

DOI: 10.47745/ausm-2024-0008

Embedding topological manifolds into L^p spaces

Yu-Lin Chou

freelance author, Hsinchu County, Taiwan (R.O.C.) email: chou.y.l.edu@gmail.com

Abstract. With a simple argument, we show as a main note that, for every given $1 \le \mathfrak{p} \le +\infty$, every locally compact second-countable Hausdorff space is topologically embeddable into some $L^\mathfrak{p}$ space with respect to some finite nonzero Borel measure, where the embedding may be chosen so that its range is included in some open proper subset of the $L^\mathfrak{p}$ space.

Throughout, a manifold is always assumed to be a topological manifold, i.e. a second-countable Hausdorff space where every point has some neighborhood homeomorphic to some (fixed) Euclidean space. And an embedding is always assumed to be a topological embedding, i.e. a homeomorphism acting between a topological space and a subspace of a topological space.

In addition to the existing embedding results for various types of manifolds, we wish to show with a simple elementary proof that, given any $1 \le p \le +\infty$, every manifold is embeddable into some L^p space with some additional properties.

Our main result is more general:

Theorem 1 If $1 \le p \le +\infty$, then every locally compact second-countable Hausdorff space is embeddable into some L^p space such that i) the underlying measure may be chosen to be a finite nonzero Borel one, and ii) the embedding may be chosen so that its range is included in some open proper subset of the L^p space chosen in i).

2010 Mathematics Subject Classification: embeddings; Lebesgue spaces; local compactness; topological manifolds

Key words and phrases: 57N35; 54B99; 57N99

Proof. Let M be a locally compact second-countable Hausdorff space. If M_{∞} denotes the Alexandroff (one-point) compactification of M, possibly without denseness of M, then, since M is sigma-compact, the space M_{∞} is in addition second-countable and hence metrizable by the usual Urysohn construction.

Upon choosing a metric d for M_{∞} , define for every $x \in M_{\infty}$ the continuous function $f_x : M_{\infty} \to \mathbb{R}, y \mapsto d(x,y)$; the functions f_x are evidently a version of the Kuratowski construction. Since M_{∞} is compact, it suffices to work with f_x in the simplified form.

On the other hand, let μ be a weighted sum of Dirac measures (restricted to the Borel sigma-algebra of M_{∞}) over M_{∞} concentrated respectively at the points of a chosen countable dense subset of M_{∞} with the property that $\mu(M_{\infty})=1$; such a choice of μ is always possible by considering for example the coefficients $2^{-1}, 2^{-2}, \ldots$ Then μ is a finite nonzero Borel probability measure over M_{∞} .

Identify two functions in the real Banach space $L^p(\mu)$ that are μ -almost everywhere equal with each other. Then, as every f_x is bounded and hence lies in $L^p(\mu)$, the map $F: x \mapsto f_x$ is continuous with respect to the L^p -norm; indeed, if $1 \le p < +\infty$ then

$$\left(\int_{M_{\infty}} |f_x - f_z|^p d\mu\right)^{1/p} \le d(x, z)$$

for all $x, z \in M_{\infty}$, and

$$|f_x - f_z|_{I^{\infty}} < |d(x, z)|_{I^{\infty}} < d(x, z)$$

for all $x, z \in M_{\infty}$. Moreover, since $d(x, \cdot) = d(z, \cdot)$ implies 0 = d(z, x), and since the equivalence class of f_x is $\{f_x\}$ by the construction of μ for every $x \in M_{\infty}$, the map F is an injection; the compactness of M_{∞} and the continuity of F then jointly imply that F is a closed map and hence embeds M_{∞} into $L^p(\mu)$.

Since M is by construction a subspace of M_{∞} , the composition $\Phi: M \to L^p(\mu)$ of $F|_M$ circ the inclusion map $\mathrm{id}_{M_{\infty}}|_M$ serves as an embedding.

As M is by construction open in M_{∞} , with ∞ denoting the additional element of M_{∞} there is some open $V \subset L^p(\mu)$ such that

$$\Phi^{1)}(M)=V\cap F^{1)}(M_{\infty})=(V\cap \Phi^{1)}(M))\cup (V\cap \{F(\infty)\}).$$

Since $V \cap \{F(\infty)\}$ is then empty, it follows that V is a proper subset of $L^p(\mu)$ and

$$\Phi^{1)}(M)\subset V.$$

100 Y.-L. Chou

The above argument proves for the noncompact case; by a manifest slight modification it also works for M compact (e.g., adjoining a single point to M as an isolated point). This completes the proof.

Given the importance of L^2 spaces as Hilbert spaces, the case where $\mathfrak{p}=2$ in Theorem 1 would be of particular interest.

We will use the phrase "locally Euclidean" in the following sense: A second-countable Hausdorff space is called locally Euclidean if and only if for every point of it there are some neighborhood of the point and some $n \in \mathbb{N}$ such that the neighborhood is homeomorphic to the Euclidean space \mathbb{R}^n .

Since every locally Euclidean space is evidently also locally compact, we summarize for ease of reference the intended corollaries in the following

Corollary 1 Let $1 \le p \le +\infty$. Then every locally Euclidean space is embeddable into some L^p space in the way described in Theorem 1.

In particular, every manifold, and hence every Euclidean space \mathbb{R}^n , is embeddable into some L^p space in the same way.

Received: April 22, 2021