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Abstract. The aim is to introduce some relation theoretic variants of
F—contraction in an F—metric space endowed with a binary relation R
and to prove results for its fixed point. In the sequel, several classes of con-
tractions are sharpened, generalized, and improved. Numerical examples
are presented to illustrate the theoretical conclusions. As applications of
the main results, we solve a Dirichlet-Neumann initial value problem and
two Dirichlet boundary value problems.

1 Introduction and preliminaries

One of the major directions to extend the metric fixed point theory is to
generalize a certain mathematical structure or weaken some assumptions on
the mapping. Frechet was the first to introduce the idea of metric spaces as
a generalization of distance functions. Lately, Jleli and Samet [9] introduced
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F—metric space utilizing a particular class of functions and compared it with
existing generalizations of metric spaces in the literature. On another point of
note, Turinici [22] investigated the order-theoretic fixed point, while Ran and
Reurings [18] rediscovered an order-theoretic variant of the Banach contraction
principle [4]. Recently, Tomar et al. [26] gave a novel response to the open
question presented by Rhoades [17] on continuity at a fixed point while proving
a fixed point of a set-valued map satisfying relation-theoretic contractions in
a partial Pompeiu-Hausdorfl metric space.

Following the works of Wardowski [29] and Cosentino and Vetro [7], we in-
troduce a relation-theoretic variant of an F—contraction and a Hardy- Rogers
type F—contraction in the framework of F—metric spaces equipped with a
binary relation to prove the existence and uniqueness of the fixed point. In
the sequel, we obtained sharpened relation-theoretic variants of several the-
orems given by Chatterjea [6], Kannan [10], Reich [19], Wardowski [29], and
so on. Further, examples are given to demonstrate that our results are au-
thentic generalizations, extensions, and improvements of some celebrated and
recent results present in the literature. Motivated by the importance of ini-
tial value and boundary value problems in the study of real-world problems
(for instance numerical solution of LCR - circuit is useful in many engineering
branches, boundary value problems of hanging cable problem plays a crucial
role in designing crane lifts and booms) we solve, a Dirichlet-Neumann initial
value problem and two Dirichlet boundary value problems, by applying our
theoretical results. For more applications of fixed point techniques in real-world
problems, one may refer to Tomar and Joshi [27].

2 Preliminaries
Let F be the set of functions f: (0,00) — R so that :
Fi: 0<k<&= f(k) <f(&);
F, : for every sequence {sn} C (0,00),sn — 0 if and only if fs,, — —o0;
F3 : there exists 1 € (0,1) such that lim,_,o+ s'fs = 0.

Definition 1 [9] Let D : U x U — [0,00) be a given map on a non-empty set
U and there exists f: (0,00) — R satisfying F1, F2, and o € R™ in such a way
that for s,v € U:

(D1) D(s,v) =0 = s=v;
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(D2) D(s,v) =D(v,s) ;

(DS) fOT {Si} cu,i= 1)2)---)11 and (Shsn)

- (va)7 D(S)V) >0 =
f(D(S,V)) < f(Z{L:_]]D(Si) Si+1)) +a,neNn> 2.

Then, (U, D) is an F—metric space.

Example 1 Let D:U x U — [0,00) and U = Z be defined as

D(s,v) — Is—v|, (s,v) € [-5,5] x [-5,5]
»ve 5] x [5, 5]

ls—v|?
6+|s—v|?

forf(t) =logt+1,t>0.

Evidently, D satisfies D1 and Dy. Now, take an arbitrary (s,v) € U xU
in such a way that D(s,v) > 0. ForneNn>2 {si} CU,i=1,2,...,n and
(Shun) = (S)V)- Let

A:{k:])z)"'an_] : (Sk)SkJr]) € [_5)5} X [_5)5]})
B={1=1,2,...,n—1}\ A

Now, we have
I D(siy si11) = ZkeaD(Sky Ski1) + ZiesD(s1, s141),

= Zxealsk+1 — skl + ZIGBM-
+ Ist41 — sl
Next, we discuss two possible cases.
Case (i): Let (s,v) € [=5,5] x [=5,5]. In this case
D(s,v) = s — V|
< I Isier — sil
= Tiea Ikt — skl + Zies st — sl

Since,

lsi1—sul
Isu —sil < 25552 LEe B

Therefore,

511 — 51
D(S,V) < 2 (ZkGA |Sk+1 - Sk| + ZleBm . (1)
=
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Case (ii): Let (s,v) € [=5,5] x [=5,5]. In this case

s — v
D(s,v) = ————
(s,v) = 6+ s —v|
P
S
6+‘51+1 |
2 2
Skl — S Sie] — S
25 ISk 1 — skl +25es s111 — sil

6 + [sk1 — s 1+ [s141 — si

2
Isi41 — st

< 2%k lsisr — skl + ZZLGBm'
-

Therefore

2
|st+1 — st @)

D(s,v) < 2(Zxea skt — sil + ZleBm'
-

By combining (1) and (2)

D(s,v) > 0 = D(s,v) < 2515 D(si41 — s1),
= log(D(s,v)) < log(Z'D(si11 — s;)) + log 2,
= log(D(s,v)) + 1 < log(Z''D(sis1 — si)) + 1+ log 2.

