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Abstract. In this paper we analyze the monotony of the function

m, for T > 0. Such functions have been used from different

authors to obtain inequalities concerning the gamma function.

1 Introduction

In [8] the author proved the following double inequality:

X2+ 1 x*+2
<T N< —— 0, 1]. 1
In [12] the authors improved this inequality proving that
2 2(1—y) 2 Y
X"+ 1 x° 41
<T 1< 1]. 2
(H]) _(x+)_<x+]>,xe[0m (2)
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Other improvements of (1) can be found in [9], [10] and [11]. The inequality
(2) is equivalent to

InT(x+1)
In(x2+1) —In(x+ 1)

2(1—vy) > >v, x€(0,1).
The authors of [12] proved inequality (2) using the monotony of the function

‘ _ InT(x+1)
g:(0,00) = R, g(x) = In(x2+1)—In(x+1)°

In connection with this function they formulated the following conjecture:
if T > 0, then the mapping u; : (0,00) — R defined by

InT(x)
We(x) = { WDk X # 1 @
_(1 +T)Y) x =1

is strictly increasing. This conjecture was confirmed for T € (0,1) in [6]. We
found a counterexample regarding this conjecture: if T = 1000, then

InT(11) In 3628800 In 24° In24 InT(5)
ue(11) = In 112 - In 12 <lnM: I 3
011 011 01 1y (%)5 lnG(])ﬂ)S
InT(5
nld) o s).

1025
ln <W)
Numerical results suggest that there is a value t9 € (212,213) such that if

T € (0, 7o) then u, is strictly increasing. We will prove a partial result regarding
this question.

Theorem 1 The function w, is strictly increasing on the interval (0,00) for
allty 0 <t < 25.

2 Preliminaries

In order to prove our main results we need the following lemmas.

Lemma 1 [3] Let h,k : [a,b] — R be two continuous functions which are
differentiable on (a,b). Further let kK'(x) # 0, x € (a,b). If W/ /K’ is strictly
increasing (resp. decreasing) on (a,b), then the functions
h(x) — _

(x) —h(a) N h(x) —h(b)
k(x) —k(a) k(x) —k(b)

are also strictly increasing (resp. decreasing) on (a,b).

X
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Lemma 2 If t > 1, then the function u, : (0,00) — R defined by
InT'(x)
w(x) = | W X7
_(] + T)’Y) x =1

is strictly increasing on the interval (0,x1), where X1 is the positive root of the
equation x* + 2tx — T = 0.

Proof. According to [4] we have P (x) = rr’((xx)) = —% — Y+ o, m It is
. . 2
easily seen that % > X1 = T+\/:‘27+T > zlL If x € (0,%1), then (;f:i)x(xfm > 0,
% +v—3 2 m > 0, I'(x) > 1, and this implies
1,y E x In XHT 4 T—21x—%2 InT(x)
, xTY o n(n+x) X241t T (X2 41)(x+7)
ur(x) = — 3 > 0.
In® (355)
Thus u, is strictly increasing on the interval (0, x1). O

Lemma 3 The unique positive root of the equation \P(x) = —%—Y—i— y Ao =
0isxy=14616.... If T > 1, then the function

: 00
x

X 7’Y+1§1 m+x)n

v:(x1,00) = R, v(x) = Ix _] ) (4>

x24T X+T

is strictly increasing on the interval (x1,x2), where x1 is defined in Lemma 2.

Proof. We have v/(x) = %, where

(=)
T & 1 2x 1
AlX) = <x2+; (n—l—x)Z) <X2+T_X+T>

1 > X —2x% 421 1
+ <x+y_nz_]n(n+x)>< (x2 +1)2 * (x—I—T)Z)'

Since ]g < x1, and the following inequalities hold

(5)

T & 1 T v & 1 1
— - > __ 4t S0 —
x2+Z(n+x)2>x2+x ;n(n+x)> ’XG(S’Xz)’

2x 1 x24+2tx—7

— = >0, xE€(x1,x
x24T x4T (X-I—T)(Xz—i-’t) ) (1) 2))

and
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it follows that

I 1 2x 1
Ale) > (xz+x_;n(n—|—x)><x2+’c_x—l—’t)

T v & 1 —2x3 + 21x X
+ <x2+x_zn(n+x)>< (x2 +1)2 + (X+T)2>

1 > 1 23 +2 —2x3 42
_ *JFX_Z xz—l— T;(_ X+T2+ >§+'2cx+ X .
X n( (x* + 1) (x +1) (x* + 1) (x+ 1)

(1 .y e 1 4tx T
B <xz+x_zn(n—|—x)) ((X2+T)2 B (x+1)2>

(T oy & 1 x3(4 —x) + 6T+ (4x —1)
_T<7<2+X_ZTL(TL+X)>< (x2 +1)2(x + 1)? )

>0, x € (x1,%x2

— 3

and we get v/(x) >0, x € (x1,x2). Thus v is a strictly increasing function on
the interval (x1,x2). O

Lemma 4 Suppose T > 1. The equation Pp(x) =
root x3 = 2.2324.... The function v : (x7,00) —
increasing on the interval (x2,x3).

