

DOI: 10.2478/ausm-2023-0016

Automorphisms of Zappa-Szép product fixing a subgroup

Vipul Kakkar

Department of Mathematics, Central University of Rajasthan, Rajasthan, India. email: vplkakkar@gmail.com

Ratan Lal

Department of Mathematics, Central University of Rajasthan, Rajasthan, India. email: vermarattan789@gmail.com

Abstract. In this paper, we have found the automorphism group of the Zappa-Szép product of two groups fixing a subgroup. We have computed these automorphisms for a subgroup of order p^2 of a group G which is the Zappa-Szép product of two cyclic groups in which one is of order p^2 and other is of order m.

1 Introduction

G. Zappa in [10], introduced the general product of two groups called the Zappa-Szép product. J. Szép studied such products in the series of papers (few of them are [6, 4, 5, 7]). Let H and K be two subgroups of a group G. Then G is called Zappa-Szép product of H and K if G = HK and $H \cap K = \{1\}$ and is written as $G = H \bowtie K$. Moreover, any element $g \in G$ can be uniquely expressed as g = hk, where $h \in H$ and $k \in K$. So, for $kh \in G$, we must have elements $\sigma(k,h) \in H$ and $\theta(k,h) \in K$ such that $kh = \sigma(k,h)\theta(k,h)$. Thus we have matched pair of maps $\sigma: K \times H \to H$ and $\theta: K \times H \to K$ defined by $\sigma(k,h) = k \cdot h$ and $\theta(k,h) = k^h$ and satisfies the following conditions (See [2])

(C1)
$$1 \cdot h = h \text{ and } k^1 = k$$
,

(C2)
$$k \cdot 1 = 1 = 1^h$$
,

(C3)
$$kk' \cdot h = k \cdot (k' \cdot h)$$
,

$$(C4) (kk')^h = k^{k' \cdot h} k'^h,$$

(C5)
$$\mathbf{k} \cdot (\mathbf{h}\mathbf{h}') = (\mathbf{k} \cdot \mathbf{h})(\mathbf{k}^{\mathbf{h}} \cdot \mathbf{h}'),$$

(C6)
$$k^{hh'} = (k^h)^{h'}$$
,

for all $h, h' \in H$ and $k, k' \in K$.

The automorphisms of the Zappa-Szép product of two groups is studied in [3] as the 2×2 matrices of maps satisfying some certain conditions. The terminology used in this paper is same as in [3]. In this paper, we have found the automorphism group of the Zappa-Szép product fixing the subgroup H as the 2×2 matrices of maps satisfying some certain conditions. As an application, we have computed the automorphism group fixing a subgroup of order p^2 of a group G which is the Zappa-Szép product of two cyclic groups in which one is of order p^2 and other is of order m. Throughout the paper, \mathbb{Z}_n denotes the cyclic group of order n and U(n) denotes the group of units of (mod n). Also, $\text{Aut}_H(G) = \{ \varphi \in \text{Aut}(G) \mid \varphi(H) = H \}$ denotes the group of all automorphisms of a group G fixing the subgroup H. Let a group U acts on a group V, then $\text{Stab}_U(V)$ denotes the stabilizer of V in U.

2 Structure of automorphism group, Aut_H(G)

Let $G=H\bowtie K$ be the Zappa-Szép product of two groups H and K. Let U,V and W be any groups. Map(U,V) denotes the set of all maps between the groups U and V. If $\varphi,\psi\in Map(U,V)$ and $\eta\in Map(V,W)$, then $\varphi+\psi\in Map(U,V)$ is defined by $(\varphi+\psi)(u)=\varphi(u)\psi(u), \eta\varphi\in Map(U,W)$ is defined by $\eta\varphi(u)=\eta(\varphi(u)), \ \varphi\cdot\psi\in Map(U,V)$ is defined by $\varphi\cdot\psi(u)=\varphi(u)\cdot\psi(u)$ and $\varphi^{\psi}\in Map(U,V)$ is defined by $\varphi^{\psi}(u)=\varphi(u)^{\psi(u)}$, for all $u\in U$.