So, D satisfies D3 for « =log2. Hence, D is an F—metric.

Howewver, D is never a metric onlU as it does not verify the triangle inequality.
Here,

D(6,10) = 6+4 =1 >D(638)+D(8,10) =5 +H5=1+1=1.

It is interesting to see that each metric is an F—metric however, the reverse
s not essentially correct implying thereby that F—metric is more predominant
than the standard metric.

Definition 2 [9] Let {sn} be a sequence in an F—metric space (U, D).
(i) {sn} is F—convergent to s € U, if limn_,00 D(sn,s) = 0.
ii) {sn} is F—Cauchy, if limn m—00 D(Snysm) = 0.

(
(iii) If the F—Cauchy sequence in U is F—convergent to any point in U, then
(U, D) is F—complete.
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A binary relation denoted by R is a subset of U x U, where U is a non-empty
set. If (s,v) € R, then s is related to v. Throughout the paper (U, D) is an
F—metric space, M is a self map on U, F(M) is the set of all fixed points of M,
and U(M, R) is the collection of points s € U in such a way that (s, Ms) € R.

Definition 3 [15] R is complete if s,v € U, [s,v] € R, (that is, either (s,Vv) €
R or (vys) € R).

Definition 4 [14] The symmetric closure R* is the smallest symmetric rela-
tion containing R, that is, R® = R|JR .

Definition 5 [13] R is M—closed if (s,v) € R = (Ms, Mv) € R, s,v € UU.
It is equivalent to saying that M is nondecreasing [20].

Definition 6 [1] A sequence {sn} in U is R—preserving if (sn,Sni1) € R,
n € Np.

Definition 7 [3] R is D— self-closed, if R—preserving sequence {sn} so that
[SnySnt1] € R, n € N, and sn, — s, there exists a subsequence {sn, } of {sn}
satisfying [sn, ] € R, k € N.

(U, D, R®) is reqular if and only if R® is D— self -closed.

Definition 8 [21] A subset D of U is RS—directed if for s,v € D, there exists
z € U satisfying (s,z) € R® and (v,z) € RS.

Definition 9 [12] Let s,v € U. Then, a finite sequence {wy, Wi, Wz, ..., Wi}
in U is a path of length k € N joining s to v in R if wy = s,wy = Vv and
(wiy,wi1) eR, 0<i<k—1.

Noticeably, a path of length k includes k+1 elements of U that are not es-
sentially distinct. The family of paths in R from s tov is denoted by I'(s,v, R).

Definition 10 [1] Let V C U. Then, the restriction of R to V is the set
RNV XV (that is, Rly = RNV x V). Actually, Rly is a relation on V induced
by R.

In order to establish a relation theoretic variant of the main result of War-
dowski [29] and Cosentino and Vetro [7], we recall some necessary notions for
our main results, namely R—completeness [2], R—continuity [2], and regularity
[21] in the environment of an F—metric space (Tomar and Joshi [28]).
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Definition 11 [28] A relational F—metric space (U, D, R) is R—complete if
every R—preserving Cauchy sequence in U converges to a point in U.

FEvery complete F—metric space s R—complete however reverse is not
essentially true.

Example 2 Let U = (0,1] and D : U x U — [0, 00) be defind as

(Is—=vl)
D(s,v):{a ) STV ,a>0 (3)
0, s=v
with f(t) = —% +1t,t >0, « =1 and a binary relation R = {(s,v) : s < v}.

Noticeably, (U, D) is an F—metric space and is neither a standard metric space
nor any variant of standard metric space. Furthermore, (U, D) is R—complete
but not complete, as the Cauchy sequence {%} i U converges to 0 ¢ U.

Definition 12 [28] A self map M in a relational F—metric space (U, D, R)
18 R—continuous at s if for R—preserving sequence {sn} with s, — s, we have
Msn — Ms.

Moreover, M is R—continuous if it is R—continuous at each point of U.

Example 3 LetU = [0,5] be equipped with an F—metric as in (3). Define a bi-
nary relation R ={(0, 0), (0, 1), (0,2), (1,0), (2,0), (2,3), (2,2), (3,4), (4,5), (3,3)}
on U and a discontinuous map M :U — U as

0, sel0,1)
Ms=<2 sell,3].
3, s€(3,5]

Consider an R—preserving sequence {sn} in such a way that s, — u, so that
(STI) Sn+1) € R, n € Np. Since, (Sn) Sn+1) € {(0> ’ 0)) (0) 1)) (])O)) (0)2)) (2) O))
(2,2),(3,3)} and (snysn+1) € {(2,3),(3,4),(4,5)} , n € No, which gives rise
to {sn} € {0,1,2,3}. So [sn,s] € R, that is, for every R—preserving sequence
sn— s €{0,1,2,3}, Ms,, = Ms €{0,1,2,3}. Hence, M is R—continuous.

