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Abstract. In this paper, we have found the automorphism group of the
Zappa-Szép product of two groups fixing a subgroup. We have computed
these automorphisms for a subgroup of order p? of a group G which is
the Zappa-Szép product of two cyclic groups in which one is of order p?
and other is of order m.

1 Introduction

G. Zappa in [10], introduced the general product of two groups called the
Zappa-Szép product. J. Szép studied such products in the series of papers
(few of them are [6, 4, 5, 7]). Let H and K be two subgroups of a group G.
Then G is called Zappa-Szép product of H and K if G = HK and HN K = {1}
and is written as G = H 0 K. Moreover, any element g € G can be uniquely
expressed as g = hk, where h € H and k € K. So, for kh € G, we must have
elements o(k,h) € H and 8(k,h) € K such that kh = o(k,h)0(k, h). Thus we
have matched pair of maps 0 : KxH — H and 0 : K x H — K defined by
o(k,h) = k-h and 0(k, h) = k"* and satisfies the following conditions (See [2])

(C1) T-h=h and k! =X,
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(C2) k-1=1=1",
(C3) kK -h=k- (K -h),

(C4) (kKM =KK™,
(C5) k- (hh') = (k-h)(k"-h),
(C6) kMM = (kMM

for all h,h’ € H and k, k' € K.

The automorphisms of the Zappa-Szép product of two groups is studied in
[3] as the 2 x 2 matrices of maps satisfying some certain conditions. The
terminology used in this paper is same as in [3]. In this paper, we have found
the automorphism group of the Zappa-Szép product fixing the subgroup H as
the 2x 2 matrices of maps satisfying some certain conditions. As an application,
we have computed the automorphism group fixing a subgroup of order p? of
a group G which is the Zappa-Szép product of two cyclic groups in which one
is of order p? and other is of order m. Throughout the paper, Z,, denotes the
cyclic group of order n and U(n) denotes the group of units of (mod n). Also,
Auty(G) ={¢ € Aut(G) | $(H) = H} denotes the group of all automorphisms
of a group G fixing the subgroup H. Let a group U acts on a group V, then
Staby (V) denotes the stabilizer of V in U.

2 Structure of automorphism group, Auty(G)

Let G = H 1 K be the Zappa-Szép product of two groups H and K. Let U,V
and W be any groups. Map(U, V) denotes the set of all maps between the
groups U and V. If ¢, € Map(U,V) and n € Map(V, W), then ¢ +1 €
Map (U, V) is defined by (¢+1)(u) = d(w)b(u), nd € Map(U, W) is defined
by no(u) =n($(u)), - € Map(U, V) is defined by ¢ - p(u) = ¢(u) - (u)
and ¢¥ € Map(U,V) is defined by ¢¥ (1) = dp(u)*™, for all u € U.

Now, consider the set,

A — x p |cx€Aut(H), B € Map(K,H),
=\o0 5 and § € Map(K,K) [’

where o, 3 and & satisfy the following conditions,

(A1) B(kk') = B(k)(8(k) - B(K')),
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(A2) 8(kk') = 5(k)PKI§(K),

(A3) B(K)(8(k) - a(h)) = (k- h)B(k"),
(A4) 8(k)*W = §(kM),

(A5) For any h'k/ € G, there exists a unique h € H and k € K such that
h' = a(h)B (k) and k" = 5(k).

Then, the set Ay forms a group with the binary operation as the usual mul-
tiplication of matrices defined by

of B (v B\ [(dax B+ P’S
0 &/J\0 &) \ O '8 ’
Clearly, Auty(K) is a subgroup of Aut(G).

Theorem 1 Let G = H = K be the Zappa-Szép product of two groups H
and K, and Ay be as above. Then there is an isomorphism of groups between
Auty(G) and Ay given by 0 «— (?)( E), where O(h) = «(h) and 6(k) =
B(k)d(k), for allh € H and k € K.

Proof.

Let 6 € Auty(G) be defined by 0(h) = «(h) and 6(k) = B(k)d(k), for all
h € H and k € K. Then o = 0|y, so « € Aut(H). Now, for all k,k’ € K,
B(kk') = 0(k)8(K) = (B(k)8(k))(B(K)5(K)) = B(k)(5(k) - B(K))5(k)PII5(K!).
Thus, B(kk')5(kk') = B(k)(8(k)-B(K')) &(k)PKI§(Kk’). Therefore, by uniqueness
of representation, we have (A1) and (A2).

