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Róbert Szász
Department of Mathematics-Informatics,
Faculty of Technical and Human Sciences,

Sapientia Hungarian University of Transylvania
email: rszasz@ms.sapientia.ro

Abstract. In this paper we analyze the monotony of the function
ln Γ(x)

ln(x2+τ)−ln(x+τ)
, for τ > 0. Such functions have been used from different

authors to obtain inequalities concerning the gamma function.

1 Introduction

In [8] the author proved the following double inequality:

x2 + 1

x+ 1
≤ Γ(x+ 1) ≤ x

2 + 2

x+ 2
, x ∈ [0, 1]. (1)

In [12] the authors improved this inequality proving that(
x2 + 1

x+ 1

)2(1−γ)
≤ Γ(x+ 1) ≤

(
x2 + 1

x+ 1

)γ
, x ∈ [0, 1]. (2)
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Other improvements of (1) can be found in [9], [10] and [11]. The inequality
(2) is equivalent to

2(1− γ) >
ln Γ(x+ 1)

ln(x2 + 1) − ln(x+ 1)
> γ, x ∈ (0, 1).

The authors of [12] proved inequality (2) using the monotony of the function

g : (0,∞)→ R, g(x) =
ln Γ(x+ 1)

ln(x2 + 1) − ln(x+ 1)
.

In connection with this function they formulated the following conjecture:
if τ > 0, then the mapping uτ : (0,∞)→ R defined by

uτ(x) =

{
ln Γ(x)

ln(x2+τ)−ln(x+τ)
, x 6= 1

−(1+ τ)γ, x = 1
(3)

is strictly increasing. This conjecture was confirmed for τ ∈ (0, 1) in [6]. We
found a counterexample regarding this conjecture: if τ = 1000, then

uτ(11) =
ln Γ(11)

ln 1121
1011

=
ln 3628800

ln 1121
1011

<
ln 245

ln 1121
1011

=
ln 24

ln
(
1121
1011

) 1
5

=
ln Γ(5)

ln
(
1121
1011

) 1
5

<
ln Γ(5)

ln
(
1025
1005

) = uτ(5).

Numerical results suggest that there is a value τ0 ∈ (212, 213) such that if
τ ∈ (0, τ0) then uτ is strictly increasing. We will prove a partial result regarding
this question.

Theorem 1 The function uτ is strictly increasing on the interval (0,∞) for
all τ, 0 < τ ≤ 25.

2 Preliminaries

In order to prove our main results we need the following lemmas.

Lemma 1 [3] Let h, k : [a, b] → R be two continuous functions which are
differentiable on (a,b). Further let k ′(x) 6= 0, x ∈ (a, b). If h ′/k ′ is strictly
increasing (resp. decreasing) on (a, b), then the functions

x 7−→ h(x) − h(a)

k(x) − k(a)
x 7−→ h(x) − h(b)

k(x) − k(b)

are also strictly increasing (resp. decreasing) on (a, b).
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Lemma 2 If τ > 1, then the function uτ : (0,∞)→ R defined by

uτ(x) =

{
ln Γ(x)

ln(x2+τ)−ln(x+τ)
, x 6= 1

−(1+ τ)γ, x = 1

is strictly increasing on the interval (0, x1), where x1 is the positive root of the
equation x2 + 2τx− τ = 0.

Proof. According to [4] we have ψ(x) = Γ ′(x)
Γ(x) = − 1

x − γ +
∑∞
n=1

x
n(n+x) . It is

easily seen that 1
2 > x1 = τ

τ+
√
τ2+τ

> 1
4 . If x ∈ (0, x1), then τ−2τx−x2

(x2+τ)(x+τ)
> 0,

1
x + γ−

∑∞
n=1

x
n(n+x) > 0, Γ(x) > 1, and this implies

u ′
τ(x) =

(
1
x + γ−

∞∑
n=1

x
n(n+x)

)
ln x+τ

x2+τ
+ τ−2τx−x2

(x2+τ)(x+τ)
ln Γ(x)

ln2
(
x2+τ
x+τ

) > 0.