Definition 13 [28] Let R*—symmetric closure of R. Then, (U, D, R*) is reg-
ular if for a sequence {sn} C U, (sn,Sny1) € R®, n € N, and sp, — s, there
exists a subsequence {sn, } of {sn} in such a way that (sn,,s) € R®, k € Ny.
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3 Main results

Following Wardowski [29], we introduce F— contraction in an F—metric space
endowed with binary relation R and establish a relation theoretic variant of
the main result of Wardowski [29].

Definition 14 A self map M is a relational F—contraction if there exist f € F
and 1> 0 satisfying

$,v €U, D(Ms, Mv) > 0 = p+f(D(Ms, Mv)) < §(D(s,v)), (s,v) € R. (4)
Now, we state the first result of this section.

Theorem 1 Let M be a self map in an F—metric space (U, D) endowed with
a binary relation R, satisfying:

(i) R is M-closed.
(ii) U IM,R] is non-empty.

(iii) there exist V C U in such a way that M(U) €V C U and (V,D) is
R-complete.

(iv) either Ry is D—self closed or M is R-continuous.

(v) M is a relational F—contraction.
Then, M has o fized point.
Additionally, if

(vi) M(U) is R5—connected.

Then, M has a unique fixed point in U and for each sy € U, the sequence
{sn} CU, spi1 = Msn,m € Ny, is F—convergent to a fized point.

Proof. Define the Picard sequence {sn} C U by spy1 = Ms,, n € Ny, with
initial point sy € U[M,R] as U[M,R] # . If sy, = sn11, then sy is the fixed
point of M. If sy # sn1,D(sn,Sne1) > 0. Since, (sp, Msp) € R and R is
M-closed, (Msg, M?sg), (M?sg, M3sg), ..., (M sg, M™1s5)...., € R. So

(SnySnt1) € R, n € Np.
Therefore, the sequence {s,} is R—preserving. Using inequality (4), we get

1A+ Ff(D(snySns1)) = w+ F(D(Msn_1, Msy)) < §(D(sn—1,sn)),n € Np,
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that is,
f(D(MSnfl yMsyp)) < f(D(Snfl ySn)) — 1.

Following similar steps
f(D(Msn_1, Msn)) < f(D(sn—2y sn—1)) — 21, n € No.
Hence, in general
f(D(Msn_1, Msyn)) < f(D(sg,s1)) —np — —o0, as n — oo. (5)

Now, by Fa, limp_ 0o D(Msn_1, Msy) =0, that is, limn e D(Sn, Sni1) = 0.
Exploiting F3, there exists 1 € (0,1) in such a way that
(D(8ny $n11))F(D(sny Sni1)) = 0, n € No. So

(D(sny $n+1)) (D (Sny Snt1)) — (D (5, Snp1))F(D(s0,51))
< (D(8ny snt1)) (F(D(s0, 81) — npt) — (D(Sn, Sn+1)) (D (50, 81))
= —np(D(sn, SnH))l <0.

Now, as 1 — 00, (D (sn, Sn+1))t — 0 or limp_ee nt (D(sn,Sny1)) =0, which
implies that the series £2° ;D (sn, sn+1) < co. Hence, {sn} is an R—preserving
F—Cauchy sequence. Since, {sn} € M(U) C V, {sn} is also R—preserving
Cauchy sequence in Y. Because (V, D) is R—complete, there exists s € V so
that s, — y.

If M is R—continuous, then s, = Ms, — Ms. So Ms = s, that is, s
is fixed point of M.
Also, if R|y is D—self closed, then for R-preserving sequence {s,} in V with
sn — S, there is a subsequence {sy, } of {sn} so that [sn,,s] € Rly C R, k € Ny
and sn, — s. Now, for any § € F and using D3

f(D(s, Ms)) < §f(D(s, Msp, ) + D(Msp,, Ms)) + o

D
(D(sySny ;) +D(snqyMs)) + o — —co as n — oo, using F,

f
f

a contradiction. Hence, D(s, Ms) =0, that is, Ms =s.
Hence, s is a fixed point of M.

If F(M) is singleton then there is nothing to prove. Let, if feasible s and
s* be two different fixed points of M, that is, Ms =s and Ms* = s*. So

s, s*e M(U) and M" s =s, M"s* =s* neN.
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Since, M(U) is R*—connected, so there exists a path {z¢, z1, z2, ..., z} (say)
of finite length k in RS from s to s* so that zg = s, zx = s* and (zi,zi11) € RS,
1=0,1,2,...,k—1. Since, R is M-closed, (M"z{, M"zi;1) € R®,0 <1i< k-1
and n € Ny. Now, D(s, s*) > 0, implies

f(D(s,s™)) = f(D(M"z9, M"2))
< FDM™ 2o, MM 7)) —
< H(D(M™ 229, MM 22y)) — 21

< §(D(zg,zx)) —Mp — —00 as M — oo,

a contradiction. So D(s, s*) = 0, that is, s = s™. O

Corollary 1 Theorem 1 is true if (vi) is substituted by any one of the subse-
quent hypotheses:

(u1) Rlpmq is complete.
(up) M(U) is R¥—directed.
(u3) T'(s, v, R%) # .