P'(x) has a unique positive
R defined by (4) is strictly

Proof. We will prove this lemma in two steps. We have x; < %

In the first step we discuss the case (x3, %).

According to the mean value theorem for every x € (xz,%) there are the
values ¢y, dy € (x2,%) such that P(x) = P(x) — P(x2) = P’(cy)(x — x2) and
P'(x2) — P/ (x) = —P”(dy)(x — x2). These two equalities imply

P(x) =P(x) —h(x2) = (cx) (x —x2) < P'(x2) G — Xz> < %w’(m

8 /3\ 8
<mﬂ) <2> Smﬂ) (x).

)



A result regarding monotonicity of the Gamma function 295

0

Thus we get 0 < P(x) < %(1 + %)U)’(X) < ﬂ—zlb’(x), x € (x2, %) and conse-
quently

24x 12 2 — 2t 1

X2+T x+7T * (x2+1)2 (x+'r)2>
B(x)

(x2 +1)2(x +1)?’

AK) > wm(

=1(x)

where B(x) = 12x° + (1 4+ 367)x* + 24153 + 41 (x — 1) + vx(26x — 16) +
24x1® — 1413 — 1%, and A is defined by (5). It is easily seen that if x € (xz, %),
then B(x) > 0, and consequently v/(x) > 0, for x € (x2, %)

In the second step suppose x € (2,X3) We have in this case 0 < P(x) < P’(x),

where P (x) = ( . A short calculation leads to
2x 1 2x% — 21 1 C(x)
Ale) > Wix) (xz Tt xtT 2412 (x+ T)z) =i (X2 + 1)%(x + 1)’

where C(x) = x>+ (1431)x* +41x% (x— 1) +12x(4x—5) +12 (23— 1) +13(2x—3) >
0, x¢€ (Z,Xg) Consequently we obtain v/(x) >0, x € (%,X3), and the proof
is completed.

Lemma 5 If x € [2,3), then

7(1HX—%) > InT(x), (6)
and
1 = X
— Y — et x) >1nx—g (7)
If T =25, then
lnf:: 2§<X22:TX1T>, x € [2.23,3]. (®)

Proof. Let vs : [2,3] — R be the function defined by vs(x) = g(lnx — %) —
InT'(x). We have

Vi) = o () = 2y - Z

n+x
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and

6 13 o 1
Vé/(x):—ﬁ_wl(x):—ﬁ—2m<o, X€[2,3].

The monotony of v and the inequalities v&(2) > 0, vi(3) < 0 implies that the
equation vi(x) = 0 has exactly one root x; € (2,3) and vi(x) >0, x € (2,x7),
and vi(x) <0, x € (x1,3).

The monotony of v5 implies

v5(x) = min{vs(2),v5(3)} > 0, x € (2,3),

and thus the inequality (6) holds.
In order to prove (7), we define the function vg : [2,3] — R,

7 1 =X 7
Vé(X)—ll)(X)—lIlX—f—zs—_X_Y‘f’nZ_]M—IHX‘FZS.

We have v/(x) = —% +v’' (x) = —% +3 2 m%)z >0, x € [2,3], and conse-

quently
VG(X) > VG(Z) > O) X € [2) 3]

Thus the inequality (7) holds.
The third inequality can be proved as follows.

Let v : [2.23,00) — R be the function defined by v7(x) = In 2T — g(z—x _

J?) . We have v} (x) = %, where o« = % and D(x) = x>+ (31+30)x*+

(272 + dat)x® 4+ 2(1 + )22 + (272 — (o + DNT)x — 2+ N + at?. A
suitable alignment in the numerator of v; shows that v;(x) >0, x € [2.23,3].
Thus we get

v7(x) >v7(2.23) >0, x € [2.23,3],

and the inequality (8) follows. O
Lemma 6 If x € [3,00), then
1
(X—Z)(lnx—z) > InT(x). (9)

If x € [3,00), then

1 X 1
" y—l—E] ( )>nx 7R x € (3,00) ( )
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If x € [3,00), and T = 25, then