Now, 0(kh) = 0((k - h)(k")) = 08(k - h)8(k") = a(k - h)B(k™)&(kM). Also,
6(kh) = 6(k)6(h) = B(k)5(K)a(h) = B(k)(8(k) - er(h))5(k)*M). Therefore,
by the uniqueness, B(k)(5(k) - a(h)) = «(k - h)B(kM)) and 5(k)*M = 5(kM),
which proves (A3) and (A4). Finally, (A5) holds because 0 is onto. Thus, to

)

every 0 € Auty(G) we can associate the matrix (g S) € Ay. This defines
0 b 0 &

An satisfying the conditions (A1) — (A5), then we associate to it, the map

0 : G — G defined by 6(h) = «(h) and 0(k) = B(k)d(k), for all h € H and

k € K. Using (A1)—(A4), one can check that 0 is an endomorphism of G. Also,

by (A5), the map 0 is onto. Now, let hk € ker(0). Then 6(hk) = 1. Therefore,

a map T : Auty(G) — Ay given by 6 — <oc B) Now, if ( B) €
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a(h)B(k)d(k) = 1 and so, by the uniqueness of representation «(h)p(k) = 1
and 8(k) = 1. By (A5), 8 is a bijection and so, k = 1. Thus using [3, Proposition
2.1, p. 3], B(k) = 1 which further implies that «(h) = 1. Again, by (A5), «
is a bijection so, h = 1. Therefore, h = 1 = k and so, ker(6) = {1}. Thus, 6
is one-one and hence, © € Auty(G). Thus, T is a bijection. Let «, f and &
be the maps associated with 0 and o, B’ and & be the maps associated with
0. Now, for all h € H and k € K, we have 0/0(h) = o/ x(h) and 0'0(k) =
0'(B(k)d(k)) = o (B(Kk))B'(8(k))d"(8(k)) = (o'P + B’8) (k)& (5(k)).

/
Therefore, if we write hk as (:), then 0'0(h) = <oc “) <h> and 0'0(k) =

0 1
B+ RO\ /(1 , (. B+Pd\(h ,
< 55 ) (k) Thus, 0'0(hk) = 0 55 ) Therefore, T(0'0)
!/ !/ /
= <(X0(x x [55—"—6[5 6) =T(0)T(0). Hence, T is an isomorphism of groups. [

From here on, we will identify the automorphisms of G fixing the subgroup H
with the matrices in Ay. Now, we have the following remarks,

(1) (g ?) € Ay if and only if « € Aut(H), k- x(h) = a(k - h) and

kM = kM for all h € H and k € K.

(ii) ((1) ‘]5) € Ay if and only if B(kk') = B(k)(k- B(K')), k = kPK) B(k) =

B (kM) for all h € H and k € K.

(ii) (]) g) € Ay if and only if & € Aut(K), §(k) - h = k- h, (k)" = 5(kM)

for all h € H and k € K.

(iv) (g g) € Ay if and only if « € Aut(H), & € Aut(K), 8(k) - a(h) =

a(k - h), and §(k)*M = 5(kM) for all h € H and k € K.
Let

P ={a € Aut(H) | k- a(h) = a(k - h) and k*M = kM,

Q ={p € Map(K,H) | B(kK') = B(k) (k- B(K)),k = kP (k) = B (kM)
S =[5 € Aut(K) | 5(k)-h=k-h,5(k)" = 6&(k™)},

X ={(«,8) € Aut(H) x Aut(K) | §(k) - «(h) = a(k - h), 5(k)*™ = §(k™)},
Y ={(B,8) € Map(K,H) x Map(K,K) | B(kk') = B(k)(5(k) - B(K)),



292 V. Kakkar, R. Lal

§(kK') = 8(k)PII3(K'), B(K)(8(k) - h) = (k- h)B(KM), §(k)" = (k™))

Then one can easily check that P, S, X and Y are all subgroups of the group
Auty(G). But Q need not be subgroup of the group Auty(G). However, if H
is abelian, then Q is subgroups of Auty(G). Also, note that P x S < X. Let

{5 fer)s w={( Hnea)
o= (s Dses)y {5 e

B
F_{<O 6)|(B,6)ev}.

be the corresponding subsets of Ay. Then one can easily check that A, D, E
and F are subgroups of Ay, and if H is abelian group, then B is also a subgroup
of Ay.

