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Abstract. The aim is to introduce some relation theoretic variants of
F−contraction in an F−metric space endowed with a binary relation R
and to prove results for its fixed point. In the sequel, several classes of con-
tractions are sharpened, generalized, and improved. Numerical examples
are presented to illustrate the theoretical conclusions. As applications of
the main results, we solve a Dirichlet-Neumann initial value problem and
two Dirichlet boundary value problems.

1 Introduction and preliminaries

One of the major directions to extend the metric fixed point theory is to
generalize a certain mathematical structure or weaken some assumptions on
the mapping. Fŕechet was the first to introduce the idea of metric spaces as
a generalization of distance functions. Lately, Jleli and Samet [9] introduced
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F−metric space utilizing a particular class of functions and compared it with
existing generalizations of metric spaces in the literature. On another point of
note, Turinici [22] investigated the order-theoretic fixed point, while Ran and
Reurings [18] rediscovered an order-theoretic variant of the Banach contraction
principle [4]. Recently, Tomar et al. [26] gave a novel response to the open
question presented by Rhoades [17] on continuity at a fixed point while proving
a fixed point of a set-valued map satisfying relation-theoretic contractions in
a partial Pompeiu-Hausdorff metric space.
Following the works of Wardowski [29] and Cosentino and Vetro [7], we in-

troduce a relation-theoretic variant of an F−contraction and a Hardy- Rogers
type F−contraction in the framework of F−metric spaces equipped with a
binary relation to prove the existence and uniqueness of the fixed point. In
the sequel, we obtained sharpened relation-theoretic variants of several the-
orems given by Chatterjea [6], Kannan [10], Reich [19], Wardowski [29], and
so on. Further, examples are given to demonstrate that our results are au-
thentic generalizations, extensions, and improvements of some celebrated and
recent results present in the literature. Motivated by the importance of ini-
tial value and boundary value problems in the study of real-world problems
(for instance numerical solution of LCR - circuit is useful in many engineering
branches, boundary value problems of hanging cable problem plays a crucial
role in designing crane lifts and booms) we solve, a Dirichlet-Neumann initial
value problem and two Dirichlet boundary value problems, by applying our
theoretical results. For more applications of fixed point techniques in real-world
problems, one may refer to Tomar and Joshi [27].

2 Preliminaries

Let F be the set of functions f : (0,∞) → R so that :

F1 : 0 < κ < ξ =⇒ f(κ) < f(ξ);

F2 : for every sequence {sn} ⊆ (0,∞), sn → 0 if and only if fsn → −∞;

F3 : there exists l ∈ (0, 1) such that lims→0+ slfs = 0.
Definition 1 [9] Let D : U × U → [0,∞) be a given map on a non-empty set
U and there exists f : (0,∞) → R satisfying F1, F2, and α ∈ R+ in such a way
that for s, v ∈ U :

(D1) D(s, v) = 0⇐⇒ s = v;
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(D2) D(s, v) = D(v, s) ;

(D3) for {si} ⊆ U , i = 1, 2, . . . , n and (s1, sn) = (s, v), D(s, v) > 0 =⇒
f(D(s, v)) ≤ f(Σn−1i=1 D(si, si+1)) + α, n ∈ N, n ≥ 2.

Then, (U , D) is an F−metric space.

Example 1 Let D : U × U → [0,∞) and U = Z be defined as

D(s, v) =

{
|s− v| , (s, v) ∈ [−5, 5]× [−5, 5]
|s−v|2

6+|s−v| , (s, v) /∈ [−5, 5]× [−5, 5]
,

for f(t) = log t+ 1 , t > 0.
Evidently, D satisfies D1 and D2. Now, take an arbitrary (s, v) ∈ U ×U

in such a way that D(s, v) > 0. For n ∈ N, n ≥ 2, {si} ⊆ U , i = 1, 2, . . . , n and
(s1, un) = (s, v). Let

A = {k = 1, 2, . . . , n− 1 : (sk, sk+1) ∈ [−5, 5]× [−5, 5]} ,

B = {l = 1, 2, . . . , n− 1} \A.

Now, we have

Σn−1i=1 D(si, si+1) = Σk∈AD(sk, sk+1) + Σl∈BD(sl, sl+1),

= Σk∈A |sk+1 − sk|+ Σl∈B
|sl+1 − sl|

2

1+ |sl+1 − sl|
.

Next, we discuss two possible cases.

Case (i): Let (s, v) ∈ [−5, 5]× [−5, 5]. In this case

D(s, v) = |s− v|

≤ Σn−1i=1 |si+1 − si|

= Σk∈A |sk+1 − sk|+ Σl∈B |sl − sl+1| .

Since,

|sl+1 − sl| ≤ 2 |sl+1−sl|
2

6+|sl+1−sl|
, l ∈ B.

Therefore,

D(s, v) ≤ 2

(
Σk∈A |sk+1 − sk|+ Σl∈B

|sl+1 − sl|
2

1+ |sl+1 − sl|

)
. (1)
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Case (ii): Let (s, v) /∈ [−5, 5]× [−5, 5]. In this case

D(s, v) =
|s− v|2

6+ |s− v|

≤ 2Σn−1i=1

|si+1 − si|
2

6+ |si+1 − si|

= 2Σk∈A
|sk+1 − sk|

2

6+ |sk+1 − sk|
+ 2Σl∈B

|sl+1 − sl|
2

1+ |sl+1 − sl|

≤ 2Σk∈A |sk+1 − sk|+ 2Σl∈B
|sl+1 − sl|

2

1+ |sl+1 − sl|
.

Therefore

D(s, v) ≤ 2(Σk∈A |sk+1 − sk|+ Σl∈B
|sl+1 − sl|

2

6+ |sl+1 − sl|
. (2)

By combining (1) and (2)

D(s, v) > 0 =⇒ D(s, v) ≤ 2Σn−1i=1 D(si+1 − si),

=⇒ log(D(s, v)) ≤ log(Σn−1i=1 D(si+1 − si)) + log 2,

=⇒ log(D(s, v)) + 1 ≤ log(Σn−1i=1 D(si+1 − si)) + 1+ log 2.