Proof. If (u7) holds, that is, Ry is complete, then for s, v € M(U), [s,Vv] €
Rlpmw), implies that {s, v} is a path of length T in R®| () from s to v. Con-
sequently, M(U) is R®—connected. Hence, Theorem 1 concludes the result.

In case (uy) holds, that is, M (U) is R¥—directed, then for s, v € M(U),
there exist z € U so that (s,z) € R’ and (v,z) € RS, which implies that
{s, z, v} is a path of length 2 in R® from s to v. Thus M (i) is R5—connected.
Consequently, Theorem 1 concludes the result.

Again, if (u3) holds, that is, I'(s,v, R®) # ¢, then for s, v € M(U) there
exists a path {zo, z1,22, ..., 2k} (say) of finite length k in R*® from s to v so that
zo = s, zx = v. Hence, M(U) is R*—connected. Consequently, again Theorem
1 concludes the result. ]

Example 4 Consider an F—metric space defined on a set U = [2,5) such as

ls—v|
D(s,v):{s » STV

2
0, S=V
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with f(t) = —% and o« = 1. Clearly, (U, D) is not a standard metric space.

Now, let a relation R on U be defined as

R(s,v) ={(2,3),(2,2),(2,4),(3,2),(3,3)},
whose symmetric closure is

R ={(2,3),(3,2),(2,2),(2,4),(4,2),(3,3)}.

2, se2,4)
3, uel4,5)
M(U) CV CU . Notice that (V,D) is not complete but R—complete and

(sn) sn+1) € {(2)3)) (3)2)) (2>2)) (3)3)} and (Sn) Sn+1) ¢ {(2,4)},1’1 € N07

that is, sn C {2,3}, which is a finite set. So every R—preserving sequence
{sn} — s €{2,3}. Clearly, R is M—closed , M is R—continuous and T'(s, v, R*)
is non-empty, s,v € M(U). Forf(t) =logt € F, one may verify the hypotheses
of Theorem 1 for u € (0,log3) and M has a unique fixed point at s = 2. Fur-
ther, there exists a sequence {sn} C U, sy = nz—j:],n € N, which M—-converges
to 2.

Take V = [2,4) CU. Let M(s) = { . Here, M(U) ={2,3} and

Remark 1 (i) It is worth mentioning here that Theorem 1 is an authen-
tic extension and improvement of Alnasera et al. [3] to a relational
F—contraction without assuming the completeness of the whole space.
Rather, we used a relatively weaker notion namely: R—completeness of
any subspace of the whole space. Further, we replaced the continuity of the
map with R—continuity, D—selfclosedness of R with D—selfclosedness of
Rly, and nonemptiness of family of paths in R with R¥ connectedness of
range space. Notice that, (U, D) is neither complete nor R—complete in
Ezxample 4. The underlying binary relation R is none of reflexive, sym-
metric, or transitive. Consequently, it is none of near-order, preorder,
strict order, partial order, or tolerance.

(ii) Further, Theorem 1 is an extended, improved, sharpened, and a gen-
eralized variant of the main result of Wardowski [29]. For more work
on F—contractions one may refer to Tomar et al. [23]-[24], Tomar and
Sharma [23].

Following Cosentino and Vetro [7], we introduce a relational Hardy-Rogers
type F—contraction in an F-metric space and establish relation theoretic vari-
ant of Cosentino and Vetro [7].
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Definition 15 A self-map M is a relational F—contraction of Hardy-Rogers
type if there exist f € F and u > 0 satisfying s,v € U, D(Ms, Mv) > 0, implies
that

w+ f(D(Ms, Mv)) < f(aD(s,v) + bD(s, Ms) + ¢D(v, Mv)

+0(s, Mv) 4+ eD(v, Ms)), (6)

(s,2w)ER,a+b+c+20<1 ande>0 .

Theorem 2 Theorem 1 remains correct even if M is a relational F—contraction
of Hardy-Rogers type and a+2c+0+¢ <1 (in place of (v)).

Proof. Define a Picard sequence {sn} C U, sn1 = Msn, n € Ny, with initial
point sg € U[M,R] as U[M,R] # &. Since, (sp, Msg) € R and M-closed,
(M30> MZSO)) (MZS()) M3SO)) ceey (MnSO) Mn—HSO)) € R So (Sn) Sn-H) €
R, n € Ny, that is, the sequence {sn} is R—preserving. Using (6),

t+ F(D(sn, Snt1)) = p+ f(D(Msn_1, Msn))
< f(aD(sn_1,8n) + bD(sn_1, Msn_1) + ¢D(sn, Msy)
+0D(sn_1, Msn) + eD(sn, Msn_1))
= f(aD(sn_1,8n) + bD(sn_1,5n) + ¢D(Sn, Sn+1)
+ 0D (sn—1,8n41) + eD(sn, sn))
< f(aD(sn—1,8n) + bD(sn—1,5n) + ¢D(sn, Sn+1)
+ 0[D(sn-1,8n) + D(sn, sn+1)1)
=f((a+b6+0)D(sn_1,8n) + (¢ +0)D(sn, Sn+t1)).