Theorem 2 If either P = Aut(H) or S = Aut(K), then X = P x S. Equiva-
lently, E = A x D.

Proof. Let («,8) € X. Then (k) - a(h) = at(k - h) and 5(k)*™ = §(k"). Now,
if P = Aut(H), then k- a(h) = a(k-h). Therefore, using d(k) - a(h) = a(k-h),
we get 8(k) - a(h) = k - a(h). Also, since P = Aut(H), k¥ = kM. So, using
5(k)*M = §(kM), we get 5(kM) = 5(k)*™ = §(k)". Thus, § € S and so,
(x,8) € P x S. Hence, X = P x S. By the similar argument, if S = Aut(K),
then X =P x S. O

Theorem 3 Let <g E) € An. If B € Q, then Auty(G) ~ B x E.

T B a 0
Proof. Let <O 1) € B and <O 5> € E. Then

a 0\ (1 B [« O\ ' (1 aps
(o 6)(0 1)<o 5) _<o 1 ) 1)
Now, for all h € H and k, k' € K,
aBS(kK) = o (87 (k)8 (K)) = «(B(§7 (k))(57' (k) - B8 (K))))
= a(B(57" (k)57 (k) - B&(K))
=afd ' (k)(5(67" (k) - a(BS(K)))
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=aB& (k) (k- apd ' (K)).

Also, one can easily observe that kB8 1K) — K and afd N (KY) = aps (k).
Thus, apd~' € Q. Therefore, by the Equation (1), we get

EOCDEE -6

Thus, B < Ay. Clearly, BNE ={1}. If <(x B) € Ay, then

0 6
x B\ (a0 1 oc_1[3
<o 5)‘(0 5)(0 1 >€EB'
Hence, A4 = B % E and so, Auty(G) ~ B x E. O

3 Auty(G) of Zappa-Szép product of groups Z4 and Z,

In [8], Yacoub classified the groups which are Zappa-Szép product of cyclic
groups of order 4 and order m. He found that these are of the following type
(see [8, Conclusion, p. 126])

L1 =(a,b|a™=1= b*, ab =ba", 7 =1 (mod m)),

L, =(a,b|a™=1=b"ab=ba’" a’b = ba®),
where in L, m is even. These are not non-isomorphic classes. The group L;
may be isomorphic to the group L, depending on the values of m,r and t (see
[8, Theorem 5, p. 126]). Clearly, L; is a semidirect product. Throughout this
section G will denote the group L; and we will be only concerned about groups
L, which are Zappa-Szép product but not the semidirect product. Note that
G = Hx K, where H = (b) and K = (a). For the group G, the mutual actions

of H and K are defined by a-b = b3, a® = a?*! along with a?-b = b and
(a?)? = a®, where t and s are the integers satisfying the conditions

(G1) 252 =2 (mod m),

(G2) 4t(s+1) =0 (mod m),

(G3) 2(t+1)(s—1) =0 (mod m),
(G4) ged(s, D) =1.
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Now, one can easily observe that for the given group G, k- a(h) = a(k - h),
B(k) = B(k"), 8(k) - h =%k-h, §(k) - a(h) = x(k - h) and B(k)(8(k) - a(h)) =
ok - h)B (kM) always holds for all x € P, B € Q, 6 € S, («,8) € X, and
(B,d) € Y respectively. Thus the subgroups P, Q, S, X, and Y reduces to the
following,

P ={a € Aut(H) | k*™ = k",

Q =(p € Hom(K,H) | k = kP*)} = Hom(K, Staby(K)),

S =(6 € Aut(K) | (k)" = 5(kM)},

X ={(e, 8) € Aut(H) x Aut(K) | §(k)*M = §(kM)},

Y ={(B,5) € Map(K,H) x Map(K,K) | B(kk’) = B(k)(5(k) - B(k")),
§(kk') = 8(k)PXI5(K), 8(k)*M = 5(k")}.

Now, we will find the structure of the automorphism group Auty(G). For this,
we will proceed by first taking t to be such that ged(t,m) = 1 and then by
taking t such that ged(t,m) = d, where d > 1.