Thus uτ is strictly increasing on the interval (0, x1). �

Lemma 3 The unique positive root of the equation ψ(x) = − 1
x−γ+

∞∑
n=1

x
(n+x)n =

0 is x2 = 1.4616 . . . . If τ > 1, then the function

v : (x1,∞)→ R, v(x) =

− 1
x − γ+

∞∑
n=1

x
(n+x)n

2x
x2+τ

− 1
x+τ

, (4)

is strictly increasing on the interval (x1, x2), where x1 is defined in Lemma 2.

Proof. We have v ′(x) = A(x)(
2x

x2+τ
− 1
x+τ

)2 , where

A(x) =

(
1

x2
+

∞∑
n=1

1

(n+ x)2

)(
2x

x2 + τ
−

1

x+ τ

)

+

(
1

x
+ γ−

∞∑
n=1

x

n(n+ x)

)(
−2x2 + 2τ

(x2 + τ)2
+

1

(x+ τ)2

)
.

(5)

Since 1
3 < x1, and the following inequalities hold

1

x2
+

∞∑
n=1

1

(n+ x)2
>
1

x2
+
γ

x
−

∞∑
n=1

1

n(n+ x)
> 0, x ∈ (

1

3
, x2),

and
2x

x2 + τ
−

1

x+ τ
=

x2 + 2τx− τ

(x+ τ)(x2 + τ)
> 0, x ∈ (x1, x2),
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it follows that

A(x) >

(
1

x2
+
γ

x
−

∞∑
n=1

1

n(n+ x)

)(
2x

x2 + τ
−

1

x+ τ

)

+

(
1

x2
+
γ

x
−

∞∑
n=1

1

n(n+ x)

)(
−2x3 + 2τx

(x2 + τ)2
+

x

(x+ τ)2

)

=

(
1

x2
+
γ

x
−

∞∑
n=1

1

n(n+ x)

)(
2x3 + 2τx

(x2 + τ)2
−

x+ τ

(x+ τ)2
+

−2x3 + 2τx

(x2 + τ)2
+

x

(x+ τ)2

)

=

(
1

x2
+
γ

x
−

∞∑
n=1

1

n(n+ x)

)(
4τx

(x2 + τ)2
−

τ

(x+ τ)2

)

= τ

(
1

x2
+
γ

x
−

∞∑
n=1

1

n(n+ x)

)(
x3(4− x) + 6τx2 + τ2(4x− 1)

(x2 + τ)2(x+ τ)2

)
> 0, x ∈ (x1, x2),

and we get v ′(x) > 0, x ∈ (x1, x2). Thus v is a strictly increasing function on
the interval (x1, x2). �

Lemma 4 Suppose τ > 1. The equation ψ(x) = ψ ′(x) has a unique positive
root x3 = 2.2324 . . . . The function v : (x1,∞) → R defined by (4) is strictly
increasing on the interval (x2, x3).

Proof. We will prove this lemma in two steps. We have x2 <
3
2 .

In the first step we discuss the case (x2,
3
2).

According to the mean value theorem for every x ∈ (x2,
3
2) there are the

values cx, dx ∈ (x2, x) such that ψ(x) = ψ(x) − ψ(x2) = ψ ′(cx)(x − x2) and
ψ ′(x2) −ψ

′(x) = −ψ ′′(dx)(x− x2). These two equalities imply

ψ(x) = ψ(x) −ψ(x2) = ψ
′(cx)(x− x2) < ψ

′(x2)

(
3

2
− x2

)
<

4

100
ψ ′(x2)

and

ψ ′(x2) −ψ
′(x) = −ψ ′′(dx)(x− x2) = 2(x− x2)

( ∞∑
n=0

1

(n+ dx)3

)
<

8

100
ψ ′

(
3

2

)
≤ 8

100
ψ ′(x).
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�

Thus we get 0 < ψ(x) < 4
100

(
1 + 8

100

)
ψ ′(x) < 1

12ψ
′(x), x ∈ (x2,

3
2) and conse-

quently

A(x) > ψ(x)

