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Abstract. Let S denote the class of functions f which are analytic
and univalent in the unit disk D = {z : |z| < 1} and normalized with
f(z) = z+

∑∞
n=2 anz

n. Using a method based on Grusky coefficients we
study two problems over the class S: estimate of the fourth logarithmic
coefficient and upper bound of the coefficient difference |a5|− |a4|.

1 Introduction and definitions

Let A be the class of functions f which are analytic in the open unit disc
D = {z : |z| < 1} of the form

f(z) = z+ a2z
2 + a3z

3 + · · · , (1)

and let S be the subclass of A consisting of functions that are univalent in D.
For f ∈ S the logarithmic coefficients, γn, are defined by

log
f(z)

z
= 2

∞∑
n=1

γnz
n. (2)
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Relatively little exact information is known about these coefficients. The nat-
ural conjecture |γn| ≤ 1/n, inspired by the Koebe function (whose logarithmic
coefficients are 1/n) is false even in order of magnitude (see Duren [2, Section
8.1]). For the class S the sharp estimates of single logarithmic coefficients are
known only for γ1 and γ2, namely,

|γ1| ≤ 1 and |γ2| ≤
1

2
+
1

e
= 0.635 . . . ,

and are unknown for n ≥ 3. In [7] the authors gave the estimate |γ3| ≤
0.5566178 . . . for the class S. In this paper for the same class we give the
estimation |γ4| ≤ 0.51059 . . .. For the subclasses of univalent functions the
situation is not a great deal better. Only the estimates of the initial logarithmic
coefficients are available. For details see [1].
Another problem is finding sharp upper and lower bounds of the coefficient

difference |an+1| − |an| over the class of univalent functions. Since the Keobe
function has coefficients an = n, it is natural to conjecture that ||an+1|−|an|| ≤
1. But this is false even when n = 2, due to Fekete and Szegö ([3]) who obtained
the sharp bounds

−1 ≤ |a3|− |a2| ≤
3

4
+ e−λ0(2e−λ0 − 1) = 1.029 . . . ,

where λ0 is the unique solution of the equation 4λ = eλ on the interval (0, 1).
Hayman in [4] showed that if f ∈ S, then ||an+1| − |an|| ≤ C, where C is an
absolute constant and the best estimate of C is 3.61 . . . ([5]). In the case when
n = 3 in [7], the authors improved this to 1.751853 . . .. In this paper we also
consider the difference |a5|− |a4|.
For the study of the problems defined above we will use method based on

Grunsky coefficients. In the proofs we will use mainly the notations and results
given in the book of N. A. Lebedev ([6]).
Here are basic definitions and results.
Let f ∈ S and let

log
f(t) − f(z)

t− z
=

∞∑
p,q=0

ωp,qt
pzq,

where ωp,q are so called Grunsky’s coefficients with property ωp,q = ωq,p.
For those coefficients we have the next Grunsky’s inequality ([2, 6]):

∞∑
q=1

q

∣∣∣∣∣∣
∞∑
p=1

ωp,qxp

∣∣∣∣∣∣
2

≤
∞∑
p=1

|xp|
2

p
, (3)
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where xp are arbitrary complex numbers such that last series converges.
Further, it is well-known that if f given by (1) belongs to S, then also

f2(z) =
√
f(z2) = z+ c3z

3 + c5z
5 + · · · (4)

belongs to the class S. So, for the function f2 we have the appropriate Grun-

sky’s coefficients of the form ω
(2)
2p−1,2q−1 and inequality (3) reaches the form:

∞∑
q=1

(2q− 1)

∣∣∣∣∣∣
∞∑
p=1

ω2p−1,2q−1x2p−1

∣∣∣∣∣∣
2

≤
∞∑
p=1

|x2p−1|
2

2p− 1
. (5)

Here, and further in the paper we omit the upper index ”(2)” in ω
(2)
2p−1,2q−1

if compared with Lebedev’s notation.
From inequality (5), when x2p−1 = 0 and p = 3, 4, . . ., we have

|ω11x1 +ω31x3|
2 + 3|ω13x1 +ω33x3|

2 + 5|ω15x1 +ω35x3|
2

+ 7|ω17x1 +ω37x3|
2 ≤ |x1|

2 +
|x3|

2

3
.