Now, consider the set,

$$\mathcal{A}_H = \left\{ \begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix} \mid \begin{matrix} \alpha \in Aut(H), & \beta \in Map(K,H), \\ \text{and} & \delta \in Map(K,K) \end{matrix} \right\},$$

where α , β and δ satisfy the following conditions,

(A1)
$$\beta(kk') = \beta(k)(\delta(k) \cdot \beta(k')),$$

- (A2) $\delta(kk') = \delta(k)^{\beta(k')}\delta(k')$,
- (A3) $\beta(k)(\delta(k) \cdot \alpha(h)) = \alpha(k \cdot h)\beta(k^h),$
- (A4) $\delta(k)^{\alpha(h)} = \delta(k^h)$,
- (A5) For any $h'k' \in G$, there exists a unique $h \in H$ and $k \in K$ such that $h' = \alpha(h)\beta(k)$ and $k' = \delta(k)$.

Then, the set \mathcal{A}_H forms a group with the binary operation as the usual multiplication of matrices defined by

$$\begin{pmatrix} \alpha' & \beta' \\ 0 & \delta' \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix} = \begin{pmatrix} \alpha'\alpha & \alpha'\beta + \beta'\delta \\ 0 & \delta'\delta \end{pmatrix}.$$

Clearly, $Aut_H(K)$ is a subgroup of Aut(G).

Theorem 1 Let $G = H \bowtie K$ be the Zappa-Szép product of two groups H and K, and \mathcal{A}_H be as above. Then there is an isomorphism of groups between $\operatorname{Aut}_H(G)$ and \mathcal{A}_H given by $\theta \longleftrightarrow \begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix}$, where $\theta(h) = \alpha(h)$ and $\theta(k) = \beta(k)\delta(k)$, for all $h \in H$ and $k \in K$.

Proof.

Let $\theta \in \text{Aut}_H(G)$ be defined by $\theta(h) = \alpha(h)$ and $\theta(k) = \beta(k)\delta(k)$, for all $h \in H$ and $k \in K$. Then $\alpha = \theta|_H$, so $\alpha \in \text{Aut}(H)$. Now, for all $k, k' \in K$, $\theta(kk') = \theta(k)\theta(k') = (\beta(k)\delta(k))(\beta(k')\delta(k')) = \beta(k)(\delta(k) \cdot \beta(k'))\delta(k)^{\beta(k')}\delta(k')$. Thus, $\beta(kk')\delta(kk') = \beta(k)(\delta(k) \cdot \beta(k'))\delta(k)^{\beta(k')}\delta(k')$. Therefore, by uniqueness of representation, we have (A1) and (A2).

Now, $\theta(kh) = \theta((k \cdot h)(k^h)) = \theta(k \cdot h)\theta(k^h) = \alpha(k \cdot h)\beta(k^h)\delta(k^h)$. Also, $\theta(kh) = \theta(k)\theta(h) = \beta(k)\delta(k)\alpha(h) = \beta(k)(\delta(k) \cdot \alpha(h))\delta(k)^{\alpha(h)}$. Therefore, by the uniqueness, $\beta(k)(\delta(k) \cdot \alpha(h)) = \alpha(k \cdot h)\beta(k^h)$ and $\delta(k)^{\alpha(h)} = \delta(k^h)$, which proves (A3) and (A4). Finally, (A5) holds because θ is onto. Thus, to every $\theta \in Aut_H(G)$ we can associate the matrix $\begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix} \in \mathcal{A}_H$. This defines a map $T: Aut_H(G) \longrightarrow \mathcal{A}_H$ given by $\theta \longmapsto \begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix}$. Now, if $\begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix} \in \mathcal{A}_H$ satisfying the conditions (A1) – (A5), then we associate to it, the map $\theta: G \longrightarrow G$ defined by $\theta(h) = \alpha(h)$ and $\theta(k) = \beta(k)\delta(k)$, for all $h \in H$ and $k \in K$. Using (A1) – (A4), one can check that θ is an endomorphism of G. Also, by (A5), the map θ is onto. Now, let $hk \in ker(\theta)$. Then $\theta(hk) = 1$. Therefore,

 $\alpha(h)\beta(k)\delta(k)=1$ and so, by the uniqueness of representation $\alpha(h)\beta(k)=1$ and $\delta(k)=1$. By (A5), δ is a bijection and so, k=1. Thus using [3, Proposition 2.1, p. 3], $\beta(k)=1$ which further implies that $\alpha(h)=1$. Again, by (A5), α is a bijection so, h=1. Therefore, h=1=k and so, $\ker(\theta)=\{1\}$. Thus, θ is one-one and hence, $\theta\in \operatorname{Aut}_H(G)$. Thus, T is a bijection. Let α , β and δ be the maps associated with θ and α' , β' and δ' be the maps associated with θ' . Now, for all $h\in H$ and $k\in K$, we have $\theta'\theta(h)=\alpha'\alpha(h)$ and $\theta'\theta(k)=\theta'(\beta(k)\delta(k))=\alpha'(\beta(k))\beta'(\delta(k))\delta'(\delta(k))=(\alpha'\beta+\beta'\delta)(k)\delta'(\delta(k))$.