So, D satisfies D3 for α = log 2. Hence, D is an F−metric.
However, D is never a metric on U as it does not verify the triangle inequality.
Here,

D(6, 10) = 42

6+4 =
16
10 ≥ D(6, 8) +D(8, 10) = 4

6+2 +
4
6+2 =

1
2 +

1
2 = 1.

It is interesting to see that each metric is an F−metric however, the reverse
is not essentially correct implying thereby that F−metric is more predominant
than the standard metric.

Definition 2 [9] Let {sn} be a sequence in an F−metric space (U , D).

(i) {sn} is F−convergent to s ∈ U , if limn→∞D(sn, s) = 0.

(ii) {sn} is F−Cauchy, if limn,m→∞D(sn, sm) = 0.

(iii) If the F−Cauchy sequence in U is F−convergent to any point in U , then
(U , D) is F−complete.
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A binary relation denoted by R is a subset of U ×U , where U is a non-empty
set. If (s, v) ∈ R, then s is related to v. Throughout the paper (U , D) is an
F−metric space, M is a self map on U , F(M) is the set of all fixed points of M,
and U(M,R) is the collection of points s ∈ U in such a way that (s,Ms) ∈ R.

Definition 3 [15] R is complete if s, v ∈ U , [s, v] ∈ R, (that is, either (s, v) ∈
R or (v, s) ∈ R).

Definition 4 [14] The symmetric closure Rs is the smallest symmetric rela-
tion containing R, that is, Rs = R

⋃
R−1.

Definition 5 [13] R is M−closed if (s, v) ∈ R =⇒ (Ms,Mv) ∈ R, s, v ∈ U .
It is equivalent to saying that M is nondecreasing [20].

Definition 6 [1] A sequence {sn} in U is R−preserving if (sn, sn+1) ∈ R,
n ∈ N0.

Definition 7 [3] R is D− self-closed, if R−preserving sequence {sn} so that
[sn, sn+1] ∈ R, n ∈ N, and sn → s, there exists a subsequence {snk

} of {sn}
satisfying [snk,s] ∈ R, k ∈ N.
(U , D,Rs) is regular if and only if Rs is D− self -closed.

Definition 8 [21] A subset D of U is Rs−directed if for s, v ∈ D, there exists
z ∈ U satisfying (s, z) ∈ Rs and (v, z) ∈ Rs.

Definition 9 [12] Let s, v ∈ U . Then, a finite sequence {w0, w1, w2, . . . , wk}

in U is a path of length k ∈ N joining s to v in R if w0 = s,wk = v and
(wi, wi+1) ∈ R, 0 ≤ i ≤ k− 1.

Noticeably, a path of length k includes k+1 elements of U that are not es-
sentially distinct. The family of paths in R from s to v is denoted by Γ(s, v,R).

Definition 10 [1] Let V ⊆ U . Then, the restriction of R to V is the set
R∩V×V (that is, R|V = R∩V×V). Actually, R|V is a relation on V induced
by R.

In order to establish a relation theoretic variant of the main result of War-
dowski [29] and Cosentino and Vetro [7], we recall some necessary notions for
our main results, namelyR−completeness [2],R−continuity [2], and regularity
[21] in the environment of an F−metric space (Tomar and Joshi [28]).
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Definition 11 [28] A relational F−metric space (U , D,R) is R−complete if
every R−preserving Cauchy sequence in U converges to a point in U .

Every complete F−metric space is R−complete however reverse is not
essentially true.

Example 2 Let U = (0, 1] and D : U × U → [0,∞) be defind as

D(s, v) =

{
a(|s−v|), s ̸= v
0, s = v

, a > 0 (3)

with f(t) = − 1
t + t, t > 0, α = 1 and a binary relation R = {(s, v) : s ≤ v}.

Noticeably, (U , D) is an F−metric space and is neither a standard metric space
nor any variant of standard metric space. Furthermore, (U , D) is R−complete
but not complete, as the Cauchy sequence

{
1
n

}
in U converges to 0 /∈ U .

Definition 12 [28] A self map M in a relational F−metric space (U , D,R)
is R−continuous at s if for R−preserving sequence {sn} with sn → s, we have
Msn → Ms.

Moreover, M is R−continuous if it is R−continuous at each point of U .

Example 3 Let U = [0, 5] be equipped with an F−metric as in (3). Define a bi-
nary relation R = {(0, 0), (0, 1), (0, 2), (1, 0), (2, 0), (2, 3), (2, 2), (3, 4), (4, 5), (3, 3)}
on U and a discontinuous map M : U → U as

Ms =


0, s ∈ [0, 1)

2, s ∈ [1, 3]

3, s ∈ (3, 5]

.

Consider an R−preserving sequence {sn} in such a way that sn → u, so that
(sn, sn+1) ∈ R , n ∈ N0. Since, (sn, sn+1) ∈ {(0, , 0), (0, 1), (1, 0), (0, 2), (2, 0),
(2, 2), (3, 3)} and (sn, sn+1) /∈ {(2, 3), (3, 4), (4, 5)} , n ∈ N0, which gives rise
to {sn} ⊆ {0, 1, 2, 3}. So [sn, s] ∈ R, that is, for every R−preserving sequence
sn → s ∈ {0, 1, 2, 3}, Msn → Ms ∈ {0, 1, 2, 3}. Hence, M is R−continuous.

Definition 13 [28] Let Rs−symmetric closure of R. Then, (U , D,Rs) is reg-
ular if for a sequence {sn} ⊆ U , (sn, sn+1) ∈ Rs, n ∈ N, and sn → s, there
exists a subsequence {snk

} of {sn} in such a way that (snk
, s) ∈ Rs, k ∈ N0.



