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Abstract. In the paper, by a general and fundamental, but non-extensively
circulated, formula for derivatives of a ratio of two differentiable functions
and by a recursive relation of the Hessenberg determinant, the author
finds a new determinantal expression and a new recursive relation of the
Delannoy numbers. Consequently, the author derives a recursive relation
for computing central Delannoy numbers in terms of related Delannoy
numbers.

1 Motivations

The Delannoy numbers, denoted by D(p,q) for p,q > 0, form an array of
positive integers which are related to lattice paths enumeration and other
problems in combinatorics. For more information on their history and status
in combinatorics, please refer to [1] and closely related references therein.
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In [1, Section 2] and [7], the explicit formulas
p q .
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were given. It is well known [7] that the Delannoy numbers D(p, q) satisfy a
simple recurrence

D(p,q)=D(p—-1,9)+D(p—-1,9—1)+D(p,q—1)
and can be generated by

Z D(p, q)xPyq.
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When taking n = p = ¢, the numbers D(n) = D(n,n) are known [7] as central
Delannoy numbers which have the generating function
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In [6, Theorems 1.1 and 1.3], considering the generating function (1), among
other things, the authors expressed central Delannoy numbers D(n) by an
integral
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and by a determinant
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for n € N, where
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Making use of the integral expression 2, the authors derived in [5, 6] some new
analytic properties, including some product inequalities and determinantal
inequalities, of central Delannoy numbers D(n).

In this paper, by a general and fundamental, but non-extensively circulated,
formula for derivatives of a ratio of two differentiable functions in [2, p. 40]
and by a recursive relation of the Hessenberg determinant in [3, p. 222, Theo-
rem|, we find a new determinantal expression and a new recursive relation of
the Delannoy numbers D(p, q). Consequently, we derive a recursive relation
for computing central Delannoy numbers D(n) in terms of related Delannoy
numbers D(p, q).

2 A determinantal expression of the Delannoy num-
bers

In this section, by virtue of a general and fundamental, but non-extensively
circulated, formula for derivatives of a ratio of two differentiable functions
in [2, p. 40], we find a new determinantal expression of the Delannoy numbers

D(p, q).

Theorem 1 Forp,q > 0, the Delannoy numbers D(p, q) can be determinan-
tally expressed by

(=19
— |Ligrnx1 (p) M(q+1)xq(p)‘(q+])x(q+])) (3)

D(P,q) = q!

where
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is known as the n-th falling factorial of the number z € C, and T denotes
the transpose of a matriz. Consequently, central Delannoy numbers D(n) for
n > 0 can be determinantally expressed as
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Proof. We recall a general and fundamental, but non-extensively circulated,
formula for derivatives of a ratio of two differentiable functions. Let w(t) and

v(t) # 0 be two n-th differentiable functions for n € N. Exercise 5) in [2, p. 40]

u(t)

reads that the n-th derivative of the ratio S can be computed by

n Wn
di [u(t)] = ( )n ‘ ::L-H (t)])(t) ‘» (5>

where Uni1)x1(t) is an (n+ 1) x T matrix whose elements satisfy w(t) =
ul(t) for 1 < k < n+1, Ving1)xn(t) is an (n 4 1) x n matrix whose
elements meet vij(t) = (}j)v(i*j)(t) forT<i<n+7land1 <j<n,and
IWini1)x(n+1)(t)] is the determinant of the (n+ 1) x (n + 1) matrix

Winix i () = (Umgayxa (t) V(n+1)><n(t))(n+])><(n+]) .

It is easy to see that
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Making use of the formula (5) gives
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as x,y — 0. Consequently, we have
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The determinantal expression (3) is thus proved.
From (3), we readily see that, when n = p = q, central Delannoy numbers
D(n) for n > 0 can be expressed as (4). The proof of Theorem 1 is complete. [J

3 A recursive relation of the Delannoy numbers

In this section, by virtue of a recursive relation of the Hessenberg determinant
in [3, p. 222, Theorem]|, we find a recursive relation of the Delannoy numbers

D(p, q).

Theorem 2 Forp,q > 0, the Delannoy numbers D(p, q) satisfy the recursive
relation

q—1
D(p,q) = (Z) IS Z(—nr(’:fl)mp,r). (6)
=0
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Consequently, central Delannoy numbers D(n) for n > 0 satisfy

D(n) = ot Z <r+1>D(n,r). (7)

Proof. Let Qo =1 and

€1,1 €1,2 0 cee 0 0
e €22 €23 0 0
€3,1 €32 €33 .o 0 0
Qn = . . .
€n-21 ©€n-22 €n-23 ... €n-2n-1 0
€n—1,1 en-12 €n-13 ... Een—1n-1 ©En-1In
€n,1 €n,2 €n3 v €nn—1 €nn

for n € N. In [3, p. 222, Theorem]|, it was proved that the sequence Q, for
n > 0 satisfies Q1 = €77 and

n n—1
Qn = Z(—1 ) eny (H ej,j+1> Qr1 (8)
r=1 j=r

for n > 2, where the empty product is understood to be 1. Replacing the
determinant Q. by (=1)™'(r — 1)!D(p,r — 1) in (3) for 1 < v < n in the
recursive relation (8) and simplifying give

<> ) P+ 1nr
Dp,n—1) = (o Z Tﬁ‘mw—z)

which is equivalent to the recursive relation (6).
When n =p = q in (6), we can see that central Delannoy numbers D(n)
satisfy the recursive relation (7). The proof of Theorem 2 is complete. O

Remark 1 This paper is a shortened version of the electronic preprint [4].
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