Therefore, if we write
$$hk$$
 as $\binom{h}{k}$, then $\theta'\theta(h) = \binom{\alpha'\alpha}{0}\binom{h}{1}$ and $\theta'\theta(k) = \binom{\alpha'\beta + \beta'\delta}{\delta'\delta}\binom{1}{k}$. Thus, $\theta'\theta(hk) = \binom{\alpha'\alpha}{0}\frac{\alpha'\beta + \beta'\delta}{\delta'\delta}\binom{h}{k}$. Therefore, $T(\theta'\theta) = \binom{\alpha'\alpha}{0}\frac{\alpha'\beta + \beta'\delta}{\delta'\delta} = T(\theta)T(\theta')$. Hence, T is an isomorphism of groups. \square

From here on, we will identify the automorphisms of G fixing the subgroup H with the matrices in A_H . Now, we have the following remarks,

(ii)
$$\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} \in \mathcal{A}_H$$
 if and only if $\beta(kk') = \beta(k)(k \cdot \beta(k'))$, $k = k^{\beta(k')}$, $\beta(k) = \beta(k^h)$ for all $h \in H$ and $k \in K$.

$$\begin{array}{l} (iii) \ \begin{pmatrix} 1 & 0 \\ 0 & \delta \end{pmatrix} \in \mathcal{A}_H \ \mathrm{if \ and \ only \ if} \ \delta \in Aut(K), \ \delta(k) \cdot h = k \cdot h, \ \delta(k)^h = \delta(k^h) \\ \mathrm{for \ all} \ h \in H \ \mathrm{and} \ k \in K. \end{array}$$

$$\begin{array}{ccc} (i\nu) & \begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix} \in \mathcal{A}_H \ \mathrm{if \ and \ only \ if} \ \alpha \in Aut(H), \ \delta \in Aut(K), \ \delta(k) \cdot \alpha(h) = \\ & \alpha(k \cdot h), \ \mathrm{and} \ \delta(k)^{\alpha(h)} = \delta(k^h) \ \mathrm{for \ all} \ h \in H \ \mathrm{and} \ k \in K. \end{array}$$

Let

$$\begin{split} P = & \{\alpha \in Aut(H) \mid k \cdot \alpha(h) = \alpha(k \cdot h) \text{ and } k^{\alpha(h)} = k^h\}, \\ Q = & \{\beta \in Map(K, H) \mid \beta(kk') = \beta(k)(k \cdot \beta(k')), k = k^{\beta(k')}, \beta(k) = \beta(k^h)\}, \\ S = & \{\delta \in Aut(K) \mid \delta(k) \cdot h = k \cdot h, \delta(k)^h = \delta(k^h)\}, \\ X = & \{(\alpha, \delta) \in Aut(H) \times Aut(K) \mid \delta(k) \cdot \alpha(h) = \alpha(k \cdot h), \delta(k)^{\alpha(h)} = \delta(k^h)\}, \\ Y = & \{(\beta, \delta) \in Map(K, H) \times Map(K, K) \mid \beta(kk') = \beta(k)(\delta(k) \cdot \beta(k')), \\ \end{split}$$

$$\delta(kk') = \delta(k)^{\beta(k')}\delta(k'), \beta(k)(\delta(k)\cdot h) = (k\cdot h)\beta(k^h), \delta(k)^h = \delta(k^h)\}.$$

Then one can easily check that P, S, X and Y are all subgroups of the group $Aut_H(G)$. But Q need not be subgroup of the group $Aut_H(G)$. However, if H is abelian, then Q is subgroups of $Aut_H(G)$. Also, note that $P \times S \leq X$. Let

$$\begin{split} A &= \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} | \ \alpha \in P \right\}, \qquad B &= \left\{ \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} | \ \beta \in Q \right\}, \\ D &= \left\{ \begin{pmatrix} 1 & 0 \\ 0 & \delta \end{pmatrix} | \ \delta \in S \right\}, \qquad E &= \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix} | \ (\alpha, \delta) \in X \right\}, \\ F &= \left\{ \begin{pmatrix} 1 & \beta \\ 0 & \delta \end{pmatrix} | \ (\beta, \delta) \in Y \right\}. \end{split}$$

be the corresponding subsets of \mathcal{A}_H . Then one can easily check that A, D, E and F are subgroups of \mathcal{A}_H , and if H is abelian group, then B is also a subgroup of \mathcal{A}_H .