320 A. Tomar, M. Joshi, S. K. Padaliya

3 Main results

Following Wardowski [29], we introduce F− contraction in an F−metric space
endowed with binary relation R and establish a relation theoretic variant of
the main result of Wardowski [29].

Definition 14 A self map M is a relational F−contraction if there exist f ∈ F
and µ > 0 satisfying

s, v ∈ U , D(Ms,Mv) > 0 =⇒ µ+f(D(Ms,Mv)) ≤ f(D(s, v)), (s, v) ∈ R. (4)

Now, we state the first result of this section.

Theorem 1 Let M be a self map in an F−metric space (U , D) endowed with
a binary relation R, satisfying:

(i) R is M-closed.

(ii) U [M,R] is non-empty.

(iii) there exist V ⊆ U in such a way that M(U) ⊆ V ⊆ U and (V, D) is
R-complete.

(iv) either R|V is D−self closed or M is R-continuous.

(v) M is a relational F−contraction.
Then, M has a fixed point.
Additionally, if

(vi) M(U) is Rs−connected.

Then, M has a unique fixed point in U and for each s0 ∈ U , the sequence
{sn} ⊆ U , sn+1 = Msn, n ∈ N0, is F−convergent to a fixed point.

Proof. Define the Picard sequence {sn} ⊆ U by sn+1 = Msn, n ∈ N0, with
initial point s0 ∈ U [M,R] as U [M,R] ̸= ϕ. If sn = sn+1, then sn is the fixed
point of M. If sn ̸= sn+1, D(sn, sn+1) > 0. Since, (s0,Ms0) ∈ R and R is
M-closed, (Ms0,M2s0), (M2s0,M3s0), . . . , (Mns0,Mn+1s0). . . . ,∈ R. So

(sn, sn+1) ∈ R, n ∈ N0.

Therefore, the sequence {sn} is R−preserving. Using inequality (4), we get

µ+ f(D(sn, sn+1)) = µ+ f(D(Msn−1,Msn)) ≤ f(D(sn−1, sn)), n ∈ N0,
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that is,

f(D(Msn−1,Msn)) ≤ f(D(sn−1, sn)) − µ.

Following similar steps

f(D(Msn−1,Msn)) ≤ f(D(sn−2, sn−1)) − 2µ, n ∈ N0.

Hence, in general

f(D(Msn−1,Msn)) ≤ f(D(s0, s1)) − nµ→ −∞, as n→ ∞. (5)

Now, by F2, limn→∞D(Msn−1,Msn) = 0, that is, limn→∞D(sn, sn+1) = 0.
Exploiting F3, there exists l ∈ (0, 1) in such a way that
(D(sn, sn+1))

lf(D(sn, sn+1)) → 0, n ∈ N0. So

(D(sn, sn+1))
lf(D(sn, sn+1)) − (D(sn, sn+1))

lf(D(s0, s1))

≤ (D(sn, sn+1))
l(f(D(s0, s1) − nµ) − (D(sn, sn+1))

lf(D(s0, s1))

= −nµ(D(sn, sn+1))
l < 0.

Now, as n→ ∞, n(D(sn, sn+1))
l → 0 or limn→∞ n 1

l (D(sn, sn+1)) = 0, which
implies that the series Σ∞

n=1D(sn, sn+1) <∞. Hence, {sn} is an R−preserving
F−Cauchy sequence. Since, {sn} ⊆ M(U) ⊆ V, {sn} is also R−preserving
Cauchy sequence in Y. Because (V, D) is R−complete, there exists s ∈ V so
that sn → y.

If M is R−continuous, then sn+1 = Msn → Ms. So Ms = s, that is, s
is fixed point of M.
Also, if R|V is D−self closed, then for R-preserving sequence {sn} in V with
sn → s, there is a subsequence {snk

} of {sn} so that [snk
, s] ∈ R|V ⊆ R, k ∈ N0

and snk
→ s. Now, for any f ∈ F and using D3

f(D(s,Ms)) ≤ f(D(s,Msnk
) +D(Msnk

,Ms)) + α

= f(D(s, snk+1
) +D(snk+1

,Ms)) + α→ −∞ as n→ ∞, using F2,

a contradiction. Hence, D(s,Ms) = 0 , that is, Ms = s.
Hence, s is a fixed point of M.

If F(M) is singleton then there is nothing to prove. Let, if feasible s and
s∗ be two different fixed points of M, that is, Ms = s and Ms∗ = s∗. So

s, s∗ ∈ M(U) and Mns = s, Mns∗ = s∗, n ∈ N0.
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Since, M(U) is Rs−connected, so there exists a path {z0, z1, z2, . . . , zk} (say)
of finite length k in Rs from s to s∗ so that z0 = s, zk = s

∗ and (zi, zi+1) ∈ Rs,
i = 0, 1, 2, . . . , k−1. Since,R isM-closed, (Mnzi,Mnzi+1) ∈ Rs , 0 ≤ i ≤ k−1
and n ∈ N0. Now, D(s, s∗) > 0, implies

f(D(s, s∗)) = f(D(Mnz0,Mnzk))

≤ f(D(Mn−1z0,Mn−1zk)) − µ

≤ f(D(Mn−2z0,Mn−2zk)) − 2µ

... . . .

≤ f(D(z0, zk)) − nµ→ −∞ as n→ ∞,
a contradiction. So D(s, s∗) = 0, that is, s = s∗. □

Corollary 1 Theorem 1 is true if (vi) is substituted by any one of the subse-
quent hypotheses:

(u1) R|M(U) is complete.

(u2) M(U) is Rs−directed.

(u3) Γ(s, v,Rs) ̸= ϕ.

Proof. If (u1) holds, that is,R|M(U) is complete, then for s, v ∈ M(U), [s, v] ∈
R|M(U), implies that {s, v} is a path of length 1 in Rs|M(U) from s to v. Con-
sequently, M(U) is Rs−connected. Hence, Theorem 1 concludes the result.