Using Fy,

D(sn,$n1) < (a4 b+2)D(sn—1,8n) + (¢ +2)D(sn, sn+1),
(1 —c—0)D(sn,sn+1) < (a+b+0)D(sn—1,5n),
D(snysny1) < (%)D(Snfhsn) = D(sn,sn-1),n € No.
Consequently,

1+ f(D(sny sns1)) < F(D(sn—1,5n)),
f(D(Sm Sn—H)) < f(D(sn-1y8n)) — 1.
Following similar steps, we get,
f(D(sny sn+1)) < Ff(D(sn—1,8n-2)) — 2.
Hence, in general,
f(D(Sn) Sn+1 )) < f(D(SO) $1 )) —NnH — —00, as M — 0.
Now, using F»,
D(sn,Snt1) < €, that is, lim D(sn,sny1) =0. (7)

n—oo
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Exploiting F3 , there exists 1 € (0,1) so that (D(sn, sns1))'F(D(sny Sns1)) — 0
as D(sn,Sny1) — 0 or limy 0 (D (Sny Snyt ))1f(D(5na snt1)) =0, n € Np holds.

(D($ny $n1)) (D (s, $n41)) — (Dsmy snp1)) (D (50, 81))

< (D(sn, $n1)) (F(D(s0, 1)) — npt) — (D (s, snp1)) (D (s0,81))

= —np(D(sn, Snt1 ))L <0.

. 1
NOWa asm — o9, Tl(D(Sn, Sn+1 ))l — Oor hmn%oo nt (D(Sn) Sn+1 ))ﬂD(SO) $1 )) =
0, which implies that the series Z3°;D(sn,sn41) < oo. Hence, {sn} is an
R—preserving F—Cauchy sequence. Since, {sn} C M(U) C V, {sn} is also
R—preserving Cauchy sequence in V. As (V, D) is R—complete, there exists
s € V so that sy, — s.
If M is R—continuous, then s, = Ms, — Ms. So Ms = s, that is, s
is fixed point of M.
Also, if Rly is D—self closed, then for R-preserving sequence {sn} in V and
sn — 8, we have a subsequence {sn, } of {sn} so that [sn,_,s] € Rly CR, k € Np
and sp, — s. Now,
9(D(s, Ms)) < g(D(s, Msn, ) + D(Msn,, Ms)) + «
= g(D(sysn,,,) +D(sn,,,, Ms)) + o — —oco0 as n — oo, using Fy,

a contradiction. Hence, d(s, Ms) = 0, that is, Ms = s. Hence, s is a fixed
point of M.

If F(M) is singleton then there is nothing to prove. Let, if feasible s and
s* be two different fixed points of M, that is, Ms =s and Ms* = s*. So

s, s" e MU) and M"s =35, M"s* =s* neN,.
Since, M(U) is R*—connected, so there exists a path {z¢, z1, z2, ..., zx} (say)
of finite length k in RS from s to s* so that zg = s, zx = s* and (zi,zi11) € RS,
1=0,1,2,...,k—1. Since, R is M-closed, (M"z{, M"zi,1) € R®,0 <1i< k-1
and n € Ny. Now, D(s,s*) > 0, implies
f(D(s,s")) = f(D(M™z9, M"2z))
< f(aD(M™ 'z, M™ i) + b(D(M™ ' 2o, M"z0)
+ DMz, MMz
+ (DM Tz, M zi)) + ¢(D(M™ 'z, M"29))) —
<F(DM™ 2o, M™ ) — 1, since (a+b+c+20) < 1.

Following, similar steps we get
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f(D(s,5%)) < (M™ 220, M™?2;) — 2.
In general,
f(D(s,s*)) < §(D(zo,zx)) —mp — —o0 as n — oo,

a contradiction. So D(s,s*) = 0, that is, s = s*. Hence, M has a unique fixed
point.
O

Example 5 Let U = (0,5) and an F—metric be

s—vl
D(s,v):{(c)L ’ zf:, where a > 0

with f(t) = —% and o = 1. Define a binary relation on U,

R ={(s,v) :s <V},

whose symmetric closure is RS =U x U and a self-map

$4+1, s€(0,3)
Ms =<2 s €(3,4).
$+1, se[4,5)

Let V = (%,3]. Here, M(U) = (1,%) C V, V is R—complete but U is not
R—complete. Clearly, R is M—closed and M is R—continuous. Take any
sequence {sn} C V, sp = %,n € N. Here, (sn,sn+1) € Ry, n € N and
there exists sn, — s € (%,3] ,n >N e N. So we choose a subsequence {sn,} of
{sn} in such a way that sy, — s, k € N. Therefore, (sn,,s) € R*ly, k € N, that
18, R*ly is D—self closed. Moreover, T'(s,v,R%) is non-empty. One may verify
all the hypotheses of Theorem 2 for n € (0, %5] and s,v € M(U). Observe that
s = % is a unique fized point of M. Further, the sequence {sn} is F—convergent

3
to 3-

Corollary 2 Conclusion of Theorem 2 is true if (vi) is substituted by any one
of the subsequent hypotheses:

(u1) Rlpm is complete.