Theorem 2 If either P = Aut(H) or S = Aut(K), then $X = P \times S$. Equivalently, $E = A \times D$.

Proof. Let $(\alpha, \delta) \in X$. Then $\delta(k) \cdot \alpha(h) = \alpha(k \cdot h)$ and $\delta(k)^{\alpha(h)} = \delta(k^h)$. Now, if P = Aut(H), then $k \cdot \alpha(h) = \alpha(k \cdot h)$. Therefore, using $\delta(k) \cdot \alpha(h) = \alpha(k \cdot h)$, we get $\delta(k) \cdot \alpha(h) = k \cdot \alpha(h)$. Also, since P = Aut(H), $k^{\alpha(h)} = k^h$. So, using $\delta(k)^{\alpha(h)} = \delta(k^h)$, we get $\delta(k^h) = \delta(k)^{\alpha(h)} = \delta(k)^h$. Thus, $\delta \in S$ and so, $(\alpha, \delta) \in P \times S$. Hence, $X = P \times S$. By the similar argument, if S = Aut(K), then $X = P \times S$.

 $\textbf{Theorem 3} \ \mathit{Let} \begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix} \in \mathcal{A}_{H}. \ \mathit{If} \ \beta \in Q, \ \mathit{then} \ \mathsf{Aut}_{H}(G) \simeq B \rtimes E.$

Proof. Let
$$\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} \in B$$
 and $\begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix} \in E$. Then
$$\begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix} \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix}^{-1} = \begin{pmatrix} 1 & \alpha \beta \delta^{-1} \\ 0 & 1 \end{pmatrix}. \tag{1}$$

Now, for all $h \in H$ and $k, k' \in K$,

$$\begin{split} \alpha\beta\delta^{-1}(kk') &= \alpha\beta(\delta^{-1}(k)\delta^{-1}(k')) = \alpha(\beta(\delta^{-1}(k))(\delta^{-1}(k)\cdot\beta(\delta^{-1}(k')))) \\ &= \alpha(\beta(\delta^{-1}(k))\alpha(\delta^{-1}(k)\cdot\beta\delta^{-1}(k')) \\ &= \alpha\beta\delta^{-1}(k)(\delta(\delta^{-1}(k))\cdot\alpha(\beta\delta^{-1}(k'))) \end{split}$$

$$= \alpha \beta \delta^{-1}(\mathbf{k})(\mathbf{k} \cdot \alpha \beta \delta^{-1}(\mathbf{k}')).$$

Also, one can easily observe that $k^{\alpha\beta\delta^{-1}(k')} = k$ and $\alpha\beta\delta^{-1}(k^h) = \alpha\beta\delta^{-1}(k)$. Thus, $\alpha\beta\delta^{-1} \in Q$. Therefore, by the Equation (1), we get

$$\begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix} \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix}^{-1} = \begin{pmatrix} 1 & \alpha\beta\delta^{-1} \\ 0 & 1 \end{pmatrix} \in B.$$

Thus, $B \triangleleft \mathcal{A}_H$. Clearly, $B \cap E = \{1\}$. If $\begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix} \in \mathcal{A}_H$, then

$$\begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix} \begin{pmatrix} 1 & \alpha^{-1}\beta \\ 0 & 1 \end{pmatrix} \in EB.$$

Hence, $A_H = B \rtimes E$ and so, $Aut_H(G) \simeq B \rtimes E$.

3 Aut_H(G) of Zappa-Szép product of groups \mathbb{Z}_4 and \mathbb{Z}_m

In [8], Yacoub classified the groups which are Zappa-Szép product of cyclic groups of order 4 and order m. He found that these are of the following type (see [8, Conclusion, p. 126])

$$L_1 = \langle a, b \mid a^m = 1 = b^4, ab = ba^r, r^4 \equiv 1 \pmod{m} \rangle,$$