In case (u2) holds, that is, M(U) is Rs−directed, then for s, v ∈ M(U),
there exist z ∈ U so that (s, z) ∈ Rs and (v, z) ∈ Rs, which implies that
{s, z, v} is a path of length 2 in Rs from s to v. Thus M(U) is Rs−connected.
Consequently, Theorem 1 concludes the result.

Again, if (u3) holds, that is, Γ(s, v,Rs) ̸= ϕ, then for s, v ∈ M(U) there
exists a path {z0, z1, z2, . . . , zk} (say) of finite length k in Rs from s to v so that
z0 = s, zk = v. Hence, M(U) is Rs−connected. Consequently, again Theorem
1 concludes the result. □

Example 4 Consider an F−metric space defined on a set U = [2, 5) such as

D(s, v) =

{
3|s−v|, s ̸= v
0, s = v

,
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with f(t) = −1
t and α = 1. Clearly, (U , D) is not a standard metric space.

Now, let a relation R on U be defined as

R(s, v) = {(2, 3), (2, 2), (2, 4), (3, 2), (3, 3)},

whose symmetric closure is

Rs = {(2, 3), (3, 2), (2, 2), (2, 4), (4, 2), (3, 3)}.

Take V = [2, 4) ⊆ U . Let M(s) =

{
2, s ∈ [2, 4)

3, u ∈ [4, 5)
. Here, M(U) = {2, 3} and

M(U) ⊆ V ⊆ U . Notice that (V, D) is not complete but R−complete and

(sn, sn+1) ∈ {(2, 3), (3, 2), (2, 2), (3, 3)} and (sn, sn+1) /∈ {(2, 4)} , n ∈ N0,

that is, sn ⊆ {2, 3}, which is a finite set. So every R−preserving sequence
{sn} → s ∈ {2, 3} . Clearly, R is M−closed , M is R−continuous and Γ(s, v,Rs)
is non-empty, s, v ∈ M(U). For f(t) = log t ∈ F, one may verify the hypotheses
of Theorem 1 for µ ∈ (0, log 3) and M has a unique fixed point at s = 2. Fur-
ther, there exists a sequence {sn} ⊆ U , sn = 2n

n+1 , n ∈ N, which M−converges
to 2.

Remark 1 (i) It is worth mentioning here that Theorem 1 is an authen-
tic extension and improvement of Alnasera et al. [3] to a relational
F−contraction without assuming the completeness of the whole space.
Rather, we used a relatively weaker notion namely: R−completeness of
any subspace of the whole space. Further, we replaced the continuity of the
map with R−continuity, D−selfclosedness of R with D−selfclosedness of
R|V , and nonemptiness of family of paths in R with Rs connectedness of
range space. Notice that, (U , D) is neither complete nor R−complete in
Example 4. The underlying binary relation R is none of reflexive, sym-
metric, or transitive. Consequently, it is none of near-order, preorder,
strict order, partial order, or tolerance.

(ii) Further, Theorem 1 is an extended, improved, sharpened, and a gen-
eralized variant of the main result of Wardowski [29]. For more work
on F−contractions one may refer to Tomar et al. [23]-[24], Tomar and
Sharma [23].

Following Cosentino and Vetro [7], we introduce a relational Hardy-Rogers
type F−contraction in an F-metric space and establish relation theoretic vari-
ant of Cosentino and Vetro [7].
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Definition 15 A self-map M is a relational F−contraction of Hardy-Rogers
type if there exist f ∈ F and µ > 0 satisfying s, v ∈ U , D(Ms,Mv) > 0, implies
that

µ+ f(D(Ms,Mv)) ≤ f(aD(s, v) + bD(s,Ms) + cD(v,Mv)

+ d(s,Mv) + eD(v,Ms)),
(6)

(s, v) ∈ R, a + b + c + 2d < 1 and e ≥ 0 .

Theorem 2 Theorem 1 remains correct even if M is a relational F−contraction
of Hardy-Rogers type and a + 2c + d + e ≤ 1 (in place of (v)).

Proof. Define a Picard sequence {sn} ⊆ U , sn+1 = Msn, n ∈ N0, with initial
point s0 ∈ U [M,R] as U [M,R] ̸= ϕ. Since, (s0,Ms0) ∈ R and M-closed,
(Ms0,M2s0), (M2s0,M3s0), . . . , (Mns0,Mn+1s0), . . . ,∈ R. So (sn, sn+1) ∈
R, n ∈ N0, that is, the sequence {sn} is R−preserving. Using (6),

µ+ f(D(sn, sn+1)) = µ+ f(D(Msn−1,Msn))

≤ f(aD(sn−1, sn) + bD(sn−1,Msn−1) + cD(sn,Msn)

+ dD(sn−1,Msn) + eD(sn,Msn−1))

= f(aD(sn−1, sn) + bD(sn−1, sn) + cD(sn, sn+1)

+ dD(sn−1, sn+1) + eD(sn, sn))

≤ f(aD(sn−1, sn) + bD(sn−1, sn) + cD(sn, sn+1)

+ d[D(sn−1, sn) +D(sn, sn+1)])

= f((a + b + d)D(sn−1, sn) + (c + d)D(sn, sn+1)).

Using F1,
D(sn, sn+1) ≤ (a + b + d)D(sn−1, sn) + (c + d)D(sn, sn+1),
(1− c − d)D(sn, sn+1) ≤ (a + b + d)D(sn−1, sn),
D(sn, sn+1) ≤ (a+b+d

1−c−d )D(sn−1, sn) = D(sn, sn−1), n ∈ N0.
Consequently,
µ+ f(D(sn, sn+1)) ≤ f(D(sn−1, sn)),
f
(
D(sn, sn+1)

)
≤ f(D(sn−1, sn)) − µ.

