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Abstract. The purpose of the present paper is to find a necessary and
sufficient condition for Miller-Ross-type Poisson distribution series to be
in the class Wδ(α, γ, β) of analytic functions with negative coefficients
.Also, we investigate several inclusion properties of the classes S∗, K and
Rτ(A,B) associated of the operator Imν,c defined by this distribution. Fur-
ther, we consider an integral operator related to Miller-Ross-type Poisson
distribution series. Several corollaries and consequences of the main re-
sults are also considered.

1 Introduction and definitions

Let A denote the class of analytic functions in the open unit disk U = {z ∈ C :

|z| < 1} given by the series expansion

f(z) = z+

∞∑

n=2

anz
n (1)

and S denote the subclass of A which are univalent in U. Also, let S∗ and K

be the usual subclasses of functions whose members are univalent starlike and
univalent convex in U, respectively.
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Further, let Tδ be a subclass of A consisting of functions of the form

f(z) = z−

∞∑

n=2

anz
n, ane

iδ ≥ 0, |δ| < π/2, z ∈ U. (2)

Very recently, Frasin et al. [18] obtained necessary and sufficient conditions and
inclusion relations for Pascal distribution series to be in the class Wδ(α, γ, β)

defined as follows:

Definition 1 For γ, β ≥ 0, 0 ≤ α < cos δ, |δ| < π/2 and function f ∈ Tδ is
said to be in the class Wδ(α, γ, β) if it satisfies the analytic criteria

R{eiδ[(1− γ+ 2β)
f(z)

z
+ (γ− 2β)f′(z) + βzf′′(z)]} > α, (z ∈ U). (3)

Remark 1 The class W0(α, γ, β) is a subclass of the class Wβ(α, γ) which is
defined by Ali et al. [3] ( see also [33] ). In particular, the class W0(α, γ, 0) =

Qγ(α) was studied by Ding et al. [11], the classes Wδ(α, 1, 0) = S(δ, α) and
Wδ(α, 0, 0) = T (δ, α)were introduced and studied by Sudharasan et al. [36].

A function f ∈ A is said to be in the class Rτ(A,B), τ ∈ C\{0}, −1 ≤ B <

A ≤ 1, if it satisfies the inequality

∣

∣

∣

∣

f′(z) − 1

(A− B)τ− B[f′(z) − 1]

∣

∣

∣

∣

< 1, z ∈ U.

This class was introduced by Dixit and Pal [12].

The distributions of random variables have generated a great deal of interest
in recent years. Their probability density functions, in a real variable x and a
complex variable z, have played an important role in statistics and probabil-
ity theory. For this reason, distributions have been studied extensively. Many
kinds of distributions appeared from real life situations like Binomial distribu-
tion, Poisson distribution, geometric distribution, hyper geometric distribution
and negative binomial distribution.
Let Eν,c(z) be the Miller-Ross function [25] defined by

Eν,c(z) = zν
∞∑

n=0

(cz)n

Γ(n+ ν+ 1)
, (ν, c, z ∈ C ). (4)
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Also, let Eσ,µ(z) be the two parameters Mittag-Leffler function [42] defined by

Eσ,µ(z) =

∞∑

n=0

zn

Γ(σn+ µ)
, (z, σ, µ ∈ C,Re(σ) > 0, Re(µ) > 0 ). (5)

If µ = 1, from (5) we obtain the one parameter Mittag-Leffler function [26]

Eσ(z) =

∞∑

n=0

zn

Γ(σn+ 1)
, (z, σ ∈ C,Re(σ) > 0). (6)

Several properties of Mittag-Leffler function and generalized Mittag-Leffler
function can be found in [6, 8, 13, 20, 23].
From (4) and (5), the Miller-Ross function may be written as

Eν,c(z) = zνE1,1+ν(cz).

