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Abstract. In this short note we shall give a simple proof of the so
called Fefferman’s inequality allowing the potential V belong to Lp with
1 < p < ∞.

1 Introduction

In his celebrated paper Charles Fefferman [6] prove the inequality∫
B

|u(x)|p|V(x)|dx ≤ C

∫
B

|∇u(x)|p dx (1)

for all u ∈ C∞
c , in case p = 2, assuming the potential V belong to the class

Lr,n−2r, with 1 < r ≤ n
2 .

In latter work, Chiarenza and Frasca [3] extended Fefferman’s result with
a different proof, assuming the potential V in Lr,n−pr with 1 < r ≤ n

p and
1 < p < n.

In [4] Danielli, Garofallo and Nhice introduced a suitable version of Morrey
Spaces adapted to the Carnot-Carahéodory (C-C) metric and proved the same
inequality with V in the Morrey Space L1,λ for λ > 0.

A different approach to inequality (1) was started by Schecter in [7] where
he proved the inequality with p = 2 and V in the Stummed-Kato Class.
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At the beginning of the 21st century in [8] inequality (1) was proved with
1 < p < n and V in a more general class of potentials, namely non-linear
Kato class for details in this class see [2]. In [5] inequality (1) was proved by
replacing the gradient in the right hand side of (1) by energy associated to an
arbitrary system of vector fields, and the function V was take in an appropriate
Stummed-Kato class, defined via the Carnot-Carathéodory metric associated
to the vector fields in a metric space.

In [1] inequality (1) was proved allowing V ∈ A1 ∩ Ln
p
∩C2

c with 1 < p < n
p .

In section 2 of this note we shall prove (1) allowing V ∈ Lp with 1 < p < ∞.

2 Main result

After Fefferman gave the proof of (1) for p = 2, all subsequent authors who
have proved (1) have used the following Lemma, which is the cornerstone in
the proof of the aforementioned inequality (1) in that sense (1) deserve to have
a name and so we will call it the workhorse Lemma. In order to make this note
self contained we will give its proof as well.

Lemma 1 (The workhorse Lemma) Let u ∈ C1(Rn) suppose that u and
its partial derivatives of first order are integrable on Rn. Then

|u(x)| ≤ 1

nωn

∫
Rn

|∇u(y)|

|x− y|n−1
dy

for x ∈ Rn where ωn is the Lebesgue measure of the unit ball in Rn.

Proof. Observe first that
(x− y) · ∇u(y)

|x− y|n

is integrable on Rn as function of y; actually for r > 0, we have∫
Rn

|(x− y) · ∇u(y)|

|x− y|n
dy ≤

∫
Br(x)

|∇u(y)|

|x− y|n−1
dy+

∫
Rn\Br(x)

|∇u(y)|

|x− y|n−1
dy

≤ sup
y∈Br(x)

|∇u(y)|

∫
Br(x)

dy

|x− y|n−1

+
1

rn−1

∫
Rn

|∇u(y)|dy < ∞.
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Next, since u ∈ C1
c(Rn) we also have

u(x) = −

∫∞
0

∂

∂r
u(x+ rz)dr (2)

where z ∈ Sn−1 = {x ∈ Rn : |x| = 1}. Integrating (2) over the whole unit sphere
surface Sn−1 yields

ωn−1u(x) =

∫
Sn−1

u(x)dσ(z)

= −

∫
Sn−1

∫∞
0

∂

∂r
u(x+ rz)drdσ(z)

= −

∫
Sn−1

∫∞
0

∇u(x+ rz) · z drdσ(z)

= −

∫∞
0

∫
Sn−1

∇u(x+ rz) · z drdσ(z).

Changing variables y = x+ rz, dσ(z) = rn−1 dσ(y) and

z =
y− x

|x− y|
and r = |x− y|,

hence we get

ωn−1u(x) = −

∫∞
0

∫
∂B(x,r)

∇u(y) · y− x

|x− y|n
dσ(y)dr

=

∫
Rn

∇u(y) · x− y

|x− y|n
dy,

which implies that

|u(x)| ≤ 1

nωn

∫
Rn

|∇u(y)|

|x− y|n−1
dy,

as we wish to prove. □

Theorem 1 (Fefferman’s inequality) Let Ω ⊂ Rn be a bounded set and
V ∈ Lp(Ω) for 1 ≤ p < ∞. Then∫

Ω

|u(x)|p|V(x)|dx ≤ C(n, p, q)∥V∥Lp(Ω)

∫
Ω

|∇u(x)|p dx.
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Proof. For any u ∈ C∞
c (Rn), let us consider a ball B such that u ∈ C∞

c (B).
By Lemma (2) and Hölder’s inequality we have

|u(x)| ≤Cn

∫
B

|∇u(y)|p dy

 1
p
∫

B

dy

|x− y|q(n−1)

 1
q

=CnCq

∫
B

|∇(y)|p dy

 1
p

.

Thus

|u(x)|p ≤ (CnCq)
p

∫
B

|∇u(y)|p dy. (3)

Next, multiplying by |V(x)| at both side of (3) and integrating with respect to
x and invoking one more time the Hölder inequality we obtain∫

B

|u(x)|p|V(x)|dx ≤(CnCq)
p

∫
B

|V(x)|

∫
Ω

|∇u(y)|p dy

 dx

≤(CnCq)
p[m(B)]

1
q

∫
Ω

|V(x)|p dx

 1
p
∫

Ω

|∇u(y)|p dy


=C(n, p, q)∥V∥Lp(Ω)

∫
Ω

|∇u(y)|p dy.

Finally ∫
Ω

|u(x)|p|V(x)|dx =

∫
B

|u(x)|p|V(x)|dx

≤C(n, p, q)∥V∥Lp(Ω)

∫
Ω

|∇u(x)|p dx,

as we announced. □
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