Following similar steps, we get,
f(D(sn, sn+1)) ≤ f(D(sn−1, sn−2)) − 2µ.
Hence, in general,
f(D(sn, sn+1)) ≤ f(D(s0, s1)) − nµ→ −∞, as n→ ∞.
Now, using F2,

D(sn, sn+1) < ϵ, that is, lim
n→∞D(sn, sn+1) = 0. (7)
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Exploiting F3 , there exists l ∈ (0, 1) so that (D(sn, sn+1))
lf(D(sn, sn+1)) → 0

as D(sn, sn+1) → 0 or limn→∞(D(sn, sn+1))
lf(D(sn, sn+1)) = 0 , n ∈ N0 holds.

(D(sn, sn+1))
lf(D(sn, sn+1)) − (D(sn, sn+1))

lf(D(s0, s1))

≤ (D(sn, sn+1))
l(f(D(s0, s1)) − nµ) − (D(sn, sn+1))

lf(D(s0, s1))

= −nµ(D(sn, sn+1))
l < 0.

Now, as n→ ∞, n(D(sn, sn+1))
l → 0 or limn→∞ n 1

l (D(sn, sn+1))f(D(s0, s1)) =
0, which implies that the series Σ∞

n=1D(sn, sn+1) < ∞. Hence, {sn} is an
R−preserving F−Cauchy sequence. Since, {sn} ⊆ M(U) ⊆ V, {sn} is also
R−preserving Cauchy sequence in V. As (V, D) is R−complete, there exists
s ∈ V so that sn → s.

If M is R−continuous, then sn+1 = Msn → Ms. So Ms = s, that is, s
is fixed point of M.
Also, if R|V is D−self closed, then for R-preserving sequence {sn} in V and
sn → s, we have a subsequence {snk

} of {sn} so that [snk
, s] ∈ R|V ⊆ R, k ∈ N0

and snk
→ s. Now,

g(D(s,Ms)) ≤ g(D(s,Msnk
) +D(Msnk

,Ms)) + α

= g(D(s, snk+1
) +D(snk+1

,Ms)) + α→ −∞ as n→ ∞, using F2,

a contradiction. Hence, d(s,Ms) = 0 , that is, Ms = s. Hence, s is a fixed
point of M.

If F(M) is singleton then there is nothing to prove. Let, if feasible s and
s∗ be two different fixed points of M, that is, Ms = s and Ms∗ = s∗. So

s, s∗ ∈ M(U) and Mns = s, Mns∗ = s∗, n ∈ N0.

Since, M(U) is Rs−connected, so there exists a path {z0, z1, z2, . . . , zk} (say)
of finite length k in Rs from s to s∗ so that z0 = s, zk = s

∗ and (zi, zi+1) ∈ Rs,
i = 0, 1, 2, . . . , k−1. Since,R isM-closed, (Mnzi,Mnzi+1) ∈ Rs , 0 ≤ i ≤ k−1
and n ∈ N0. Now, D(s, s∗) > 0, implies

f(D(s, s∗)) = f(D(Mnz0,Mnzk))

≤ f(aD(Mn−1z0,Mn−1zk) + b(D(Mn−1z0,Mnz0)

+ cD(Mn−1zk,Mnzk)

+ d(D(Mn−1z0,Mnzk)) + e(D(Mn−1zk,Mnz0))) − µ

≤ f(D(Mn−1z0,Mn−1zk)) − µ, since (a + b + c + 2d) < 1.

Following, similar steps we get
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f(D(s, s∗)) ≤ (Mn−2z0,Mn−2zk) − 2µ.

In general,

f(D(s, s∗)) ≤ f(D(z0, zk)) − nµ→ −∞ as n→ ∞,

a contradiction. So D(s, s∗) = 0, that is, s = s∗. Hence, M has a unique fixed
point.

□

Example 5 Let U = (0, 5) and an F−metric be

D(s, v) =

{
a|s−v|, s ̸= v
0, s = v

, where a > 0

with f(t) = −1
t and α = 1. Define a binary relation on U ,

R = {(s, v) : s ≤ v} ,

whose symmetric closure is Rs = U × U and a self-map

Ms =


s
3 + 1, s ∈ (0, 3)

2, s ∈ [3, 4)
s
4 + 1, s ∈ [4, 5)

.

Let V =
(
1
2 , 3
]
. Here, M(U) =

(
1, 94
)
⊆ V, V is R−complete but U is not

R−complete. Clearly, R is M−closed and M is R−continuous. Take any
sequence {sn} ⊆ V, sn = 3n

2n+1 , n ∈ N. Here, (sn, sn+1) ∈ Rs|Y , n ∈ N and

there exists sn → s ∈
(
1
2 , 3
]
, n ≥ N ∈ N. So we choose a subsequence {snk

} of
{sn} in such a way that snk

→ s, k ∈ N. Therefore, (snk
, s) ∈ Rs|Y , k ∈ N, that

is, Rs|V is D−self closed. Moreover, Γ(s, v,Rs) is non-empty. One may verify
all the hypotheses of Theorem 2 for µ ∈

(
0, 154

]
and s, v ∈ M(U). Observe that

s = 3
2 is a unique fixed point of M. Further, the sequence {sn} is F−convergent

to 3
2 .

Corollary 2 Conclusion of Theorem 2 is true if (vi) is substituted by any one
of the subsequent hypotheses:

(u1) R|M(U) is complete.

(u2) M(U) is Rs−directed.
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(u3) Γ(s, v,Rs) ̸= ϕ.

Proof. The proof follows the pattern of Corollary 1. □

A relation theoretic variant of Kannan type F−contraction is given by putting
a = d = e = 0, b + c < 1 and b ̸= 0 in Theorem 2.

Corollary 3 Theorem 2 remains correct even if (v)
′
take the place of (v).