(up) M(U) is RS—directed.
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(u3) T(s,v, R*) # &.

Proof. The proof follows the pattern of Corollary 1. O

A relation theoretic variant of Kannan type F—contraction is given by putting
a=0=e¢=0,b+c<1and b#0 in Theorem 2.

Corollary 3 Theorem 2 remains correct even if (v)' take the place of (v).
(v)" D(Ms, Mv) > 0 implies that
n+ f(D(Ms, Mv)) < §(bD(s, Ms) + ¢D(v, Mv)), (8)

ssveld , (s,v)eERand b+c<1,c<]

A relation theoretic variant of Chatterjea type F—contraction is given on sub-
stitutinga=b=c=0and 0 = % in Theorem 2.

Corollary 4 Theorem 2 remains correct even if (v)" take the place of (v).
(V)" D(Ms, Mv) > 0 implies that
n+ f(D(Ms, Mv)) < f(dD(s, Mv) + eD(v, Ms)), (9)

s,veu, (s,v) € R, Dg%and0+e<1 }

A relation theoretic variant of Reich type F—contraction is given on substitut-
ing 0 = ¢ = 0 in Theorem 2.
Corollary 5 Theorem 2 remains correct even if (v)" take the place of (v).

(v} D(Ms, Mv) > 0 implies that

"

u+ f(D(Ms, Mv)) < f(aD(s,v) +0D(s, Ms) + eD(v, Mv)),  (10)

s,svel, (s,v)eERanda+b+c<1.

Similarly, by taking a =1, b = ¢ =0 = ¢ = 0 in Theorem 2, we obtain
relation theoretic variant of Theorem 1 of Wardowski [29], that is, our first
result - Theorem 1.

Remark 2 (i) If in Corollaries 3, 4, and 5 either ) is R*-directed or R
is F-complete or T'(s,v, R*) # &, take the place (vi) then also the above
consequences hold.
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(i1) If we assume, R =U X U in the above results, extensions, and improve-
ments of results in metric and ordered metric spaces for a discontinuous
self-map are obtained. As a consequence, our results subsume the magjor-
ity of celebrated and contemporary results existing in the literature. It is
fascinating to see that relation-theoretic contractions are comparatively
weaker than standard contractions since these hold only for the elements
in the relation under consideration (see, Examples J and 5).

(iii) Since, an F—metric is more predominant than the standard metric and
F—contraction is a genuwine generalization of Banach contraction. Our
results improve and extend the classical Banach contraction principle
[4], Alam and Imdad [1)-[2], Alnaser et al. [3], Cirié [5], Chatterjea [6],
Cosentino and Vetro [7], Hardy and Rogers [8], Jleli and Samet [9], Kan-
nan [10], Nieto and Rodriguez-Ldpez [16], Petrusel et al. [17], Reich [19],
Tomar and Joshi [28], Wardowski [29], and so on without using the con-
tinuity of the underlying map and the completeness of space.

4 Applications

As an application to our outcomes, we solve an initial value and two boundary
value problems of second-order differential equations. Let Z = [0,1] and U =
CI[Z,R] denotes the set of all continuous functions on [0, 1]. Define F—metric
as

D(s,v) = {exp(ns—vuoo), SEV eu
0, S =W.

with f(t) = —%, o =1 and norm |[[s —v||, =sup|s —Vl.

Firstly, LCR—circuit was used in the 1890s in spark-gap radio transmitters
to permit the receiver to be tuned to the transmitter. These days LCR—circuit
is being used as an oscillator circuit in television sets and Radio receivers
for tuning to choose a narrow frequency range from nearby radio wave (as a
tuned circuit) and in the high-pass filter, low-pass filter, band-pass filter, or
band-stop filter (as a second-order circuit), oscillators voltage multiplier pulse
discharge circuit, and so on. Inspired by these applications, we apply Theorem
1 to solve the Dirichlet-Neumann initial value problem of the LCR—Circuit.

Theorem 3 Consider an LCR—circuit (a coil of inductance L, a capacitor
of capacitance C and a resistor of resistance R) and an AC wvoltage source
connected in series. If q is a charge on the capacitor, 1 is the current passing
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through the circuit at time t. Then, using Kirchhoff’s law, the voltage equation
18

d*q  .dq q _
LW‘FRE‘Fé = ¢(t, q(t)), (11)

with Dirichlet-Neumann initial condition q(0) = O,q/(O) = Iy, where ¢ is
applied voltage.