 $L_2 = \langle a, b \mid a^m = 1 = b^4, ab = b^3 a^{2t+1}, a^2 b = ba^{2s} \rangle,$

where in L_2 , m is even. These are not non-isomorphic classes. The group L_1 may be isomorphic to the group L_2 depending on the values of m, r and t (see [8, Theorem 5, p. 126]). Clearly, L_1 is a semidirect product. Throughout this section G will denote the group L_2 and we will be only concerned about groups L_2 which are Zappa-Szép product but not the semidirect product. Note that $G = H \bowtie K$, where $H = \langle b \rangle$ and $K = \langle a \rangle$. For the group G, the mutual actions of H and K are defined by $a \cdot b = b^3$, $a^b = a^{2t+1}$ along with $a^2 \cdot b = b$ and $(a^2)^b = a^{2s}$, where t and s are the integers satisfying the conditions

- (G1) $2s^2 \equiv 2 \pmod{\mathfrak{m}}$,
- $(G2)\ 4t(s+1)\equiv 0\ (\mathrm{mod}\ m),$
- (G3) $2(t+1)(s-1) \equiv 0 \pmod{m}$,
- (G4) $gcd(s, \frac{m}{2}) = 1$.

Now, one can easily observe that for the given group G, $k \cdot \alpha(h) = \alpha(k \cdot h)$, $\beta(k) = \beta(k^h)$, $\delta(k) \cdot h = k \cdot h$, $\delta(k) \cdot \alpha(h) = \alpha(k \cdot h)$ and $\beta(k)(\delta(k) \cdot \alpha(h)) = \alpha(k \cdot h)\beta(k^h)$ always holds for all $\alpha \in P$, $\beta \in Q$, $\delta \in S$, $(\alpha, \delta) \in X$, and $(\beta, \delta) \in Y$ respectively. Thus the subgroups P, Q, S, X, and Y reduces to the following,

$$\begin{split} P = & \{\alpha \in Aut(H) \mid k^{\alpha(h)} = k^h\}, \\ Q = & \{\beta \in Hom(K, H) \mid k = k^{\beta(k')}\} = Hom(K, Stab_H(K)), \\ S = & \{\delta \in Aut(K) \mid \delta(k)^h = \delta(k^h)\}, \\ X = & \{(\alpha, \delta) \in Aut(H) \times Aut(K) \mid \delta(k)^{\alpha(h)} = \delta(k^h)\}, \\ Y = & \{(\beta, \delta) \in Map(K, H) \times Map(K, K) \mid \beta(kk') = \beta(k)(\delta(k) \cdot \beta(k')), \\ \delta(kk') = & \delta(k)^{\beta(k')} \delta(k'), \delta(k)^{\alpha(h)} = \delta(k^h)\}. \end{split}$$

Now, we will find the structure of the automorphism group $Aut_H(G)$. For this, we will proceed by first taking t to be such that gcd(t, m) = 1 and then by taking t such that gcd(t, m) = d, where d > 1.

Theorem 4 Let 4 divides \mathfrak{m} and \mathfrak{t} be odd such that $\gcd(\mathfrak{t},\mathfrak{m})=1$. Then

$$\text{Aut}_H(G) \simeq \left\{ \begin{array}{ll} \mathbb{Z}_2 \rtimes (\mathbb{Z}_2 \times U(m)), & \text{if } s \in \{\frac{m}{2}-1, m-1\} \\ \mathbb{Z}_2 \times U(m), & \text{if } s \in \{\frac{m}{4}-1, \frac{3m}{4}-1\} \end{array} \right..$$

Proof. Let $\gcd(t,m)=1$. Then, using (G2), we get, $s\equiv -1\pmod{\frac{m}{4}}$ which implies that $s\in\{\frac{m}{4}-1,\frac{m}{2}-1,\frac{3m}{4}-1,m-1\}$. Now, using (G3), we get $t\equiv -1\pmod{\frac{m}{4}}$. Then $t\in\{\frac{m}{4}-1,\frac{m}{2}-1,\frac{3m}{4}-1,m-1\}$.