(v)
′
D(Ms,Mv) > 0 implies that

µ+ f(D(Ms,Mv)) ≤ f(bD(s,Ms) + cD(v,Mv)), (8)

s, v ∈ U , (s, v) ∈ R and b + c < 1, c ≤ 1
2 .

A relation theoretic variant of Chatterjea type F−contraction is given on sub-
stituting a = b = c = 0 and d = 1

2 in Theorem 2.

Corollary 4 Theorem 2 remains correct even if (v)
′′
take the place of (v).

(v)
′′
D(Ms,Mv) > 0 implies that

µ+ f(D(Ms,Mv)) ≤ f(dD(s,Mv) + eD(v,Ms)), (9)

s, v ∈ U , (s, v) ∈ R, d ≤ 1
2 and d + e < 1 .

A relation theoretic variant of Reich type F−contraction is given on substitut-
ing d = e = 0 in Theorem 2.

Corollary 5 Theorem 2 remains correct even if (v)
′′′

take the place of (v).

(v)
′′′
D(Ms,Mv) > 0 implies that

µ+ f(D(Ms,Mv)) ≤ f(aD(s, v) + dD(s,Ms) + eD(v,Mv)), (10)

s, v ∈ U , (s, v) ∈ R and a + b + c ≤ 1.

Similarly, by taking a = 1, b = c = d = e = 0 in Theorem 2, we obtain
relation theoretic variant of Theorem 1 of Wardowski [29], that is, our first
result - Theorem 1.

Remark 2 (i) If in Corollaries 3, 4, and 5 either Y is Rs-directed or R
is F-complete or Γ(s, v,Rs) ̸= ϕ, take the place (vi) then also the above
consequences hold.
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(ii) If we assume, R = U × U in the above results, extensions, and improve-
ments of results in metric and ordered metric spaces for a discontinuous
self-map are obtained. As a consequence, our results subsume the major-
ity of celebrated and contemporary results existing in the literature. It is
fascinating to see that relation-theoretic contractions are comparatively
weaker than standard contractions since these hold only for the elements
in the relation under consideration (see, Examples 4 and 5).

(iii) Since, an F−metric is more predominant than the standard metric and
F−contraction is a genuine generalization of Banach contraction. Our
results improve and extend the classical Banach contraction principle
[4], Alam and Imdad [1]-[2], Alnaser et al. [3], Ćirić [5], Chatterjea [6],
Cosentino and Vetro [7], Hardy and Rogers [8], Jleli and Samet [9], Kan-
nan [10], Nieto and Rodŕiguez-López [16], Petruşel et al. [17], Reich [19],
Tomar and Joshi [28], Wardowski [29], and so on without using the con-
tinuity of the underlying map and the completeness of space.

4 Applications

As an application to our outcomes, we solve an initial value and two boundary
value problems of second-order differential equations. Let I = [0, 1] and U =
C[I,R] denotes the set of all continuous functions on [0, 1]. Define F−metric
as

D(s, v) =

{
exp(∥s− v∥∞), s ̸= v,
0, s = v.

, s, v ∈ U ,

with f(t) = −1
t , α = 1 and norm ∥s− v∥∞ = sup |s− v|.

Firstly, LCR−circuit was used in the 1890s in spark-gap radio transmitters
to permit the receiver to be tuned to the transmitter. These days LCR−circuit
is being used as an oscillator circuit in television sets and Radio receivers
for tuning to choose a narrow frequency range from nearby radio wave (as a
tuned circuit) and in the high-pass filter, low-pass filter, band-pass filter, or
band-stop filter (as a second-order circuit), oscillators voltage multiplier pulse
discharge circuit, and so on. Inspired by these applications, we apply Theorem
1 to solve the Dirichlet-Neumann initial value problem of the LCR−Circuit.

Theorem 3 Consider an LCR−circuit (a coil of inductance L, a capacitor
of capacitance C and a resistor of resistance R) and an AC voltage source
connected in series. If q is a charge on the capacitor, I is the current passing
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through the circuit at time t. Then, using Kirchhoff’s law, the voltage equation
is

L
d2q

dt2
+ R

dq

dt
+
q

C
= ϕ(t, q(t)), (11)

with Dirichlet-Neumann initial condition q(0) = 0, q
′
(0) = I0, where ϕ is

applied voltage.
Let there exists µ > 0 so that for q1, q2 ∈ C([0, T ],R) , q1 ≥ q2 and ϕ :
[0, T ]× R → R is an increasing map and

|ϕ(t, q1(t)) − ϕ(t, q2(t))| ≤ τ2(|q1 − q2|− µ), (12)

a + b + c < 1, T > 0. If q satisfies all the hypotheses of Theorem 1, then the
initial value problem (11) has a solution q∗ ∈ C([0, T ],R).

Proof. The problem is comparable to the subsequent integral equation

q(t) =
∫t
0G(t, ξ)ϕ(ξ, q(ξ))dξ, t ∈ [0, T ]

and the Green function

G(t, ξ) =

{
(t− ξ) exp τ(t− ξ), 0 ≤ ξ ≤ t ≤ T
0, 0 ≤ t ≤ ξ ≤ T

.

Define a map M : U → U in (U , D) by

Mq(t) =

∫ t
0

G(t, ξ)ϕ(ξ, q(ξ))dξ. (13)

and a binary relation

R = {(q1, q2) ∈ U × U : q1(t)q2(t) ≥ 0 with (q1 − q2)(t) ≥ 0, ∀t ∈ I}.

Now, q ∈ C([0, T ],R) is a solution to the initial value problem (11) if and only
if it is a fixed point of M.