1n"2“z(x—z)<2"—1), x € (3,00). (11)

X+T X+1T x+T

Proof. In order to prove 1nequahty (9) we define the function vg : [3,00) — R
by vg(x) = (x — 2)(Inx — f) InT'(x). We have

1T x—1 ad X
W0 =x— g+ sy =Y

and

It is easily seen that

m<z mrm—T1+x x ©° [3, 00).

n=1 n=1

Thus we have vg(x) > 0, x € [3,00), consequently v{ is strictly increasing
and

Vi(x) > vi(3) =In3+y — 1 _%

This means that vg is strictly increasing too and

>0, x € (3,00).

1
vg(x) >vg(3) =In3 — 7 —In2>0, x€ (3,00).

The inequality (10) can be proved as follows Let the functlon vo:[3,00) 5 R
be defined by ve(x ):—f—y—i-zn 1 nn+x lnx+ . We have

S
N m+x)?2 x
n=0

Since
OOE # > OOE 1 = 1 X € B OO)
TL:O(TH—X)Z nzo(n+x)(n+1+x)_x’ D

it follows that vg(x) > 0, x € [3,00), consequently vg is strictly increasing
and

vo(x) >vo(3) =1 +Z—y—ln3 >0, x € (3,00).
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0

Finally, in order to prove (11), we define the function vio : [3,00) — R by

X;:TT —(x—2) (XzziT — ﬁ), where T = 25. We have

V]o(X) =In

2x2 — 21 1
Viol) = (x = 2) ((x2 +1)?2 (x+T)2>
x* +41x3 + 2(7? = 21)x? — 4P — 203 — 12
(x2 + 1)%(x + 1)?
x4 4 100x3 4 11502 — 2500x — 31875
(x2 +71)2(x +71)2 '

=(x—2)

=(x—2)

The Descartes rule of signs implies that the equation x* + 100x> + 1150x% —
2500x—31875 = 0 has no more than one positive root, thus it is easily seen that
the equation v{,(x) = 0 has exactly one root xo = 5.13.... This means that vio
is stictly decreasing on the interval [3,x¢] and strictly increasing on [xg, c0).
Consequently minyep3 o) Vio(x) = vio(xo) = 0.01... > 0, and this implies

vio(x) > 0, for all x € [3,00).

3 Proof of the main result

In this section we shall prove the main theorems.

Theorem 2 Let the function gup : (0,00) — R be defined by

ln(xz-‘ra)—ln(x-&-(x)
oo X € (0,1)U(1,00)

Go,p(x) z{ hﬁm)fln(;@; ) , (12
T+o? = 1.

If « > B > 0, then the mapping gup s strictly increasing on the interval
(0, 00).

Proof. We will prove the theorem in two steps. Let x] = — P be the
p P 1 piv/B2ip

X

positive root of the equation x* +2Bx — p = 0, and let x; = P be the
positive root of x2 + 2ax — ot = 0.

. 2 N\ _ 2
In the first step let x € (0,1). Since (%) = % >0, x €
(0,%1) U (x2, 1), it follows that the function h: (0,00) — R defined by
(In(x? + o) —In(x + )’ X +B x+B X+ 2ax—«

h(x) = (ln(x2+[3)—ln(x+[3))/ X4 x4+ax x2+2px—p’
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is strictly increasing on the intervals (0,x1) and (x2, 1), (because h is a product
of positive strictly increasing functions). Now Lemma 1 implies that gep is
strictly increasing on (0,%;) and (x2,1) too. On the other hand

D(x)
(In(x* + B) —In(x + p))?’

9&,[3(") =

where

x? + 20x — X2+[3_ X2 +2px— B X2+«
(x2 4+ o) (x + ) nx—i—B (x2+B)(x+B) T

D(x) =

. 2
Since (i‘ziis"(’;Jri In Xx:(s > 0, x € (x1,%2), and inﬁ?&% In "XIO‘:‘ <0, x €

(x1,%2), it follows that D(x) > 0, x € (x1,x2), and consequently g’(x) >
0, x € (x1,%2).

We have deduced that gup is a strictly increasing function on the intervals
(0,x1), (x1,%x2), and (x,1). The continuity of g4 implies that this function
is strictly increasing on (0, 1).

In the second step we prove that g g is strictly increasing on (1, 00). We will
prove that

D(x) >0, x e (1,00). (13)
Let k : (0,00) — R be the function defined by k(1) = w The
x24T x+T
following equivalence chain holds '
Jap(x) >0 & D(x)>0 & k(B)>k(a), (14)

providing that x € (1,00), and o« > B > 0.

