existence of a connected graph with pendant number n
has also been established in this study. These studies can further be extended
to other general graph classes, graph products and other graph operations. The
relation of pendant numbers with other popular parameters like domination
number, covering number, chromatic number etc. can also be studied.
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