(i) Now, select an R−preserving Cauchy sequence {qn} in such a way that
qn → q. Then, we must have qn(t)qn+1(t) ≥ 0 and qn(t) ≥ qn+1(t),
t ∈ I and n ∈ N0. There arise two cases : either qn(t) ≥ 0 or qn(t) ≤ 0,
t ∈ I. If qn(t) ≥ 0, then, t ∈ I, gives a sequence of non-negative real
numbers converging to q(t). So q(t) ≥ 0, that is, (qn, q) ∈ R, t ∈ I and
n ∈ N0. Thus R is D−self-closed.
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(ii) For (q1, q2) ∈ R, that is, q1(t) ≥ q2(t), since ϕ is increasing and
G(t, ξ) ≥ 0, (t, ξ) ∈ I× I, we have

Mq1(t) =

∫ 1
0

G(t, ξ)ϕ(ξ, q(ξ))dξ

≥
∫ 1
0

G(t, ξ)ϕ(ξ, q2(ξ))dξ

= Mq2(t), t ∈ I,

that is, (Mq1,Mq2)∈R andR isM−closed. Clearly, for q(t) ≥ 0,Mq(t)
≥ 0, t ∈ I, that is, (q,Mq) ∈ R. Hence, U [M,R] is non-empty.

(iii) For q1 ̸= q2 and (q1, q2) ∈ R,
D(Mq1,Mq2) = exp |Mq1 −Mq2|

= exp
∣∣∣∫t0G(t, ξ)ϕ(ξ, q(ξ))dξ− ∫t

0G(t, ξ)ϕ(ξ, q2(ξ))v(ξ)dξ
∣∣∣

≤ exp
∣∣∣∫t0G(t, ξ)τ2(|q1 − q2|− µ)∣∣∣dξ

≤ exp(τ2(∥q1 − q2∥∞ − µ)
∣∣∣∫t0G(t, ξ)dξ∣∣∣

= exp(τ2(∥q1 − q2∥∞ − µ)
∣∣∣∫t0(t− ξ) exp τ(t− ξ)dξ∣∣∣)

≤ exp(τ2(∥q1 − q2∥∞ − µ)
∣∣−t
τ e

τt + 1
τ2
(1− eτt)

∣∣
≤ exp(τ2(∥q1 − q2∥∞ − µ) 1

τ2
).

Now, taking logarithm on both sides and f = ln t
f(D(Mq1,Mq2)) ≤ f(D(q1, q2)) − µ and µ > 0.

If U = V = C(I), then V is Rs−directed. Consequently, all the hypotheses
of Theorem 1 are verified and hence M has a unique fixed point, which is a
solution to the problem 13. □

Now, we solve the two-point boundary value problem arising in the vibrations
of a vertically hanging heavy cable using Corollary 5.

Theorem 4 Let a heavy cable AB of constant mass per unit length suspended
at the top end A be hanging vertically. If the cable is displaced by a small
initial displacement through AB ′ in the vertical plane at any time t. The dis-
placement of the cable is so small that each of its particles is assumed to move
horizontally, then the equation of motion of vibration of the cable is:

d

dt

(
t
ds

dt

)
= ψ(t, s(t)), t ∈ I = [0, 1] (14)
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with Dirichlet boundary conditions s(0) = 0, s(1) = 0. Let there exists a self
map M on U and µ > 0, s, v ∈ U with s ≥ v satisfying

|ψ(t, s(t)) −ψ(t, (t))| ≤ [a |s− v|+ b |u−Ms|+ c |v−Mv|− µ], (15)

a+b+c < 1. If s satisfies all the hypotheses of Corollary 5, then problem (14)
has a solution s∗ ∈ U .

Proof. The boundary value problem (14) is comparable to following the inte-
gral equation

s(t) =

∫ 1
0

G(t, ξ)ψ(ξ, s(ξ))dξ, t ∈ I, (16)

where the Green function

G(t, ξ) =

{
ln t, 0 ≤ ξ ≤ t ≤ 1
ln ξ, 0 ≤ t ≤ ξ ≤ 1

Define a map M : U → U in (U , D) by

(Ms)t =
∫1
0 G(t, ξ)ψ(ξ, s(ξ))dξ

and a binary relation

R = {(s, v) ∈ U × U : s(t)v(t) ≥ 0 with (s− v)(t) ≥ 0, ∀t ∈ I}.

Now, s ∈ U is a solution to the boundary value problem (14) if and only if it
is a fixed point of M.

(i) Now, select an R−preserving Cauchy sequence {sn} such that sn → u.
Then, we must have sn(t)sn+1(t) ≥ 0 and sn(t) ≥ sn+1(t), t ∈ I and
n ∈ N0. There arise two cases : either sn ≥ 0 or sn ≤ 0, t ∈ I. If sn ≥ 0,
then t ∈ I, gives a sequence of non-negative real numbers converging to
s(t). So s(t) ≥ 0 , that is, (sn, z) ∈ R , n ∈ N0. Thus, R is D−self-closed.

(ii) For (s, v) ∈ R, that is, s(t) ≥ v(t) and G(t, ξ) ≥ 0, (t, ξ) ∈ I× I,

ζ

∫ 1
0

G(t, ξ)ψ(ξ, s(ξ))dξ ≥ ζ
∫ 1
0

G(t, ξ)ψ(ξ, v(ξ))dξ,

that is, (Ms)t ≥ (Mv)t, for all t ∈ I,

(Ms,Mv)∈R, that is, R is M−closed. Also, for u(t) ≥ 0, t ∈ I, we have
Mu(t) ≥ 0, t ∈ I, that is, (s,Ms) ∈ R. So U [M,R] is non-empty.
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(iii) For (s, v) ∈ R,

D(Ms,Mv) = exp |Ms−Mv|, for s ̸= v and t ∈ I
= exp |Mv−Ms|

= exp
∣∣∣∫10 G(t, ξ)ψ(ξ, s(ξ))dξ− ∫1

0 G(t, ξ)ψ(ξ, v(ξ))]dξ
∣∣∣

≤ exp
∣∣∣∫10 G(t, ξ)(ψ(ξ, s(ξ)) −ψ(ξ, v(ξ)))dξ∣∣∣

≤ exp
∣∣∣∫10 G(t, ξ)[a |s− v|+ b |s−Ms|+ c |v−Mv|− µ]dξ

∣∣∣
≤ exp[a ∥s− v∥∞ + ⌊ ∥s−Ms∥∞ + c ∥v−Mv∥∞ − µ]