(
24x

x2 + τ
−

12

x+ τ
+
2x2 − 2τ

(x2 + τ)2
−

1

(x+ τ)2

)
= ψ(x)

B(x)

(x2 + τ)2(x+ τ)2
,

where B(x) = 12x5 + (1 + 36τ)x4 + 24τ2x3 + 4τx2(x − 1) + τ2x(26x − 16) +
24xτ3 − 14τ3 − τ2, and A is defined by (5). It is easily seen that if x ∈ (x2,

3
2),

then B(x) > 0, and consequently v ′(x) > 0, for x ∈ (x2,
3
2).

In the second step suppose x ∈ ( 32 , x3). We have in this case 0 < ψ(x) ≤ ψ ′(x),

where ψ(x) = Γ ′(x)
Γ(x) . A short calculation leads to

A(x) > ψ(x)

(
2x

x2 + τ
−

1

x+ τ
+
2x2 − 2τ

(x2 + τ)2
−

1

(x+ τ)2

)
= ψ(x)

C(x)

(x2 + τ)2(x+ τ)2
,

where C(x) = x5+(1+3τ)x4+4τx2(x−1)+τ2x(4x−5)+τ2(2x3−1)+τ3(2x−3) >
0, x ∈ ( 32 , x3). Consequently we obtain v ′(x) > 0, x ∈ ( 32 , x3), and the proof
is completed.

Lemma 5 If x ∈ [2, 3), then

6

7
(ln x−

7

25
) > ln Γ(x), (6)

and

−
1

x
− γ+

∞∑
n=1

x

n(n+ x)
> ln x−

7

25
. (7)

If τ = 25, then

ln
x2 + τ

x+ τ
≥ 6
7

(
2x

x2 + τ
−

1

x+ τ

)
, x ∈ [2.23, 3]. (8)

Proof. Let v5 : [2, 3] → R be the function defined by v5(x) =
6
7(ln x −

7
25) −

ln Γ(x). We have

v ′5(x) =
6

7x
−ψ (x) =

13

7x
+ γ−

∞∑
n=1

x

n(n+ x)
,
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and

v ′′5 (x) = −
6

7x2
−ψ ′ (x) = −

13

7x2
−

∞∑
n=1

1

(n+ x)2
< 0, x ∈ [2, 3].

The monotony of v ′5 and the inequalities v ′5(2) > 0, v
′
5(3) < 0 implies that the

equation v ′5(x) = 0 has exactly one root x1 ∈ (2, 3) and v ′5(x) > 0, x ∈ (2, x1),
and v ′5(x) < 0, x ∈ (x1, 3).
The monotony of v5 implies

v5(x) ≥ min{v5(2), v5(3)} > 0, x ∈ (2, 3),

and thus the inequality (6) holds.
In order to prove (7), we define the function v6 : [2, 3]→ R,

v6(x) = ψ (x) − ln x+
7

25
= −

1

x
− γ+

∞∑
n=1

x

n(n+ x)
− ln x+

7

25
.

We have v ′6(x) = − 1
x + ψ

′ (x) = − 1
x +
∑∞
n=0

1
(n+x)2

> 0, x ∈ [2, 3], and conse-

quently
v6(x) ≥ v6(2) > 0, x ∈ [2, 3].

Thus the inequality (7) holds.
The third inequality can be proved as follows.

Let v7 : [2.23,∞) → R be the function defined by v7(x) = ln x2+τ
x+τ − 6

7

(
2x
x2+τ

−

1
x+τ

)
.We have v ′7(x) =

D(x)
(x2+τ)2(x+τ)2

, where α = 6
7 andD(x) = x5+(3τ+3α)x4+

(2τ2 + 4ατ)x3 + 2(1 + α)τ2x2 + (2τ3 − (4α + 1)τ2)x − (2α + 1)τ3 + ατ2. A
suitable alignment in the numerator of v ′7 shows that v ′7(x) > 0, x ∈ [2.23, 3].
Thus we get

v7(x) ≥ v7(2.23) > 0, x ∈ [2.23, 3],

and the inequality (8) follows. �

Lemma 6 If x ∈ [3,∞), then

(x− 2)(ln x−
1

4
) > ln Γ(x). (9)