Very recently, Şeker et al. [38] introduced a power series whose coefficients are
Miller-Ross-type Poisson distribution as follows

F
m
ν,c(z) := z+

∞∑

n=2

mν(cm)n−1

Γ(n+ ν)Eν,c(m)
zn, z ∈ U, (7)

where ν > −1, c > 0.
We note that if we put ν = 0 and c = 1 in (7), we get the Poisson distribution

series introduced by Porwal [30].
Also, Şeker et al. [38] defined the series

K
m
ν,c(z) := 2z− F

m
ν,c(z) = z−

∞∑

n=2

mν(cm)n−1

Γ(n+ ν)Eν,c(m)
zn, z ∈ U. (8)

Very recently, Amourah et al. [4] considered the linear operator Imν,c : A → A

defined by the convolution or Hadamard product

I
m
ν,cf(z) := F

m
ν,c(z) ∗ f(z) = z+

∞∑

n=2

mν(cm)n−1

Γ(n+ ν)Eν,c(m)
anz

n, z ∈ U, (9)

where ν > −1 and c > 0.
In recent years, several researchers have obtained some necessary and suffi-

cient conditions for functions belong to certain classes of univalent function us-
ing distribution series such as Poisson distribution series [7, 16, 15, 29, 30, 32],
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Pascal distribution series [5, 10, 17, 19, 34], the confluent hypergeometric dis-
tribution series [9, 22, 24, 35, 37, 41], and the Mittag-Leffler-type Poisson
distribution series [1, 21]. Motivated with the works mentioned, in the present
paper we determine a necessary and sufficient condition for Km

ν,c to be in our
classWδ(α, γ, β). Also, we investigate several inclusion properties of the classes
S∗, K and Rτ(A,B) associated of the operator Imν,c defined by (9). Finally, we
give sufficient conditions for the function f such that its image by the integral
operator Gm

ν,cf(z) =
∫z
0
K

m
ν,c(t)
t dt belongs to the class Wδ(α, γ, β) .

2 Preliminary lemmas

Employing the same technique proved by Sekine [39] (see also, [14]), we can
prove the following lemma.

Lemma 1 A function f ∈ Tδ of the form (2) is in the class Wδ(α, γ, β) if and
only if

∞∑

n=2

[n(n− 1)β+ (γ− 2β)n+ (1− γ+ 2β)] |an| ≤ cos δ− α. (10)

for some γ, β ≥ 0 and 0 ≤ α < cos δ, |δ| < π/2.The result (10) is sharp.
Furthermore, we also need the following result.

Lemma 2 [12] If f ∈ Rτ(A,B) is of the form (1) , then

|an| ≤ (A− B)
|τ|

n
, n ∈ N− {1}.

The result is sharp for the function

f(z) =

∫ z

0

(1+ (A− B)
τtn−1

1+ Btn−1
)dt, (z ∈ U;n ∈ N− {1}).

Unless otherwise mentioned, we assume in the reminder of this paper that
γ, β ≥ 0 and 0 ≤ α < cos δ, |δ| < π/2.

3 Necessary and sufficient condition for

K
m
ν,c ∈ Wδ(α, γ, β)

Firstly, we obtain a necessary and sufficient condition for K
m
ν,c to be in the

class Wδ(α, γ, β).
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Theorem 1 ν > −1 and c > 0, then K
m
ν,c ∈ Wδ(α, γ, β) if and only if

c

Eν,c(m)

[

βm2
Eν−1,c(m) + (γ− 2βν)mEν,c(m)

+ (1+ ν(βν+ β− γ))Eν+1,c(m)
]

≤ cos δ− α.

(11)

Proof. Since Km
ν,c is defined by (8), in view of Lemma 1 it is sufficient to show

that

Ψ =

∞∑

n=2

[n(n−1)β+(γ−2β)n+(1−γ+2β)]
mν(cm)n−1

Γ(n+ ν)

1

Eν,c(m)
≤ cos δ−α,

(12)
or, equivalently

Ψ =

∞∑

n=2

[βn2+n(γ−3β)+(1−γ+2β)]
mν(cm)n−1

Γ(n+ ν)

1

Eν,c(m)
≤ cos δ−α. (13)

Writing

n2 = (ν+ n− 1)(ν+ n− 2) + (3− 2ν)(ν+ n− 1) + (1− ν)2

and

n = (ν+ n− 1) + (1− ν)

in (13), we have

Ψ =
1

Eν,c(m)