Let $(\alpha, \delta) \in X$ be such that $\alpha(b) = b^i$, and $\delta(a) = a^r$, where $i \in \{1, 3\}$ and $r \in U(m)$. Then, using $\delta(a)^{\alpha(b)} = \delta(a^b)$, $a^{(2t+1)r} = \delta(a^{2t+1}) = \delta(a^b) = \delta(a)^{\alpha(b)} = (a^r)^{b^i} = a^{2t+1+(r-1)s+\frac{i-1}{2}2t(s+1)}$. Thus

$$(r-1)(2t+1-s) \equiv \frac{i-1}{2}2t(s+1) \pmod{m}.$$
 (2)

If $s \in \{\frac{m}{2}-1,m-1\}$, then the Equation (2) holds for all values of t and r. If $s \in \{\frac{m}{4}-1,\frac{3m}{4}-1\}$, then the Equation (2) holds for all t and $r \equiv i \pmod 4$. Thus, the choices for the maps α and δ are, $\alpha_i(b) = b^i$ and $\delta_r(a) = a^r$, for all $i \in \{1,3\}$ and $r \in U(m)$. So, $X \simeq A \times D \simeq \mathbb{Z}_2 \times U(m)$. Now, if $s \in \{\frac{m}{2}-1,m-1\}$, then $2t(s+1) \equiv 0 \pmod m$. Therefore, using [3, Lemma 3.3, p. 9], $Im(\beta) = \{b^2\}$ and so, $B \simeq \mathbb{Z}_2$. If $s \in \{\frac{m}{4}-1,\frac{3m}{4}-1\}$, then $2t(s+1) \not\equiv 0 \pmod m$. Therefore,

using [3, Lemma 3.3, p. 9], $Im(\beta) = \{1\}$ and so, B is a trivial group. Hence, by the Theorem 3,

$$\text{Aut}_H(G) \simeq \text{B} \rtimes \text{E} \simeq \left\{ \begin{array}{ll} \mathbb{Z}_2 \rtimes (\mathbb{Z}_2 \times \text{U}(m)), & \text{if } s \in \{\frac{m}{2}-1, m-1\} \\ \mathbb{Z}_2 \times \text{U}(m), & \text{if } s \in \{\frac{m}{4}-1, \frac{3m}{4}-1\} \end{array} \right..$$

Theorem 5 Let $\mathfrak{m}=2\mathfrak{q},$ where $\mathfrak{q}>1$ is odd and $\gcd(\mathfrak{t},\mathfrak{m})=1$. Then, $\operatorname{Aut}_H(G)\simeq \mathbb{Z}_2\rtimes (\mathbb{Z}_2\times U(\mathfrak{m})).$

Proof. Using (G1), (G2), and (G3), we get $s, t \in \{\frac{m}{2} - 1, m - 1\}$. Then, the result follows on the lines of the proof of the Theorem 4.

Theorem 6 Let $m = 2^n$, $n \ge 3$ and t be even. Then

$$\operatorname{\mathsf{Aut}}_H(\mathsf{G}) \simeq \left\{ \begin{array}{ll} (\mathbb{Z}_4 \rtimes (\mathbb{Z}_2 \times \mathbb{Z}_{2^{n-2}})) \rtimes \mathbb{Z}_2, & \mathit{if} \ 2\mathsf{t}(s+1) \equiv 0 \ (\bmod \ 2^n) \\ \mathbb{Z}_2 \rtimes (\mathbb{Z}_2 \times (\mathbb{Z}_2 \times \mathbb{Z}_{2^{n-2}})), & \mathit{if} \ 2\mathsf{t}(s+1) \not\equiv 0 \ (\bmod \ 2^n) \end{array} \right.$$

Proof. Let t be even. Then $2(t+1)(s-1) \equiv 0 \pmod{2^n}$ implies that $s \equiv 1 \pmod{2^{n-1}}$. Therefore, $s=1,2^{n-1}+1$. Now, $4t(s+1) \equiv 0 \pmod{2^n}$ implies that $t \equiv 0 \pmod{2^{n-3}}$. Therefore, by the defining relations of the group G, $t \in \{2^{n-3},2^{n-2},3\cdot2^{n-3},2^{n-1},5\cdot2^{n-3},3\cdot2^{n-2},7\cdot2^{n-3},2^n\}$. Note that, for $t=2^{n-1}$ or $t=2^n$, G is the semidirect product of H and K. So, we consider the other values of t.