If x ∈ [3,∞), then

−
1

x
− γ+

∞∑
n=1

x

n(n+ x)
> ln x−

1

4
, x ∈ (3,∞). (10)
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If x ∈ [3,∞), and τ = 25, then

ln
x2 + τ

x+ τ
≥ (x− 2)

(
2x

x2 + τ
−

1

x+ τ

)
, x ∈ (3,∞). (11)

Proof. In order to prove inequality (9) we define the function v8 : [3,∞)→ R
by v8(x) = (x− 2)(ln x− 1

4) − ln Γ(x). We have

v ′8(x) = ln x−
1

4
+
x− 1

x
+ γ−

∞∑
n=1

x

n(n+ x)
,

and

v ′′8 (x) =
1

x
+
1

x2
−

∞∑
n=1

1

(n+ x)2
.

It is easily seen that

∞∑
n=1

1

(n+ x)2
<

∞∑
n=1

1

(n+ x)(n− 1+ x)
=
1

x
, x ∈ [3,∞).

Thus we have v ′′8 (x) > 0, x ∈ [3,∞), consequently v ′8 is strictly increasing
and

v ′8(x) > v
′
8(3) = ln 3+ γ− 1−

5

12
> 0, x ∈ (3,∞).

This means that v8 is strictly increasing too and

v8(x) > v8(3) = ln 3−
1

4
− ln 2 > 0, x ∈ (3,∞).

The inequality (10) can be proved as follows. Let the function v9 : [3,∞)→ R
be defined by v9(x) = − 1

x − γ+
∑∞
n=1

x
n(n+x) − ln x+ 1

4 . We have

v ′9(x) =

∞∑
n=0

1

(n+ x)2
−
1

x
.

Since ∞∑
n=0

1

(n+ x)2
>

∞∑
n=0

1

(n+ x)(n+ 1+ x)
=
1

x
, x ∈ [3,∞),

it follows that v ′9(x) > 0, x ∈ [3,∞), consequently v9 is strictly increasing
and

v9(x) > v9(3) = 1+
3

4
− γ− ln 3 > 0, x ∈ (3,∞).
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�

Finally, in order to prove (11), we define the function v10 : [3,∞) → R by

v10(x) = ln x2+τ
x+τ − (x− 2)

(
2x
x2+τ

− 1
x+τ

)
, where τ = 25. We have

v ′10(x) = (x− 2)

(
2x2 − 2τ

(x2 + τ)2
−

1

(x+ τ)2

)
= (x− 2)

x4 + 4τx3 + 2(τ2 − 2τ)x2 − 4τ2x− 2τ3 − τ2

(x2 + τ)2(x+ τ)2

= (x− 2)
x4 + 100x3 + 1150x2 − 2500x− 31875

(x2 + τ)2(x+ τ)2
.

The Descartes rule of signs implies that the equation x4 + 100x3 + 1150x2 −
2500x−31875 = 0 has no more than one positive root, thus it is easily seen that
the equation v ′10(x) = 0 has exactly one root x0 = 5.13 . . . . This means that v10
is stictly decreasing on the interval [3, x0] and strictly increasing on [x0,∞).
Consequently minx∈[3,∞) v10(x) = v10(x0) = 0.01 . . . > 0, and this implies

v10(x) > 0, for all x ∈ [3,∞).

3 Proof of the main result

In this section we shall prove the main theorems.

Theorem 2 Let the function gα,β : (0,∞)→ R be defined by

gα,β(x) =

{
ln(x2+α)−ln(x+α)
ln(x2+β)−ln(x+β)

, x ∈ (0, 1) ∪ (1,∞)
1+β
1+α , x = 1.

(12)

If α > β > 0, then the mapping gα,β is strictly increasing on the interval
(0,∞).