[

β

∞∑

n=2

(ν+ n− 1)(ν+ n− 2)
mν(cm)n−1

Γ(n+ ν)

+ (γ− 2βν)

∞∑

n=2

(ν+ n− 1)
mν(cm)n−1

Γ(n+ ν)

+ (1+ ν (βν+ β− γ))

∞∑

n=2

mν(cm)n−1

Γ(n+ ν)

]

=
1

Eν,c(m)

[

β

∞∑

n=2

mν(cm)n−1

Γ(n+ ν− 2)
+ (γ− 2βν)

∞∑

n=2

mν(cm)n−1

Γ(n+ ν− 1)

+ (1+ ν (βν− β− γ))

∞∑

n=2

mν(cm)n−1

Γ(n+ ν)

]
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=
c

Eν,c(m)

[

βm

∞∑

n=0

mν(cm)n

Γ(n+ ν)
+ (γ− 2βν)m

∞∑

n=0

mν(cm)n

Γ(n+ ν+ 1)

+ (1+ ν (βν+ β− γ))m

∞∑

n=0

mν(cm)n

Γ(n+ ν+ 2)

]

=
c

Eν,c(m)

[

βm2
Eν−1,c(m) + (γ− 2βν)mEν,c(m)

+ (1+ ν (βν+ β− γ))Eν+1,c(m)
]

,

but this last expression is upper bounded by cos δ − α if and only if (11)
holds. �

4 Inclusion relations

In this section we will prove the inclusion relations of the classes S∗, K and
Rτ(A,B) associated of the operator Imν,c defined by (9).

Theorem 2 Let ν > −1 and c > 0.

(i) If f ∈ S∗ and the inequality

c

Eν,c(m)

[

βm3
Eν−2,c(m) + (γ+ 3β(1− ν))m2

Eν−1,c(m)

+ ((ν− 1)(3βν− 2γ) + 1)mEν,c(m) + (1− ν)(ν(β+ βν− γ) + 1)Eν+1,c(m)
]

≤ cos δ− α. (14)

is satisfied then I
m
ν,cf ∈ Wδ(α, γ, β).

(ii) If f ∈ K and the inequality (11) is satisfied then I
m
ν,cf ∈ Wδ(α, γ, β).

Proof. (i) According to Lemma 1 it is sufficient to show that

Φ =

∞∑

n=2

[n(n−1)β+(γ−2β)n+(1−γ+2β)]
mν(cm)n−1

Γ(n+ ν)Eν,c(m)
|an| ≤ cos δ−α.

(15)
If f ∈ S∗ has the form (1), then the well-known inequality |an| ≤ n holds for
all n ≥ 2. Therefore

Φ ≤

∞∑

n=2

n[n(n− 1)β+ (γ− 2β)n+ (1− γ+ 2β)]
mν(cm)n−1

Γ(n+ ν)

1

Eν,c(m)
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=

∞∑

n=2

[βn3 + n2(γ− 3β) + n(1− γ+ 2β)]
mν(cm)n−1

Γ(n+ ν)

1

Eν,c(m)
. (16)

Writing

n3 = (ν+ n− 1)(ν+ n− 2)(ν+ n− 3) + (6− 3ν)(ν+ n− 1)(ν+ n− 2)

(3ν2 − 9ν+ 7)(ν+ n− 1) + (1− ν)3,

n2 = (ν+ n− 1)(ν+ n− 2) + (3− 2ν)(ν+ n− 1) + (1− ν)2

and

n = (ν+ n− 1) + (1− ν)

in (16), we get

Φ ≤
1

Eν,c(m)

[

β

∞∑

n=2

(ν+ n− 1)(ν+ n− 2)(ν+ n− 3)
mν(cm)n−1

Γ(n+ ν)

+ (γ+ 3β (1− ν))

∞∑

n=2

(ν+ n− 1)(ν+ n− 2)
mν(cm)n−1

Γ(n+ ν)

+ ((ν− 1) (3βν− 2γ) + 1)

∞∑

n=2

(ν+ n− 1)
mν(cm)n−1

Γ(n+ ν)

+(1− ν) (ν (β+ βν− γ) + 1))