Theorem 4 Let 4 divides m and t be odd such that ged(t,m) =1. Then

_ Zax(Zy xU(m)), ifse{F—-1,m—1}
A“tH(G)—{ Zy x U(m), ifse{™—1,3m 1} -
Proof. Let gcd(t,m) = 1. Then, using (G2), we get, s = —1 (mod %) which
implies that s € {7 — 1,7 — 1,3Tm — 1,m — 1}. Now, using (G3), we get
=—1(mod B). Then t € {ZF — 1,3 — 1,2 — 1 m—1}.

Let («,8) € X be such that «(b) = b', and &(a) = a’, where i € {1,3}
and v € U(m). Then, using §(a)*®) = §(a?), a7 = §(a?*!) = §(ab) =
§(a)*(®) = (ar)bi — 2tHIHDs T2t Thys

(r—])(2t+1—s)z%2t(s+1) (mod m). (2)
If s € {% —1,m — 1}, then the Equation (2) holds for all values of t and r. If
se{y—1, 371“ — 1}, then the Equation (2) holds for all t and v =1 (mod 4).
Thus, the choices for the maps « and 6 are, o;(b) = b* and 6,(a) = a", for all
ie{l,3}and r € U(m). So, X ~ AxD ~ Z xU(m). Now, if s € {F =1, m—1},
then 2t(s+1) = 0 (mod m). Therefore, using [3, Lemma 3.3, p. 9], Im(B) = {b?}
and so, B ~ 7. If s € {F — 1, 371“ — 1}, then 2t(s+ 1) #Z 0 (mod m). Therefore,



Automorphisms of Zappa-Szép product 295

using [3, Lemma 3.3, p. 9], Im(B) = {1} and so, B is a trivial group. Hence, by
the Theorem 3,

Zy » (Zy x U(m)), ifse{F —1,m~—1}

AutH(G):BNEQ{szU(m), ifse{%—L%“—]} ’

0

Theorem 5 Let m = 2q, where q > 1 is odd and ged(t,m) = 1. Then,
Auty(G) = Zy x (Zy; x U(m)).

Proof. Using (G1),(G2), and (G3), we get s,t € {3 — T, m — 1}. Then, the
result follows on the lines of the proof of the Theorem 4. O

Theorem 6 Let m =2™, n > 3 and t be even. Then

Auty(G) ~ { (Zg X (Zy X Zgn—2)) X Za, if 2t(s+1) =0 (mod 2™)

T\ Zy X (Zy x (Zy X Zyn-—2)), if2t(s+1) #0 (mod 2M)
Proof. Let t be even. Then 2(t + 1)(s — 1) = 0 (mod 2™) implies that s =
1 (mod 2™ 1). Therefore, s = 1,21 +1. Now, 4t(s+1) = 0 (mod 2") implies
that t = 0 (mod 2"3). Therefore, by the defining relations of the group G,
t e {2n3,2n2 3.3 on-l 5.gn=3 3. on=2 7.9n=3 om) Note that, for t = 27!
or t =2", G is the semidirect product of H and K. So, we consider the other
values of t.

Case(i). Let t € {22,3.2"2}. Then, one can easily observe that 2t(s +1) =
0 (mod 2"). Therefore, for all « € P, (a')*?) = (al)b" = @2+l = o241 = (al)b.
Thus, P ~ A ~ Z,. Now, let (B,8) € Y be such that f(a) =b), and §(a) = a’,
where 0 < j <3 and 0 < r < 2™ —1 and r is odd. Using [3, Lemma 3.2
(ii), p. 7], B(kK) = B(k)(d(k) - B(K)) holds, for all k,k" € K. Now, using
§(kK') = 8(k)PKI§(K'), we get

5(al) — { a0+ i 1 is odd

al0tm), if lis even ~

(3)
Finally, using (k") = 5(k)", a?™" = (a")® = §(a)® = §(ab) = 5(a’t") =
a?tOtmT — g2tri, Thus, 2t(r—1) = 0 (mod 2™) which is true for all r € U(2™).
So, Y = B x D = Zy x (Z X Zyn 2). Now, let (g‘ ?) € A and (g E) cF
Then
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GG -6 )

Thus F < Ay. Clearly, ANF ={1}. Also, if <(())( E) € Ay, then

(6 8)=( D))

Hence, Ay =F x A and so, Auty(G) ~ F x A ~ (Zg ¥ (Zy X Zym-—2)) X Z;.