Proof. We will prove the theorem in two steps. Let x1 = β

β+
√
β2+β

be the

positive root of the equation x2 + 2βx − β = 0, and let x2 =
α

α+
√
α2+α

be the

positive root of x2 + 2αx− α = 0.

In the first step let x ∈ (0, 1). Since
(
x2+2αx−α
x2+2βx−β

) ′
= 2(α−β)(x−x2)

(x2+2βx−β)2
> 0, x ∈

(0, x1) ∪ (x2, 1), it follows that the function h : (0,∞)→ R defined by

h(x) =

(
ln(x2 + α) − ln(x+ α)

) ′(
ln(x2 + β) − ln(x+ β)

) ′ = x2 + β

x2 + α
· x+ β
x+ α

· x
2 + 2αx− α

x2 + 2βx− β
,
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is strictly increasing on the intervals (0, x1) and (x2, 1), (because h is a product
of positive strictly increasing functions). Now Lemma 1 implies that gα,β is
strictly increasing on (0, x1) and (x2, 1) too. On the other hand

g ′
α,β(x) =

D(x)

(ln(x2 + β) − ln(x+ β))2
,

where

D(x) =
x2 + 2αx− α

(x2 + α)(x+ α)
ln
x2 + β

x+ β
−

x2 + 2βx− β

(x2 + β)(x+ β)
ln
x2 + α

x+ α
.

Since x2+2αx−α
(x2+α)(x+α)

ln x2+β
x+β > 0, x ∈ (x1, x2), and x2+2βx−β

(x2+β)(x+β)
ln x2+α

x+α < 0, x ∈
(x1, x2), it follows that D(x) > 0, x ∈ (x1, x2), and consequently g ′(x) >
0, x ∈ (x1, x2).
We have deduced that gα,β is a strictly increasing function on the intervals
(0, x1), (x1, x2), and (x2, 1). The continuity of gα,β implies that this function
is strictly increasing on (0, 1).
In the second step we prove that gα,β is strictly increasing on (1,∞). We will
prove that

D(x) > 0, x ∈ (1,∞). (13)

Let k : (0,∞) → R be the function defined by k(τ) = ln(x2+τ)−ln(x+τ)
2x

x2+τ
− 1
x+τ

. The

following equivalence chain holds

g ′
α,β(x) > 0 ⇔ D(x) > 0 ⇔ k(β) > k(α), (14)

providing that x ∈ (1,∞), and α > β > 0.
Consequently in order to prove that gα,β is strictly increasing we have to show
that if x ∈ (1,∞) is a fixed number, then k is strictly decreasing on (0,∞).
We have

k ′(τ) =
E(τ)

( 2x
x2+τ

− 1
x+τ)

2
,

E(τ) =

(
1

x2 + τ
−

1

x+ τ

)(
2x

x2 + τ
−

1

x+ τ

)
+

(
2x

(x2 + τ)2
−

1

(x+ τ)2

)
ln
x2 + τ

x+ τ
.

It is easily seen that if τ ∈ (0,∞) and x ∈ (1,∞), then 1
x2+τ

− 1
x+τ < 0,

2x
x2+τ

− 1
x+τ > 0, ln x2+τ

x+τ > 0.

This second case has two sub-cases.
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First suppose that 2x
(x2+τ)2

− 1
(x+τ)2

≤ 0, for some x ∈ (1,∞), τ ∈ (0,∞). In this

case we have
(

1
x2+τ

− 1
x+τ

)(
2x
x2+τ

− 1
x+τ

)
< 0 and

(
2x

(x2+τ)2
− 1

(x+τ)2

)
ln x2+τ

x+τ ≤ 0.
Thus it follows E(τ) < 0, and so we get k ′(τ) < 0, and we are done.
Now we suppose 2x

(x2+τ)2
− 1

(x+τ)2
> 0.