∞∑

n=2

mν(cm)n−1

Γ(n+ ν)

]

=
1

Eν,c(m)

[

β

∞∑

n=2

mν(cm)n−1

Γ(n+ ν− 3)
+ (γ+ 3β (1− ν))

∞∑

n=2

mν(cm)n−1

Γ(n+ ν− 2)

+ ((ν− 1) (3βν− 2γ) + 1)

∞∑

n=2

mν(cm)n−1

Γ(n+ ν− 1)

+(1− ν) (ν (β+ βν− γ) + 1))

∞∑

n=2

mν(cm)n−1

Γ(n+ ν)

]

=
c

Eν,c(m)

[

βm

∞∑

n=0

mν(cm)n

Γ(n+ ν− 1)
+ (γ+ 3β (1− ν))m

∞∑

n=0

mν(cm)n

Γ(n+ ν)

+ ((ν− 1) (3βν− 2γ) + 1)m

∞∑

n=0

mν(cm)n

Γ(n+ ν+ 1)
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+(1− ν) (ν (β+ βν− γ) + 1)m

∞∑

n=0

mν(cm)n

Γ(n+ ν+ 2)

]

=
c

Eν,c(m)

[

βm3
Eν−2,c(m) + (γ+ 3β (1− ν))m2

Eν−1,c(m)

+ ((ν−1) (3βν−2γ)+1)mEν,c(m) + (1−ν) (ν (β+ βν− γ)+1)Eν+1,c(m)] ,

but this last expression is upper bounded by cos δ−α if and only if (14) holds.
(ii) If f ∈ K has the form (1), then the well-known inequality |an| ≤ 1 holds

for all n ≥ 2. Therefore, it is sufficient to show that

∞∑

n=2

n[n(n− 1)β+ (γ− 2β)n+ (1− γ+ 2β)]
mν(cm)n−1

Γ(n+ ν)

1

Eν,c(m)
≤ cos δ− α.

By a similar proof like those of Theorem 1, we get that Imν,cf ∈ Wδ(α, γ, β)

if (11) holds. �

Making use of Lemma 2, we prove the following result.

Theorem 3 Let ν > −1 and c > 0. If f ∈ Rτ(A,B) and the inequality

(A− B)c |τ|

Eν,c(m)

[

βm3
Eν−2,c(m) + (1− βν)Eν+1,c(m)

]

≤ cos δ− α. (17)

is satisfied then I
m
ν,cf ∈ Wδ(α, γ, β).

Proof. According to Lemma 1 it is sufficient to show that

∞∑

n=2

[n(n− 1)β+ (γ− 2β)n+ (1− γ+ 2β)]
mν(cm)n−1

Γ(n+ ν)Eν,c(m)
|an| ≤ cos δ− α.

Since f ∈ Rτ(A,B), using Lemma 2 we have

|an| ≤
(A− B) |τ|

n
, n ∈ N \ {1},

therefore

∞∑

n=2

([βn(n− 1) + (γ− 2β)n+ (1− γ+ 2β)]
mν(cm)n−1

Γ(n+ ν)Eν,c(m)
|an|

≤ (A− B) |τ|

[

∞∑

n=2

[

β(n− 1) + (γ− 2β) +
1

n
(1− γ+ 2β)

]

mν(cm)n−1

Γ(n+ ν)Eν,c(m)

]
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=
(A− B) |τ|

Eν,c(m)

[

β

∞∑

n=2

(ν+ n− 1)
mν(cm)n−1

Γ(n+ ν)
+ (γ− β(ν+ 2))

∞∑

n=2

mν(cm)n−1

Γ(n+ ν)

+(1− γ+ 2β)

∞∑

n=2

mν(cm)n−1

nΓ(n+ ν)

]

≤
(A− B) |τ|

Eν,c(m)

[

β

∞∑

n=2

(ν+ n− 1)
mν(cm)n−1

Γ(n+ ν)
+ (γ− β(ν+ 2))

∞∑

n=2

mν(cm)n−1

Γ(n+ ν)

+(1− γ+ 2β)

∞∑

n=2

mν(cm)n−1

Γ(n+ ν)

]

=
(A− B)c |τ|

Eν,c(m)

[

βm

∞∑

n=0

mν(cm)n

Γ(n+ ν− 1)
+ (1− βν)m

∞∑

n=0

mν(cm)n

Γ(n+ ν+ 2)

]

=
(A− B)c |τ|

Eν,c(m)

[

βm3
Eν−2,c(m) + (1− βν)Eν+1,c(m)

]

.