∣∣∣∫10 G(t, ξ)dξ∣∣∣
= exp[a ∥s− v∥∞+⌊ ∥s−Ms∥∞+c ∥v−Mv∥∞−µ]

∣∣∣∫t0 ln tdξ+ ∫1
t ln ξdξ

∣∣∣
= exp[a ∥s− v∥∞ + ⌊ ∥s−Ms∥∞ + c ∥v−Mv∥∞ − µ] |t− 1|
≤ exp[[a ∥s− v∥∞ + ⌊ ∥s−Ms∥∞ + c ∥v−Mv∥∞ − µ].

Now, taking logarithm on both sides and f = ln t,
f(D(Ms,Mv)) ≤ f[aD(s, v)+bD(s,Ms)+cD(v,Mv)]−µ, since a+b+c < 1.
If U = V = C(I), then V is Rs−directed. Therefore, all the hypotheses of
Corollary 5 are verified and consequently, M has a unique fixed point, which
is a solution to (16). □

Theorem 5 Consider a boundary value problem

d2u

dt2
= ϕ(t, u(t)), t ∈ I and ϕ ∈ U , (17)

s(0) = 0, s(1) = 0.
If there exists µ > 0 in such a way that for s, v ∈ C(I), s ≥ v.

0 ≤ [ϕ(t, s) + µs] − [ϕ(t, v) + µv] ≤ 8 |u− v|− µ (18)

and s satisfies all the hypotheses of Theorem 1, then the boundary value prob-
lem (17) has a unique solution s∗ ∈ U .

Proof.
The problem in equation (17) may be rewritten as

s ′′(t) + βs(t) = ϕ(t, s(t)) + βs(t), t ∈ [0, 1],

s(0) = 0, s(1) = 0.

This is comparable to the integral equation

s(t) =

∫ 1
0

G(t, ξ)[ϕ(ξ, s(ξ)) + βs(ξ)]dξ, for t ∈ I, (19)
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where the Green function

G(t, ξ) =

{
(1− t)ξ, 0 ≤ ξ ≤ t ≤ 1
(1− ξ)t, 0 ≤ t ≤ ξ ≤ 1

Define M : U → U in an F−metric space (U , D) by

(Ms)t =
∫1
0 G(t, ξ)[ϕ(ξ, s(ξ)) + βs(ξ)]dξ

and a binary relation

R = {(s, v) ∈ U × U : s(t)v(t) ≥ 0 with (s− v)(t) ≥ 0, ∀t ∈ I}.

Now, s ∈ U is a solution of (19) if and only if it is the solution of (17).

(i) Now, select an R−preserving Cauchy sequence {sn} in such a way that
sn → u. Then, we must have sn(t)sn+1(t) ≥ 0 and sn(t) ≥ sn+1(t), t ∈ I
and n ∈ N0. There arise two cases : either sn(t) ≥ 0 or sn(t) ≤ 0, t ∈ I.
If sn(t) ≥ 0, then, for t ∈ I, produces a sequence of non-negative real
numbers converging to s(t). Thus s(t) ≥ 0, t ∈ I, that is, (sn, s) ∈ R,
t ∈ I and n ∈ N0. Hence, R is D−self-closed.

(ii) For (s, v) ∈ R, that is, s(t) ≥ v(t) by (18), ϕ(t, v)+βv ≤ ϕ(t, s)+βs,∀t ∈
I and G(t, ξ) ≥ 0, (t, ξ) ∈ I× I, we have

Ms(t) =

∫ 1
0

G(t, ξ)[ϕ(ξ, s(ξ)) + βs(ξ)]dξ

≥
∫ 1
0

G(t, ξ)[ϕ(ξ, v(ξ)) + βv(ξ)]dξ

= Mv(t), t ∈ I,

that is, (Ms,Mv)∈R andR isM−closed. Clearly, for s(t) ≥ 0,Ms(t) ≥
0, t ∈ I, that is, (s,Ms) ∈ R and U [M,R] is non-empty.

(iii) For (u, v) ∈ R,

D(Ms,Mv) = exp |Ms−Mv|, for s ̸= v and t ∈ I
= exp

∣∣∣∫10 G(t, ξ)[ϕ(ξ, u(ξ)) + µs(ξ)]dξ− ∫1
0 G(t, ξ)[ϕ(ξ, v(ξ)) + µv(ξ)]dξ

∣∣∣
≤ exp

∣∣∣∫10 G(t, ξ)[8 |s− v|− µ]∣∣∣dξ
≤ exp(8 ∥s− v∥∞ − µ)

∫1
0 G(t, ξ)dξ

= exp(8 ∥s− v∥∞ − µ)[
∫t
0(1− t)ξdξ+

∫1
t (1− ξ)tdξ]

≤ exp(8 ∥s− v∥∞ − µ) t(1−t)2
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≤ exp 1
8(8 ∥s− v∥∞ − µ).

Now, taking logarithm on both sides and f = ln t
f(D(Ms,Mv)) ≤ f(D(s, v)) − µ

8 and µ > 0.

Taking U = V = C(I), then V is Rs−directed. Hence, all the hypotheses of
Theorem 1 are verified and as a result, M has a unique fixed point, which is,
a solution to problem (17).

□

5 Conclusion

We have created an environment for the existence and uniqueness of a fixed
point for relation theoretic variants of F−contraction and Hardy-Rogers type
F−contraction maps. Our theorems and corollaries are sharpened versions of
the well-known results, wherein completeness and continuity are replaced by
their R−analogs, which are comparatively weaker notions. Application to real-
world problems substantiates the utility of these extensions.
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