(6)

As it has been shown in [6, p.57], if f is given by (1) then the coefficients
a2, a3, a4 and a5 are expressed by Grunsky’s coefficients ω2p−1,2q−1 of the
function f2 given by (4) in the following way:

a2 = 2ω11,

a3 = 2ω13 + 3ω
2
11,

a4 = 2ω33 + 8ω11ω13 +
10

3
ω311,

a5 = 2ω35 + 8ω11ω33 + 5ω
2
13 + 18ω

2
11ω13 +

7

3
ω411,

0 = 3ω15 − 3ω11ω13 +ω
3
11 − 3ω33,

0 = ω17 −ω35 −ω11ω33 −ω
2
13 +

1

3
ω411.

(7)

We note that in the cited book of Lebedev there is a typing mistake for the
coefficient a5. Namely, instead of the term 5ω213 there stays 5ω215.

We now give upper bound of the fourth logarithmic coefficient over the
class S.
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Theorem 1 Let f ∈ S and be given by (1). Then

|γ4| ≤ 0.51059 . . . .

Proof. From (1) and (2), after differentiating and comparing coefficients, we
receive

γ4 =
1

2

(
a5 − a2a4 −

1

2
a23 + a

2
2a3 −

1

4
a42

)
,

or by using the relation (7):

γ4 =
1

2

(
2ω35 + 3ω

2
13 + 4ω11ω33 + 4ω

2
11ω13 −

5

6
ω411

)
. (8)

If we combine the two last relations from (7), then we have

ω33 = ω15 −ω11ω13 +
1

3
ω311 (9)

and

ω35 = ω17 −ω11ω33 −ω
2
13 +

1

3
ω411 = ω17 −ω11ω15 +ω

2
11ω13 −ω

2
13. (10)

Using the relations (8), (9)and (10), after some calculations, we get

γ4 = ω17 +ω11ω15 +ω
2
11ω13 +

1

2
ω213 +

1

4
ω411.

Therefore,

|γ4| ≤ |ω17|+ |ω11||ω15|+ |ω11|
2|ω13|+

1

2
|ω13|

2 +
1

4
|ω11|

4

:= φ(|ω11|, |ω13|, |ω15|, |ω17|).
(11)

Now, choosing x1 = 1 and x3 = 0 in (6) we receive

|ω11|
2 + 3|ω13|

2 + 5|ω15|
2 + 7|ω17|

2 ≤ 1,

and also

|ω11| ≤ 1, |ω11|
2 + 3|ω13|

2 ≤ 1, |ω11|
2 + 3|ω13|

2 + 5|ω15|
2 ≤ 1.
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The above inequalities imply

|ω13| ≤
1√
3

√
1− |ω11|2 ,

|ω15| ≤
1√
5

√
1− |ω11|2 − 3|ω13|2 ,

|ω17| ≤
1√
7

√
1− |ω11|2 − 3|ω13|2 − 5|ω15|2 .

(12)

Using (11) and (12) we conclude that it remains to find maxφ1, where

φ1(x, y, z, t) =
1

4
x4 +

1

2
y2 + x2y+ xz+ t,

where (x, y, z, t) is in the four dimensional hypercube Ω described with

0 ≤ x = |ω11| ≤ 1,

0 ≤ y = |ω13| ≤
1√
3

√
1− x2,

0 ≤ z = |ω15| ≤
1√
5

√
1− x2 − 3y2,

0 ≤ t = |ω17| ≤
1√
7

√
1− x2 − 3y2 − 5z2.

(13)

Since φ1 is an increasing function of t on the interval (0,+∞), we realize
that it reaches its maximal value for t = t0 =

1√
7

√
1− x2 − 3y2 − 5z2, i.e.,

max{φ1(x, y, z, t) : (x, y, z, t) ∈ Ω} = max{ψ1(x, y, z) : (x, y, z) ∈ Ω1},

where ψ1(x, y, z) ≡ φ1(x, y, z, t0) and

Ω1 =

{
(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1√

3

√
1− x2, 0 ≤ z ≤ 1√

5

√
1− x2 − 3y2

}
.