Let there exists @ > 0 so that for qi,q2 € C([0,TI,R) , q1 > q2 and ¢ :
[0, T] x R = R is an increasing map and

lb(t,q1(t) — d(t, q2(t)] < (g1 — qal — 1), (12)

a+b+c< 1, T>0. If q satisfies all the hypotheses of Theorem 1, then the
initial value problem (11) has a solution q* € C([0, T],R).

Proof. The problem is comparable to the subsequent integral equation

q(t) = [y G(t, E)b(E,q(E))dE, te[0,T]
and the Green function

G = - BepTt—&), 0<E<t<T
R (¢ 0<t<&i<T

Define a map M : U — U in (U, D) by

t

Mq(t) =j G(t, £)0(E, q(£))dE. (13)

0

and a binary relation
R ={(q1,92) €U x U : q1(t)q2(t) > 0 with (q1 — q2)(t) > 0,Vt € I}.

Now, q € C([0, T],R) is a solution to the initial value problem (11) if and only
if it is a fixed point of M.

(i) Now, select an R—preserving Cauchy sequence {qn} in such a way that
dn — q. Then, we must have qn(t)qn1(t) > 0 and qn(t) > gnei1(t),
t € Tand n € Ny. There arise two cases : either qn(t) > 0 or qn(t) <0,
t € I If qn(t) > 0, then, t € I, gives a sequence of non-negative real
numbers converging to q(t). So q(t) > 0, that is, (qn,q) € R, t € I and
n € Ny. Thus R is D—self-closed.
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(ii) For (q1,q2) € R, that is, qi(t) > qa(t), since ¢ is increasing and
G(t, &) >0, (t,&) € I x I, we have

1
Mai(t) = L G(t, £)0(E, q(£))dE

1
>J Gt £)b(E, qa(£))dE

0
= Mqa(t), t €],

that is, (Mq1, M(qz2)€R and R is M—closed. Clearly, for q(t) > 0, Mq(t)
> 0,t €1, that is, (q, Mq) € R. Hence, U[M, R] is non-empty.

(ili) For q1 # q2 and (q1,q2) € R,
D(Mqiy, Mq3) = exp|Mqi — Mqs|

= exp [[§ G, £) (&, G(E))dE — [§ G(t, E)b(E, q2(E))V(E)dE]
< exp [ 6(t, )2 (lar — a2l — )| a&

< exp(T([[q1 — 2l — 1) |[§ Glt, £)]

= exp(([1a1 — dalloo — ) [[5(t — &) expe(t — £)dE|)
<6XP(T2(HCI1—CI2H u)\ Zett 4+ L(1—e™)
< exp(T([lq1 — gzl — 1) 32)-

Now, taking logarlthm on both sides and f =Int
f(D(Mdq1, Mqz)) < §(D(q1,42)) — p and p > 0.

If Y =V = C(I), then V is R*—directed. Consequently, all the hypotheses
of Theorem 1 are verified and hence M has a unique fixed point, which is a
solution to the problem 13. ([l

Now, we solve the two-point boundary value problem arising in the vibrations
of a vertically hanging heavy cable using Corollary 5.

Theorem 4 Let a heavy cable AB of constant mass per unit length suspended
at the top end A be hanging vertically. If the cable is displaced by a small
initial displacement through AB' in the vertical plane at any time t. The dis-
placement of the cable is so small that each of its particles is assumed to move
horizontally, then the equation of motion of vibration of the cable is:

d ds
(ﬂ(t(ﬁ) =P(t,s(t),t e I=1[0,1] (14)
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with Dirichlet boundary conditions s(0) = 0,s(1) = 0. Let there exists a self
map M onU and u >0, s,v € U with s > v satisfying

W(t,s(t)) —W(t, (1) < lals —v[+blu—Ms|+clv—Mv[—p],  (15)

a+b+c< 1. If s satisfies all the hypotheses of Corollary 5, then problem (14)
has a solution s* € U.

Proof. The boundary value problem (14) is comparable to following the inte-
gral equation

1
(1) =J Gt E)0 (&, s(£))dE, e, (16)

0

where the Green function
Int, 0<E<t<
G(t> ‘E) =
Ing, 0<t<ELT
Define a map M :U — U in (U, D) by

(Ms)t = [3 G(t, E)(&, s(£))dE

and a binary relation
R ={(s,v) elU xU :s(t)v(t) > 0 with (s —v)(t) > 0,Vt € I}.

Now, s € U is a solution to the boundary value problem (14) if and only if it
is a fixed point of M.

(i) Now, select an R—preserving Cauchy sequence {s,} such that s, — u.
Then, we must have sp(t)sny1(t) > 0 and sp(t) > sppq(t), t € I and
n € Ny. There arise two cases : either s, >0 or sy, <0,tel. If s, >0,
then t € I, gives a sequence of non-negative real numbers converging to
s(t). So s(t) > 0, that is, (sn,z) € R, n € Ny. Thus, R is D—self-closed.