Case(i). Let $t \in \{2^{n-2}, 3 \cdot 2^{n-2}\}$. Then, one can easily observe that $2t(s+1) \equiv 0 \pmod{2^n}$. Therefore, for all $\alpha \in P$, $(\alpha^l)^{\alpha(b)} = (\alpha^l)^{b^l} = \alpha^{2it+l} = \alpha^{2t+l} = (\alpha^l)^b$. Thus, $P \simeq A \simeq \mathbb{Z}_2$. Now, let $(\beta, \delta) \in Y$ be such that $\beta(\alpha) = b^j$, and $\delta(\alpha) = a^r$, where $0 \le j \le 3$ and $0 \le r \le 2^n - 1$ and r is odd. Using [3, Lemma 3.2 (ii), p. 7], $\beta(kk') = \beta(k)(\delta(k) \cdot \beta(k'))$ holds, for all $k, k' \in K$. Now, using $\delta(kk') = \delta(k)^{\beta(k')}\delta(k')$, we get

$$\delta(a^{l}) = \begin{cases} a^{(l-1)(jt+r)+r}, & \text{if } l \text{ is odd} \\ a^{l(jt+r)}, & \text{if } l \text{ is even} \end{cases} . \tag{3}$$

Finally, using $\delta(k^h)=\delta(k)^h, \ \alpha^{2t+r}=(\alpha^r)^b=\delta(\alpha)^b=\delta(\alpha^b)=\delta(\alpha^{2t+1})=\alpha^{2t(jt+r)+r}=\alpha^{2tr+r}.$ Thus, $2t(r-1)\equiv 0\ (\mathrm{mod}\ 2^n)$ which is true for all $r\in U(2^n).$

So,
$$Y \simeq B \rtimes D \simeq \mathbb{Z}_4 \rtimes (\mathbb{Z}_2 \times \mathbb{Z}_{2^{n-2}})$$
. Now, let $\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} \in A$ and $\begin{pmatrix} 1 & \beta \\ 0 & \delta \end{pmatrix} \in F$. Then

П

$$\begin{pmatrix}\alpha & 0 \\ 0 & 1\end{pmatrix}\begin{pmatrix}1 & \beta \\ 0 & \delta\end{pmatrix}\begin{pmatrix}\alpha^{-1} & 0 \\ 0 & 1\end{pmatrix}=\begin{pmatrix}1 & \alpha\beta \\ 0 & \delta\end{pmatrix}\in F.$$

Thus $F \triangleleft A_H$. Clearly, $A \cap F = \{1\}$. Also, if $\begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix} \in A_H$, then

$$\begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix} = \begin{pmatrix} 1 & \beta \\ 0 & \delta \end{pmatrix} \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} \in FA.$$

Hence, $\mathcal{A}_H = F \rtimes A$ and so, $\text{Aut}_H(G) \simeq F \rtimes A \simeq (\mathbb{Z}_4 \rtimes (\mathbb{Z}_2 \times \mathbb{Z}_{2^{n-2}})) \rtimes \mathbb{Z}_2$.

Case(ii). Let $t \in \{2^{n-3}, 3 \cdot 2^{n-3}, 5 \cdot 2^{n-3}, 7 \cdot 2^{n-3}\}$. Then, one can easily observe that $2t(s+1) \not\equiv 0 \pmod{2^n}$. Let $(\alpha, \beta, \delta) \in \text{Aut}_H(G)$ be such that $\alpha(b) = b^i, \beta(a) = b^j$, and $\delta(a) = a^r$, where $i \in \{1,3\}, 0 \le j \le 3, 0 \le r \le 2^n - 1$ and r is odd. Using [3, Lemma 3.2 (ii), p. 7], $\beta(kk') = \beta(k)(\delta(k) \cdot \beta(k'))$ holds, for all $k, k' \in K$. Now, using (A5), for any $b^j a^l \in G$ there is unique $b^j \in H$ such that $b^j = \alpha(b^j)\beta(a^l)$. Note that, if $\alpha(b^j) = b^j$, then $\beta(a^l) = 1$ and if $\alpha(b^j) = b^{-j}$, then $\beta(a^l) = b^2$. Thus, $Im(\beta) = \langle b^2 \rangle$.

Finally, using the definition of the map δ in the Equation (3) and $\delta(k^h) = \delta(k)^{\alpha(h)}$, we get $\alpha^{2it+r} = (\alpha^r)^{b^i} = \delta(\alpha)^{\alpha(b)} = \delta(\alpha^b) = \delta(\alpha^{2t+1}) = \alpha^{2t(jt+r)+r}$. Thus, $2t(jt+r-i) \equiv 0 \pmod{2^n}$ which implies that

$$\begin{array}{ll} r\equiv i\ (\mathrm{mod}\ 4), & \text{if}\ t\in\{2^{n-3},3\cdot 2^{n-3},5\cdot 2^{n-3},7\cdot 2^{n-3}\}\ \mathrm{and}\ n\geq 5\\ r\equiv i+2j\ (\mathrm{mod}\ 4), & \text{if}\ t\in\{2^{n-3},3\cdot 2^{n-3},5\cdot 2^{n-3},7\cdot 2^{n-3}\}\ \mathrm{and}\ n=4 \end{array}.$$