The system of equations

∂ψ1
∂x

= x3 + 2xy+ z−
x/

√
7√

1− x2 − 3y2 − 5z2
= 0

∂ψ1
∂y

= x2 + y−
3y/

√
7√

1− x2 − 3y2 − 5z2
= 0

∂ψ1
∂z

= x−
5z/

√
7√

1− x2 − 3y2 − 5z2
= 0



Two applications of Grunsky coefficients 309

in the interior of Ω1, has a unique solution,

x0 = 0.81907 . . . , y0 = 0.233235 . . . , z0 = 0.126778 . . . ,

(obtained with Wolfram’s Mathematica) with ψ1(x0, y0, z0, t0) = ψ1(x0, y0, z0)
= 0.51059 . . . which will turn out to be the maximal value of φ1 on Ω and an
upper bound for |γ4|.
Now we will study the behaviour of ψ1 on the boundaries of Ω1.

For x = 0, we have that ψ1(0, y, z) =
1
2y
2 + 1√

7

√
1− 3y2 − 5z2 for 0 ≤ y ≤

1√
3
and 0 ≤ z ≤ 1√

5

√
1− 3y2 has maximal value 1√

7
= 0.37796 . . . attained

when y = z = 0.
Next, for x = 1, we have necessarily y = z = 0, which leads to a maximal

value ψ1(1, 0, 0) = 1/4 = 0.25.

For the case y = 0, we have ψ1(x, 0, z) =
1
4x
4 + xz+ 1√

7

√
1− x2 − 5z2, with

0 ≤ x ≤ 1 and 0 ≤ z ≤ 1√
5

√
1− x2. Further, for the solution (x1, z1) of the

system of equations

∂ψ1(x1, 0, z1)

∂x
= x31 + z1 −

x1/
√
7√

−x21 − 5z
2
1 + 1

= 0

∂ψ1(x1, 0, z1)

∂z
= x1 −

5z1/
√
7√

−x21 − 5z
2
1 + 1

= 0

,

we have
−5z21 − 5x

3
1z1 + x

2
1 = 0,

leading further to

z1 =
1

10

(
−5x31 +

√
5

√
5x61 + 4x

2
1

)
.

Finally,

ψ1(x, 0, z) ≤ ψ(x1, 0, z1)

= −
x41
4

+
1

2

√
x61 +

4x21
5
x1 +

1√
14

[√(
−5x41 +

√
5

√
x21
(
5x41 + 4

)
x1 − 4

)
x21 + 2

]
By the means of calculus of real functions of one real variables, one can
verify that the last function attains its maximum for x = 0.80210 . . . and
z = 0.183847 . . ., and that maximum is 0.414666 . . ..
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The case y = 1√
3

√
1− x2, leads to z = 0, and further to the function

ψ1

(
x,
1√
3

√
1− x2, 0

)
=
x4

4
+
x2
√
1− x2√
3

+
1

6

(
1− x2

)
with maximum 0.4000 . . . for x = 0.8874 . . . and y = 0.2661 . . ..

For z = 0, we have ψ1(x, y, 0) = x4

4 + x2y + y2

2 + 1√
7

√
−x2 − 3y2 + 1 and

working in the similar way as in the case y = 0, we receive its maximum on
0 ≤ x ≤ 1 and 0 ≤ y ≤ 1√

3

√
1− x2 to be 0.4561 . . . for x = 0.8358 . . . and

y = 0.2619 . . ..

Finally, in a similar way as before, for the case z = 1√
5

√
1− x2 − 3y2, by

means of calculus, we can verify that the maximal value is 0.4570 . . . obtained
for x = 0.864969 . . . and y = 0.239789 . . .. □

We now give upper bound of |a5|− |a4| over the class S.

Theorem 2 Let f ∈ S and be given by (1). Then

|a5|− |a4| ≤ 2.3297 . . . .