Case(ii). Let t € {23,3.2n3,5.2n3 7.27=3} Then, one can easily observe
that 2t(s +1) £ 0 (mod 2™). Let (e, 3,0) € Auty(G) be such that «(b) =
b, B(a) =b), and 8(a) = a”, wherei € {1,3},0<j<3,0<r<2"—Tandr
is odd. Using [3, Lemma 3.2 (ii), p. 7], B(kk’) = B(k)(8(k)-B (k")) holds, for all
k,k’ € K. Now, using (A5), for any bla' € G there is unique b/ € H such that
bl = a(b)B(a'). Note that, if x(b)) = bl, then f(al) =1 and if (b)) = b7,
then B(a') = b2 Thus, Im(B) = (b?).

Finally, using the definition of the map & in the Equation (3) and &(k") =
é(k)oc(h)’ we get ittt — (ar)bi _ 5(a)oc(b) _ 6(ab) _ 6(a2t+1) — q2tltdn)+r
Thus, 2t(jt +r—1) =0 (mod 2™) which implies that

i (mod 4), ifte{2n3,3.23,5.2037. 2" 3 andn > 5
i4+2j (mod 4), ifte{2n33.203 5.3 7. 2" 3 andn =4

T
T

Thus r = 1 (mod 4) and so, the choices for the maps « and & are, oy(b) = bt

and 6,(a) = a", where 1 € {1,3} and r € U(m). Note that, if (g E) € Ay,

then
o« B\ _ (o O\ (/1 a«'p
<o 5>_<o 5> <o ) €EB
Clearly, ENB = {1} and E normalizes B. So, B < Ay. Hence, A4 =B x E and

50, Auty(G) ~ B X E >~ Z) X (Zy X (Zy X Zyn-2)). ]

Now, we will discuss the structure of the automorphism group Auty(G) in the
case when ged(t,m) > 1.

Theorem 7 Let m = 4q, where q¢ > 1 is odd and gcd(t,m) = 2'd, where
1e€{0,1,2}, and d divides q. Then Auty(G) ~ Z; x (Z; x U(m)).
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Proof. Let q = du, for some integer u. Then, using (G2), s = —1 (mod u)
which implies that s = lu — 1, where 1 < 1 < 4d. Since, ged(s,3) = 1, s is
odd and so, 1 is even. Using (G1) and (G3), we get 1(u% —1) =0 (mod d)
and t+1= u% (mod q). Now, one can easily observe that ged(l,d) = 1 which
implies that uj —1 = 0 (mod d). Thus, 2t(s + 1) = 2ltu = 0 (mod m) and
ged(s +1,5%) # 1. Therefore, using [3, Lemma 3.3, p. 9], B ~ Z;.

Let (0, 8) € X be such that a(b) = b* and 8(a) = a”, where i € {1,3} and
r € U(m). Then, using 5(a)*® = §(aP) and the fact that 2t(s + 1) =
0 (mod m), we get a2V = §(a2*) = 5(ab) = 5(a)*®) = (a")P" =
Q2T+ 5512t (s 1) 2t+14+0—1)s Thus

(r—1)(s —2t—1) =0 (mod m). (4)

Since 2t(s + 1) = 0 (mod m), using (G3), we get 2(s —2t — 1) = 0 (mod m).
Therefore, the Equation (4) holds for all r € U(m). Thus, using the Theorem
2, X~ AxD ~Z; xU(m). Hence, using the Theorem 3, Auty(G) ¥ B X< E ~
Zoy % (Zy x U(m)). O

Theorem 8 Let m = 2q, where q > 1 is odd and ged(t,m) = 2'd, where
1e€{0,1}, and d divides q. Then Auty(G) ~ Z;y x (Z; x U(m)).

Proof. Follows on the lines of the proof of the Theorem 7. ([l

Theorem 9 Let m = 2"q, t be even and ged(m,t) = 2'd, where 1 <1i < mn,
n>3,q>1 and d divides q. Then

(Zg x U(m)) x Zy, ifd=q and2t(s+1) =0 (mod m)
Zy ¥ (Zy x U(m)), ifd=q and2t(s+ 1) # 0 (mod m)
Zy x (Zy xU(m)), ifd#qandn—2<i<n

Zy x U(m), ifd#qandi=n—3

Auty(G) ~

Proof. We consider the following four cases to find the structure of Auty(G).