(ii) For (s,v) € R, that is, s(t) > v(t) and G(t,&) >0, (t,&) € I x 1,

1

1
cJ Glt, £ (&, s(£))dE > cL Glt, £ (&, v(E))dE,

0
that is, (Ms)t > (Mv)t, forall t el

(Ms, Mv)eR, that is, R is M—closed. Also, for u(t) > 0,t € I, we have
Mu(t) >0, t €1, that is, (s, Ms) € R. So U[M, R] is non-empty.
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(iii) For (s,v) € R,

D(Ms, Mv) = exp|Ms — My, for s v and t € [
= exp |IMv — Ms|

= exp |[3 G (&, E)(E, 5(E))dE — [§ Gt E)P(E, v(E))]dE|

< exp |[3 Gt E)W(E, s(2)) — W&, v(E))dE|

< exp U(]) G(t,&)lals—v|+bls — Ms|+clv— Mv|— u]dé,‘

< expla s =Vl oo + LIls = Msllyg + v — Mv]lo, — ] [ G(t, £)aE|

— expla ||s — V]| o+ |s — Ms|| o +¢ |[[v — Mv]|_ —p] Ug Intdé + ! In E,d&‘

= explal[s = vl + L [|s = M| +c][v = M| —ullt —1]
< expllalls = vl + [lIs = M|l +c[lv — M|, — .

Now, taking logarithm on both sides and f = In t,

f(D(Ms, Mv)) < flaD(s,v)+bD(s, Ms)+cD(v, Mv)] —p, since a+b+c¢ < 1.
If iy =V = C(I), then V is R°—directed. Therefore, all the hypotheses of
Corollary 5 are verified and consequently, M has a unique fixed point, which
is a solution to (16). O

Theorem 5 Consider a boundary value problem

2
%:q)(t,u(t)),te Iand ¢ €U, (17)

s(0) =0,s(1) =0.
If there exists u > 0 in such a way that for s,v € C(I), s > v.
0 < [d(t,s) +usl = [d(t,v) + ] <8lu—v|—p (18)

and s satisfies all the hypotheses of Theorem 1, then the boundary value prob-
lem (17) has a unique solution s* € U.

Proof.
The problem in equation (17) may be rewritten as

s"(t) + Bs(t) = d(t,s(t)) + Bs(t), t€[0,1],
s(0) =0,s(1) =0.

This is comparable to the integral equation

1
(1) =j G(t, £)[(E, s(£)) + Bs(E)IAE, for t € I, (19)

0
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where the Green function

(T—1& 0<&E<t<T
(T=8t, 0<t<&<T

Define M :U — U in an F—metric space (U, D) by

(Ms)t = [3 G(t, &) [d(&,s(E)) + Bs(E)]dE,

and a binary relation

R={(s,v) elUd xU :s(t)v(t) >0 with (s —v)(t) > 0,Vt € I}.

Now,

(i)

(iii)

s € U is a solution of (19) if and only if it is the solution of (17).

Now, select an R—preserving Cauchy sequence {sn} in such a way that
sn — w. Then, we must have s, (t)spy1(t) > 0 and sp(t) > spq(t), t €1
and n € Ny. There arise two cases : either s,(t) > 0 or su(t) <0, te L.
If sn(t) > 0, then, for t € I, produces a sequence of non-negative real
numbers converging to s(t). Thus s(t) > 0, t € I, that is, (sn,s) € R,
t € [ and n € Ny. Hence, R is D—self-closed.

For (s,v) € R, that is, s(t) > v(t) by (18), d(t,v)+pv < d(t,s)+Ps, Vt €
[ and G(t,&) >0, (t,¢) € I x I, we have

1
Ms(t) :J Gt £)Ib(E, s(£)) + Bs(E)]dE

0

1
> J Glt, )£, v(E)) + Bv(E)IdE

0
=Mv(t), tel

that is, (Ms, Mv)eR and R is M—closed. Clearly, for s(t) > 0, Ms(t) >
0, t € I, that is, (s, Ms) € R and U[M, R] is non-empty.

For (u,v) € R,

D(Ms, Mv) =exp|Ms — Mv|, for s Zvand t € 1

= exp [} Glt,£) (£, (&) + us(E)IAE — [ G(t, £)(E, () + wv(E)IdE

< exp| 3 Glt, £)(8]s — vl — | d&

< exp(8 ls — V], — 1) [ G(t, £)dE
= exp(8 [|s — Vo — W1 — EAE+ [} (1 — E)tdE]

1—
< exp(8||s — V||, — w) 1LY
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< exp g(8]s — V|l — 1.
Now, taking logarithm on both sides and f =Int
f(D(Ms, Mv)) < f(D(s,v)) — & and p > 0.

Taking U =V = C(I), then V is R*—directed. Hence, all the hypotheses of
Theorem 1 are verified and as a result, M has a unique fixed point, which is,

a solution to problem (17).
U

5 Conclusion

We have created an environment for the existence and uniqueness of a fixed
point for relation theoretic variants of F—contraction and Hardy-Rogers type
F—contraction maps. Our theorems and corollaries are sharpened versions of
the well-known results, wherein completeness and continuity are replaced by
their R—analogs, which are comparatively weaker notions. Application to real-
world problems substantiates the utility of these extensions.
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