Proof. Since

|a5|− |a4| ≤ |a5|− |ω11||a4| ≤ |a5 −ω11a4|

=
∣∣∣2ω35 + 6ω11ω33 + 10ω211ω13 + 5ω213 −ω411∣∣∣,

after applying (9) and (10), and some calculations, we have

|a5|− |a4| ≤
∣∣∣2ω17 + 4ω11ω15 + 6ω211ω13 + 3ω213 +ω411∣∣∣

≤ 2|ω17|+ 4|ω11||ω15|+ 6|ω11|2|ω13|+ 3|ω13|2 + |ω11|
4

:= φ2(|ω11|, |ω13|, |ω15|, |ω17|),

where

φ2(x, y, z, t) = x
4 + 3y2 + 6x2y+ 4xz+ 2t,

with x, y, z, t, as well as their domain Ω, are given in (13) from the previous
theorem.
Now, in a similar way as in the proof of the previous theorem we will find

the maximal value of the function ψ2 over the domain Ω.
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The function φ2 is an increasing one over the variable t, and therefore it
reaches its maximal value for t = t0 = 1√

7

√
1− x2 − 3y2 − 5z2. Using the

notations

ψ2(x, y, z) ≡ φ2(x, y, z, t0) = x4+ 6x2y+ 4xz+ 3y2+
2
√
−x2 − 3y2 − 5z2 + 1√

7
,

and Ω1 as in the Theorem 1, again using Wolfram’s Mathematica we obtain
that the system of equations

∂ψ2
∂x

= 4x3 + 12xy+ 4z−
2x

√
7
√
1− x2 − 3y2 − 5z2

= 0

∂ψ2
∂y

= 6x2 + y

(
6−

6
√
7
√
1− x2 − 3y2 − 5z2

)
= 0

∂ψ2
∂z

= 4x−
10z

√
7
√
1− x2 − 3y2 − 5z2

= 0

,

in the interior of Ω1 has a unique solution,

x0 = 0.82745 . . . , y0 = 0.29092 . . . , z0 = 0.098698 . . . . . . ,

such that φ2(x0, y0, z0, t0) = ψ2(x0, y0, z0) = 2.3297 . . .. At the end, this will
turn out to be the maximal value of ψ2 on Ω1 and upper bound of |a5|− |a4|.
Now we will study the behaviour of ψ2 on the boundaries of Ω1.

For x = 0, we receive ψ2(0, y, z) = 3y2 +
2
√

−3y2−5z2+1√
7

which is a decreas-

ing function of z (since z is positive), thus with the same maximal value

as ψ2(0, y, 0) = 3y2 +
2
√
1−3y2√
7

which turns out to be 1.142857 . . . for y =

0.5345 . . ..
If x = 1, then necessarily y = z = 0, and ψ2(1, 0, 0) = 1.

For y = 0, we have ψ2(x, 0, z) = x
4 + 4xz+ 2

√
1−x2−5z2√

7
which can be shown

to have no critical points in the interior of{
(x, z) : 0 ≤ x ≤ 1, 0 ≤ z ≤ 1√

5

√
1− x2

}
,

and a maximal value 1.3614 . . . obtained for x1 = 0.9181 . . . and z1 =
1√
5

√
1− x21

= 0.1772 . . ..
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For the case y∗ = 1√
3

√
1− x2, we have z = 0, and further, the function

ψ2 (x, y
∗, 0) = x4 +

(
2
√
3− 3x2 − 1

)
x2 + 1

has maximal value 2.118588 . . . for x = 0.8427 . . ..
Next, for z = 0 we receive

ψ2(x, y, 0) = x
4 + 6x2y+ 3y2 +

2
√
−x2 − 3y2 + 1√

7
,

with a critical point (x2, y2) (x = 0.83589 . . . and y = 0.3097 . . .) in the interior
of {

(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1√
3

√
1− x2

}
,

such that ψ2(x2, y2, 0) = 2.162 . . .. The boundaries of the above domain are
already discussed above.

Finally, if z∗ = 1√
5

√
−x2 − 3y2 + 1, one can verify that the function

ψ2(x, y, z) = x
4 + 6x2y+ 3y2 +

4x
√
−x2 − 3y2 + 1√

5
,

has critical point (x3, y3) with x3 = 0.8338 . . . and y3 = 0.2921 . . ., such that
ψ2(x3, y3, z

∗) = 2.287 . . ..
All the above analysis brings us to the final conclusion that ψ2 on Ω1 has

a maximal value 2.3297 . . . obtained for x = x0, y = y0 and z = z0. □
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