Case(i): Let d = q and ged(t 4+ 1, m) = u. Since, t + 1 is odd, u is odd and
u divides q. Thus, u divides t and so, uw = 1. Therefore, using (G2) and (G3),

=1 (mod 3) and t = 0 (mod 7). By the similar argument used in the proof
of the Theorem 6 (i), we get,

(Zg x U(m)) X Zy, if2t(s+1) =0 (mod m)

AutnlG) = { Zy (23 x U(m)), i 2t(s +1) £ 0 (mod m)
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Case(ii): Let n —2 < i< nd # q and q = du, for some odd integer u.
Then using (G2), s = —1 (mod u) and so, s = lu— 1, where 0 < 1 < 2™d.
Since, ged(s, ) =1, s is odd and so, 1 is even. Now, using (G1), %(%u— 1) =
0 (mod 2™3d) and by (G3) t= }u—] (mod 2"2q). Since, t is even, % is odd
and gcd(%, d) = 1. Thus, u =1 (mod 2"3d) and t = 2'd (mod 2™ 2q). One
can easily observe that Zt(s 4+ 1) = 0 (mod m). Therefore, using the similar
argument as in the proof of the Theorem 4, we get, Auty(G) ~ B x E ~
Zz X (Zz X U(m))

Case(iii): Let i =n—3, d # q and q = du, for some odd integer u. Then using
(G2), s = —1 (mod 2u), that is, s = 2lu—1, where 1 < 1 < 2" 'd. Now, using
(G1) and (G3), l(lu—1) = 0 (mod 2" 3d) and (t+1)(lu—1) = 0 (mod 2™ 2q).
If 1is even, then t = lu— 1 (mod 2" 2q) gives that t is odd, which is a
contradiction. Therefore, 1is odd. Using (t+1)(lu—1) = 0 (mod 2™ 2q), one
can easily observe that gcd(l,d) = 1. Then, lu—1 =2"3dl’ and s = 2" 2dl' +
1, where 1 < 1 < 8u. Clearly, ged(l',u) = 1. Thus, (t+1)I' =0 (mod 2u). If
is odd, then (t+1) = 0 (mod 2u) which implies that t is odd. So, U is even and
so,t=uq’'—1,1<q < an]d q’ is odd as t is even. Note that s —2t —1 =

202V — 2t = 2724V — gtyg) = 2 2a (5l — ¥g ) = 20 2au (54,

77

Let («,8) € X be such that «(b) = b', and &(a) = a’, where i € {1,3}
and r € U(m). Then, using §(a)®?) = §(ab), a1 = §(a?*1) = §5(ab) =
§(a)™®) = (a7)b' = 2t TH=)s+ 512t +1) s

—1
(r—1)2t+1—5) = ITZt(s—i- 1) (mod m).
Therefore, —2"2du(r—1) (%) = %(4tul) (mod 2™q) which implies that
—(r—1) (ﬁ) = (i— 1)1 (mod 4). Since, %—d and lis odd, r =1 (mod 4).

Thus, the choices for the maps o and & are, a;i(b) = bt and &,(a) = d,
where i € {1,3} and r € U(m). So, X ~ A x D =~ Z; x U(m). At last, since,
lis odd, 2t(s + 1) = 4tlu # 0 (mod m). Therefore, using [3, Lemma 3.3,
p. 9], Im(p) = {1}. Thus, B is a trivial group. Hence, using the Theorem 3,
Auty(G) 2B x E ~7Z; x U(m).