But this last expression is upper bounded by cos δ − α if (17) holds, which
completes our proof. �

5 An integral operator

Theorem 4 Let ν > −1 and c > 0. If integral operator G
m
ν,c is given by

G
m
ν,c(z) :=

∫ z

0

K
m
ν,c(t)

t
dt, z ∈ U, (18)

then G
m
ν,c ∈ Wδ(α, γ, β), if and only if

c

Eν,c(m)

[

βm3
Eν−2,c(m) + (1− βν)Eν+1,c(m)

]

≤ cos δ− α. (19)

Proof. According to (8) it follows that

G
m
ν,c(z) = z−

∞∑

n=2

mν(cm)n−1

Γ(n+ ν)Eν,c(m)

zn

n
, z ∈ U.

Using Lemma 1, the function G
m
ν,c(z) belongs to Wδ(α, γ, β) if and only if

∞∑

n=2

[n(n− 1)β+ (γ− 2β)n+ (1− γ+ 2β)]
1

n

mν(cm)n−1

Γ(n+ ν)Eν,c(m)
≤ cos δ− α.

By a similar proof like those of Theorem 3 we get that G
m
ν,c ∈ Wδ(α, γ, β)

if and only if (19) holds. �
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6 Corollaries and consequences

By specializing the parameter β = 0 in Theorems 1-4,we obtain the following
special cases for the subclass QT γ(α) := Qγ(α) ∩ To .

Corollary 1 Let ν > −1 and c > 0. Then K
m
ν,c ∈ QT γ(α) if and only if

c

Eν,c(m)
[γmEν,c(m) + (1− νγ)Eν+1,c(m)] ≤ cos δ− α. (20)

Corollary 2 Let ν > −1 and c > 0.

(i) If f ∈ S∗ and the inequality

c

Eν,c(m)

[

γm2
Eν−1,c(m) + (1− (2γν− 1))mEν,c(m)

+ (1− νγ(1− ν))Eν+1,c(m)

]

≤ cos δ− α.

(21)

is satisfied then I
m
ν,cf ∈ QT γ(α).

(ii) If f ∈ K and the inequality (20) is satisfied then I
m
ν,cf ∈ QT γ(α).

Corollary 3 Let ν > −1 and c > 0. If f ∈ Rτ(A,B) and the inequality

(A− B)c |τ|Eν+1,c(m)

Eν,c(m)
≤ cos δ− α. (22)

is satisfied then Im
q f ∈ QT γ(α).

Corollary 4 Let ν > −1 and c > 0. If the function G
m
ν,c is given by (18),

then G
m
ν,c ∈ QT γ(α) if and only if

cEν+1,c(m)

Eν,c(m)
≤ cos δ− α. (23)

Remark 2 If we put ν = 0 and c = 1 in Theorems 1-4, then we obtain the
corresponding results of Poisson distribution series.

Remark 3 Specializing the parameter β and γ we can state various interest-
ing inclusion results (as proved in above theorems) for the subclasses S(δ, α)

and T (δ, α) as stated in Remark 1.
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7 Conclusions

In the present paper, we find a necessary and sufficient condition for Miller-
Ross-type Poisson distribution series to be in the class Wδ(α, γ, β) of analytic
functions with negative coefficients. Also, we investigate several inclusion prop-
erties of the classes S∗, K and Rτ(A,B) associated of the operator Imν,c defined
by Miller-Ross-type Poisson distribution. Some interesting corollaries and ap-
plications of the results are also discussed. Making use of Miller-Ross-type
Poisson distribution series (7) could inspire researchers to find new necessary
and sufficient conditions and inclusion relations for this distribution series to
be in different subclasses of analytic functions with negative coefficients de-
fined in the open unit disk U.
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