In this case we use the well-known inequality t−1 ≥ ln t, t ∈ (0,∞). Putting

t = x2+τ
x+τ we get ln x2+τ

x+τ ≤
x2−x
x+τ , for every x ∈ (1,∞), τ ∈ (0,∞), and it follows

that

E(τ) =
( 1

x2 + τ
−

1

x+ τ

)(
2x

x2 + τ
−

1

x+ τ

)
+

(
2x

(x2 + τ)2
−

1

(x+ τ)2

)
ln
x2 + τ

x+ τ
≤

(
1

x2 + τ
−

1

x+ τ

)(
2x

x2 + τ
−

1

x+ τ

)
+

(
2x

(x2 + τ)2
−

1

(x+ τ)2

)
· x

2 − x

x+ τ

=
(x− x2)(x2 + 2τx− τ)

(x2 + τ)2(x+ τ)2
+

[2x(x+ τ)2 − (x2 + τ)2](x2 − x)

(x2 + τ)2(x+ τ)3

=
(x− x2)(x4 − x3 + τx2 − τx)

(x2 + τ)2(x+ τ)3
< 0.

Consequently, provided that x is fixed, x ∈ (1,∞), the inequality k ′(τ) < 0

holds for every τ ∈ (0,∞).According to (14) it follows g ′
α,β(x) > 0, x ∈ (1,∞),

and the proof is finished. �

Theorem 3 If τ = 25, then the mapping uτ is strictly increasing on the
interval (0,∞), where uτ is defined by (3).

Proof. Provided that τ = 25, Lemma 2 implies that the function uτ is strictly
increasing on the interval (0, x1), where x1 is the positive root of the equation
x2 + 2τx− τ = 0.
Let x2 = 1.4616 . . . be the positive root of the equation ψ(x) = − 1

x − γ +∑∞
n=1

x
(n+x)n = 0. If τ = 25, then Lemma 3 implies that the function

v : (x1,∞)→ R, v(x) =
− 1
x − γ+

∞∑
n=1

x
(n+x)n

2x
x2+τ

− 1
x+τ

,

is strictly increasing on the interval (x1, x2).
Let x3 = 2.2324 . . . be the positive root of the equation ψ(x) = ψ ′(x). Since
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Lemma 4 implies that v is strictly increasing on the interval (x2, x3), it follows
that v is strictly increasing on (x1, x3). Now this result and Lemma 1 imply
that the mapping uτ is also strictly increasing on the intervals (x1, 1) and
(1, x3).
Further we will prove that uτ is strictly increasing on (x3, 3). We observe that
if x ∈ (x3, 3) and τ = 25 we can multiply the inequalities (6), (7), (8) and it
follows that(

−
1

x
− γ+

∞∑
n=1

x

n(n+ x)

)
ln
x2 + τ

x+ τ
>

x2 + 2τx− τ

(x2 + τ)(x+ τ)
ln Γ(x), (15)

and consequently we obtain

u ′
τ(x) =

(
− 1
x − γ+

∑∞
n=1

x
n(n+x)

)
ln x2+τ

x+τ − x2+2τx−τ
(x2+τ)(x+τ)

ln Γ(x)

ln2
(
x2+τ
x+τ

) > 0, x ∈ (x3, 3).

Summarizing, if τ = 25, then we have proved that the function uτ is strictly
increasing on the intervals (0, x1), (x1, x3), (x3, 3). The continuity of uτ implies
that uτ is strictly increasing on the interval (0, 3).
We will prove in the followings that if τ = 25, then uτ is strictly increasing on
(3,∞).
It is easily seen that multiplying the inequalities (9), (10), and (11) the in-
equality (15) follows in case τ = 25 and x ∈ (3,∞). Thus we have u ′

25(x) >
0, x ∈ (3,∞), and so u25 is strictly increasing on (3,∞). The continuity of
u25 implies that this function is strictly increasing on (0,∞). �

Proof of Theorem 1.: From the equality

uτ(x) = u25(x) · g25,τ(x),

and from the results of Theorem 2. and Theorem 3. we infer that uτ is strictly
increasing on the interval (0,∞) in case of every given τ ∈ (0, 25]. �

Other interesting results regarding the Γ function can be found in [1], [2],
[5], [6] and [7].
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