Case(iv): Let 1 < i < n—4. and q = du, for some odd integer u. Then
using (G2), s = —1 (mod 2™ 2u), that is, s = 2" 2lu — 1, where 1 <
1 < 2¥2d. Now, using (G1) and (G3), 12" *3lu—1) = 0 (mod 2'd) and
(t+ D (23 —1) = 0 (mod 2" 2q). Since, n —i—3 > 0, lu2" 3 — 1 is
odd. If Lis even, then t = lu2™ 3 —1 (mod 2™ 2q) gives that t is odd, which
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is a contradiction. Now, if 1 is odd, then Using (t+1)(lu—1) = 0 (mod 2" 2q),
one can easily observe that ged(l,d) = 1. Thus, 2" 3lu—1 = 0 (mod 2id),
which is impossible. Hence, there is no such 1 exist and so, no such t and s
exist and hence no group G exists as the Zappa-Szép product of H and K in
this case. ]

Theorem 10 Let m = 2"q, t be odd and ged(t,m) = d, where n > 4 and q
is odd. Then

Zy XN (Zy x U(m)), if2t(s+1) =0 (mod m)

Auty(G) ~ { Zy x U(m), if2t(s + 1) # 0 (mod m)

Proof. Let q = du, for some odd integer u. Then using (G2), we have s =
—1 (mod 2™ 2u) which implies that s = 2" 2lu — 1, where 1 < 1 < 4d. Now,
using (G1), 1(2"3ul — 1) = 0 (mod d). Using (G3), we get

(t+ 1) (23— 1) =0 (mod 2™ 2q). (5)

Case(i): If 1 is even, then by the Equation (5), t = lu2™3 —1 (mod 2™ 2q).
Note that, 2t(s + 1) = 2t(2"?lu) = 0 (mod m). Using the similar argument
as in the proof of the Theorem 4, we get X ~ A x D ~ Z; x U(m) and B ~ Z;.
Hence, Auty(G) @ B x E ~ Z) x (Z, x U(m)).

Case(ii): If 1 is odd, then using the Equation (5), one can easily observe that
ged(l, d) = 1 which means that 2" 3lu—1 = dl, where U is odd, ged(U,u) =1
and 1 < U < 2™u. Thus, using the Equation (5), (t+ 1)dl' = 0 (mod 2" 2q).
Since, ged(V,u) =1, t = 2" 2uq’ — 1, where 1 < ¢’ < 4d. Now, s —2t — 1 =
2dV -2t =2d(V — 4) = 2q(Z2udy — gne2gy, 122

d
Let (o, 8) € X be such that cx(b) = b}, and 5(a) = a’, where i € {1,3}
and r € U(m). Then, using §(a)*®) = §(a?), a7 = §(a?*!) = §(ab) =
6(a)°‘(b) _ (ar)b'l 2t 1+ s+t ‘Zt s+1) Thus

(r—1)2t+1—-5s) = g2t(s—i—1) (mod m).

2
Therefore, —2"2du(r — 1) (%) =(i— 1)2“_2tu1 (mod 2™q) which implies
that —(r—1) (1_—31‘1) = (i—1)1l (mod 4). Slnce " and lis odd, r =1 (mod 4).

Thus, the choices for the maps « and § are, oq(b) =b' and §,(a) = a”, where
1 e{l,3}and r € U(m). So, X ~ A x D ~ Z; x U(m). At last, since, 1
is odd, 2t(s +1) = 2™ tlu # 0 (mod m). Therefore, using [3, Lemma 3.3,
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p. 9], Im(B) = {1}. Thus, B is a trivial group. Hence, using the Theorem 3,
Auty(G) 2B X E~7Z; x U(m). d

Theorem 11 Let m = 8q, t is odd, and ged(t,m) = d, where q > 1 is odd.
Then

Zo ¥ (Zy x U(m)), if 2t(s + 1)

=0 (mod m)
Zy x U(m), if2t(s+1) £0

Auty(G) ~ { (mod m)

Proof. Let q = du, for some odd integer u. Then using (G2), s = —1 (mod 2u)
which implies that s = 2lu—1, where 1 < 1 < 4d. Now, using (G1), l(lu—1) =
0 (mod d). Using (G3), we get

(t+1)(lu—1) = 0 (mod 2q). (6)

Case(i): If 1 is even, then by the Equation (6), t = lu — 1 (mod 2q). Note
that, 2t(s + 1) = 2t(2lu) = 0 (mod m). Using the similar argument as in the
proof of the Theorem 4, we get X ~ A x D ~ Z, x U(m) and B ~ Z,. Hence,
Auty(G) ¥ B x E~7Z) x (Z; x U(m)).