Consequently in order to prove that g4 p is strictly increasing we have to show
that if x € (1,00) is a fixed number, then k is strictly decreasing on (0, co).
We have

E(7)

k'(1) = m»

x24T X+T

E(r) = 1 _ 1 2x _ 1 n 2x - 1 lnxz—i—'c
S\ 4T x+1 )\ 4T x4T (x2+1)2 (x4 71)? x4+’

1

It is easily seen that if T € (0,00) and x € (1,00), then x2+T — = <0,
2x x24T
x2+'r_m>o lnx+'t>o

This second case has two sub-cases.
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First suppose that (X2+T) m < 0, for some x € (1,00), T € (0,00). In this
1 1 2 1 +

case we have (X2+T —m) (ij‘rT X+T) < 0and ( X2+T) — oo ) In Xx+1T <0.

Thus it follows E(1) < 0, and so we get k/(T) < 0, and we are done.

Now we suppose (XzZ%)z — (XJ:T)Z > 0.

In this case we use the well-known inequality t—1 > Int, t € (0, c0). Putting

t= ’;Zj; we get In Xj;f < szﬂ , for every x € (1, 00), T € (0, 00), and it follows

that

E(T)—( 1 B 1 2x B 1 n 2x B 1
C\xX2 41 x+1/\X+T x+T (x2+1)? (x+1)2
x> +T 1 1 2x 1
In < — —_
X+T +1T x+1/\X4+T x+7T

N < x 1 ) _ x* —x
(x2+1)2 (x+71)?2) x+7

(x—x2)(x*+2tx —1) [ 2x(x + 1)% — (x* + 1) (x* — x)
(x2 +71)2(x + 1)? (x2 +1)? (x + 1)3

(x —x3) (x* —x3 + ™¢2 — 1X)

T T

Consequently, provided that x is fixed, x € (1,00), the inequality k’(t) < 0
holds for every T € (0, 00). According to (14) it follows gf’x’ﬁ(x) >0, x € (1,00),
and the proof is finished. O

Theorem 3 If T = 25, then the mapping W is strictly increasing on the
interval (0,00), where w, is defined by (3).

Proof. Provided that T = 25, Lemma 2 implies that the function wu; is strictly
increasing on the interval (0, x7), where x; is the positive root of the equation
x? +2tx —1=0.

Let x; = 1.4616... be the positive root of the equation P(x) = —l -y +
> o +X =0. If T = 25, then Lemma 3 implies that the function

1 = X
XYt Z (m+x)n
n=1

2x 1 )

x24T x+T

v:i(x1,00) 2 R, v(x) =

is strictly increasing on the interval (xq1,x2).
Let x3 = 2.2324... be the positive root of the equation \(x) = \’(x). Since
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Lemma 4 implies that v is strictly increasing on the interval (x;,x3), it follows
that v is strictly increasing on (x1,x3). Now this result and Lemma 1 imply
that the mapping w; is also strictly increasing on the intervals (x;,1) and
(] ) XS) .

Further we will prove that u; is strictly increasing on (x3,3). We observe that
if x € (x3,3) and T = 25 we can multiply the inequalities (6), (7), (8) and it
follows that

1 > X x24T X2+ 2tx—7
- — | InT 15

x+1  (Z+1)(x+T)

and consequently we obtain

1 2 24 drx—
< Tx Y+ Zio:] n(n),:—x)) In i:: - (;Zj-_’t)rr(fc-ijt) In F(X)
wr(x) = >0, x € (x3,3).

W ()

Summarizing, if T = 25, then we have proved that the function w, is strictly
increasing on the intervals (0, x1), (x1,%3), (x3,3). The continuity of w, implies
that u; is strictly increasing on the interval (0, 3).

We will prove in the followings that if T = 25, then w, is strictly increasing on
(3, 00).

It is easily seen that multiplying the inequalities (?), (10), and (11) the in-
equality (15) follows in case T = 25 and x € (3,00). Thus we have ujs(x) >
0, x € (3,00), and so uys is strictly increasing on (3,00). The continuity of
uys implies that this function is strictly increasing on (0, co). 0

Proof of Theorem 1.: From the equality

Ue(x) = ups(x) - g25(x),

and from the results of Theorem 2. and Theorem 3. we infer that 1w, is strictly
increasing on the interval (0,00) in case of every given T € (0, 25]. O

Other interesting results regarding the I' function can be found in [1], [2],
[5], [6] and [7].
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