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Abstract. With a simple argument, we show as a main note that,
for every given 1 ≤ p ≤ +∞, every locally compact second-countable
Hausdorff space is topologically embeddable into some Lp space with
respect to some finite nonzero Borel measure, where the embedding may
be chosen so that its range is included in some open proper subset of the
Lp space.

Throughout, a manifold is always assumed to be a topological manifold, i.e.
a second-countable Hausdorff space where every point has some neighborhood
homeomorphic to some (fixed) Euclidean space. And an embedding is always
assumed to be a topological embedding, i.e. a homeomorphism acting between
a topological space and a subspace of a topological space.
In addition to the existing embedding results for various types of manifolds,

we wish to show with a simple elementary proof that, given any 1 ≤ p ≤
+∞, every manifold is embeddable into some Lp space with some additional
properties.
Our main result is more general:

Theorem 1 If 1 ≤ p ≤ +∞, then every locally compact second-countable
Hausdorff space is embeddable into some Lp space such that i) the underlying
measure may be chosen to be a finite nonzero Borel one, and ii) the embedding
may be chosen so that its range is included in some open proper subset of the
Lp space chosen in i).
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Proof. Let M be a locally compact second-countable Hausdorff space. If M∞
denotes the Alexandroff (one-point) compactification of M, possibly without
denseness of M, then, since M is sigma-compact, the space M∞ is in addition
second-countable and hence metrizable by the usual Urysohn construction.
Upon choosing a metric d for M∞, define for every x ∈ M∞ the continuous

function fx : M∞ → R, y 7→ d(x, y); the functions fx are evidently a version of
the Kuratowski construction. Since M∞ is compact, it suffices to work with
fx in the simplified form.
On the other hand, let µ be a weighted sum of Dirac measures (restricted

to the Borel sigma-algebra of M∞) over M∞ concentrated respectively at
the points of a chosen countable dense subset of M∞ with the property that
µ(M∞) = 1; such a choice of µ is always possible by considering for exam-
ple the coefficients 2−1, 2−2, . . . . Then µ is a finite nonzero Borel probability
measure over M∞.
Identify two functions in the real Banach space Lp(µ) that are µ-almost

everywhere equal with each other. Then, as every fx is bounded and hence
lies in Lp(µ), the map F : x 7→ fx is continuous with respect to the Lp-norm;
indeed, if 1 ≤ p < +∞ then( ∫

M∞ |fx − fz|
p dµ

)1/p

≤ d(x, z)

for all x, z ∈ M∞, and

|fx − fz|L∞ ≤ |d(x, z)|L∞ ≤ d(x, z)

for all x, z ∈ M∞. Moreover, since d(x, ·) = d(z, ·) implies 0 = d(z, x), and since
the equivalence class of fx is {fx} by the construction of µ for every x ∈ M∞,
the map F is an injection; the compactness of M∞ and the continuity of F then
jointly imply that F is a closed map and hence embeds M∞ into Lp(µ).
Since M is by construction a subspace of M∞, the composition Φ : M →

Lp(µ) of F|M circ the inclusion map idM∞ |M serves as an embedding.
As M is by construction open in M∞, with ∞ denoting the additional

element of M∞ there is some open V ⊂ Lp(µ) such that

Φ1)(M) = V ∩ F1)(M∞) = (V ∩Φ1)(M)) ∪ (V ∩ {F(∞)}).

Since V ∩ {F(∞)} is then empty, it follows that V is a proper subset of Lp(µ)
and

Φ1)(M) ⊂ V.
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The above argument proves for the noncompact case; by a manifest slight
modification it also works for M compact (e.g., adjoining a single point to M

as an isolated point). This completes the proof. □

Given the importance of L2 spaces as Hilbert spaces, the case where p = 2

in Theorem 1 would be of particular interest.
We will use the phrase “locally Euclidean” in the following sense: A second-

countable Hausdorff space is called locally Euclidean if and only if for every
point of it there are some neighborhood of the point and some n ∈ N such
that the neighborhood is homeomorphic to the Euclidean space Rn.
Since every locally Euclidean space is evidently also locally compact, we

summarize for ease of reference the intended corollaries in the following

Corollary 1 Let 1 ≤ p ≤ +∞. Then every locally Euclidean space is embed-
dable into some Lp space in the way described in Theorem 1.
In particular, every manifold, and hence every Euclidean space Rn, is em-

beddable into some Lp space in the same way.
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