Case(ii): If 1 is odd, then using the Equation (6), one can easily observe
that ged(l,d) = 1 which means that lu — 1 = dU, where 1 < U < 8u and
ged(V,u) = 1. Since lu— 1 is even, ' is even. Thus using the Equation (6),
(t+1)dl' =0 (mod 2q). Since, ged(U,u) =1, t =uq’ — 1, where 1 < ¢’ < 8d
and ¢ is even, as t is odd. Now, s — 2t — 1 = 2dl' — 2t = 2d4(l — é) =
24(4W2) = 2du=1,

Let («,8) € X be such that «(b) = b', and §(a) = a’, where i € {1,3}
and r € U(m). Then, using §(a)®?) = §(a?), a1V = §(a?*1) = §(ab) =
S(G)oc(b) _ (ar)bi _ a2t+1+(r—1)s+%2t(s+1)_ Thus

(r—1N2t+1—5s) = %Zt(s—kﬂ (mod m).

Therefore, —2du(r — 1) (l%q’) = (1 — 1)2tul (mod 8q) which implies that
—(r—1) (%q’) = (1 — 11 (mod 4). Since, L%dq/ and 11is odd, r = 1 (mod 4).
Thus, the choices for the maps o and & are, «;i(b) = b! and &,(a) = d,
where i € {1,3} and r € U(m). So, X ~ A x D ~ Z; x U(m). At last, since,
lis odd, 2t(s + 1) = 4tlu # 0 (mod 8q). Therefore, using [3, Lemma 3.3,

p. 9], Im(p) = {1}. Thus, B is a trivial group. Hence, using the Theorem 3,
Auty(G) ~ B x E~Z; x U(m). O
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4 Auty(G) of Zappa-Szép product of groups Z,. and
Zm, p is odd prime

In [9], Yacoub classified the groups which are Zappa-Szép product of cyclic
groups of order p? and order m. He found that these are of the following type
(see 9, Conclusion, p. 38])

M; =(a,b|a™=1="b"", ab =ba*,u’’ =1 (mod m)),
M; =(a,b|a™=1= bpz, ab =b'a,t™ =1 (mod p?)),

M3 :<(1)b la™=1= bpz’ ab = btapr+1) aPb = bap(pr+1]>)

where p is an odd prime and in M3z, p divides m. These are not non isomorphic
classes. The groups My and M; may be isomorphic to the group M3z depending
on the values of m,r and t. Clearly, M; and M; are semidirect products.
Throughout this section G will denote the group Mj and we will be only
concerned about groups Mjs which are the Zappa-Szép product but not the
semidirect product. Note that G = H < K, where H = (b) and K = (a). For the
group G, the mutual actions of H and K are defined by a-b = bt, a® = aP™!
along with aP-b = b and (aP)® = aPP™*1) where t and r are integers satisfying
the conditions

(G1) ged(t —1,p?) = p, that is, t = 1 + Ap, where ged(A,p) =1,
(G2) ged(r,p) =1,
(G3) p(pr+1)P =p (mod m).

Theorem 12 Let G be as above. Then Auty(G) ~ Zy X (Zy X D), where D
s a subgroup of U(m) of order %.

Proof. Let B € Q. Then using [3, Lemma 4.4 (i), p. 22], we have that B(a') =
b, where j = 0 (mod p). Thus, B ~ Zyp. Now, let (a,d) € X be such that
«(b) = b' and (a) = a*, where i € U(Z,2) and s € U(m).

Now, 5(k) - a(h) = a(k - h), b* = x(b') = x(a-b) = 5(a) - a(b) = a®- b =
b". Thus, it® = it (mod p?) which implies that (1 4+ pA)*~" = 1 (mod p?).
Therefore, s = 1 (mod p). Using §(k)*M = §(kM), (G3) and the fact that
s = 1 (mod p), we get, a®*s = §(aP™1) = 5(a®) = 5(a)P) = (a®)® =

— |l
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QTP s(oreDt — gs(ereDt | Thyg (pr + 1)s = s(pr + 1)* (mod m).
Therefore, i =1 (mod p).

Thus, the choices for the maps « and & are, a;i(b) = b* and &:(a) = a®,
where i € U(p?), 1 = 1 (mod p), s € U(m), and s = 1 (mod p). So, X ~

A XD ~Z, x D, where D is a subgroup of U(m) of order %. Hence, using
the Theorem 3, Auty(G) ~ B x E ~Z, x (Z, x D)). O
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