Thus $r \equiv i \pmod 4$ and so, the choices for the maps α and δ are, $\alpha_i(b) = b^i$ and $\delta_r(\alpha) = \alpha^r$, where $i \in \{1,3\}$ and $r \in U(m)$. Note that, if $\begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix} \in \mathcal{A}_H$, then

$$\begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix} \begin{pmatrix} 1 & \alpha^{-1}\beta \\ 0 & 1 \end{pmatrix} \in EB.$$

Clearly, $E \cap B = \{1\}$ and E normalizes B. So, $B \triangleleft \mathcal{A}_H$. Hence, $\mathcal{A}_H = B \bowtie E$ and so, $Aut_H(G) \simeq B \bowtie E \simeq \mathbb{Z}_2 \bowtie (\mathbb{Z}_2 \times (\mathbb{Z}_2 \times \mathbb{Z}_{2^{n-2}}))$.

Now, we will discuss the structure of the automorphism group $\text{Aut}_H(G)$ in the case when $\gcd(t,m)>1$.

Theorem 7 Let m=4q, where q>1 is odd and $\gcd(t,m)=2^id$, where $i\in\{0,1,2\}$, and d divides q. Then $Aut_H(G)\simeq\mathbb{Z}_2\rtimes(\mathbb{Z}_2\times U(m))$.

Proof. Let q = du, for some integer u. Then, using (G2), $s \equiv -1 \pmod u$ which implies that s = lu - 1, where $1 \leq l \leq 4d$. Since, $\gcd(s, \frac{m}{2}) = 1$, s is odd and so, l is even. Using (G1) and (G3), we get $l(u^{\frac{1}{2}} - 1) \equiv 0 \pmod d$ and $t + 1 \equiv u^{\frac{1}{2}} \pmod q$. Now, one can easily observe that $\gcd(l, d) = 1$ which implies that $u^{\frac{1}{2}} - 1 \equiv 0 \pmod d$. Thus, $2t(s + 1) \equiv 2ltu \equiv 0 \pmod m$ and $\gcd(s + 1, \frac{m}{2}) \neq 1$. Therefore, using [3, Lemma 3.3, p. 9], $B \simeq \mathbb{Z}_2$.

Let $(\alpha, \delta) \in X$ be such that $\alpha(b) = b^i$ and $\delta(a) = a^r$, where $i \in \{1, 3\}$ and $r \in U(m)$. Then, using $\delta(a)^{\alpha(b)} = \delta(a^b)$ and the fact that $2t(s+1) \equiv 0 \pmod{m}$, we get $a^{(2t+1)r} = \delta(a^{2t+1}) = \delta(a^b) = \delta(a)^{\alpha(b)} = (a^r)^{b^i} = a^{2t+1+(r-1)s+\frac{i-1}{2}2t(s+1)} = a^{2t+1+(r-1)s}$. Thus

$$(r-1)(s-2t-1) \equiv 0 \pmod{m}. \tag{4}$$

Since $2t(s+1) \equiv 0 \pmod m$, using (G3), we get $2(s-2t-1) \equiv 0 \pmod m$. Therefore, the Equation (4) holds for all $r \in U(m)$. Thus, using the Theorem $2, X \simeq A \times D \simeq \mathbb{Z}_2 \times U(m)$. Hence, using the Theorem $3, Aut_H(G) \simeq B \rtimes E \simeq \mathbb{Z}_2 \rtimes (\mathbb{Z}_2 \times U(m))$.

Theorem 8 Let $\mathfrak{m}=2q$, where q>1 is odd and $\gcd(t,\mathfrak{m})=2^id$, where $i\in\{0,1\}$, and d divides q. Then $Aut_H(G)\simeq\mathbb{Z}_2\rtimes(\mathbb{Z}_2\times U(\mathfrak{m}))$.

Proof. Follows on the lines of the proof of the Theorem 7. \Box

Theorem 9 Let $m = 2^n q$, t be even and $gcd(m, t) = 2^i d$, where $1 \le i \le n$, $n \ge 3$, q > 1 and d divides q. Then

$$\text{Aut}_H(G) \simeq \left\{ \begin{array}{l} (\mathbb{Z}_4 \rtimes U(\mathfrak{m})) \rtimes \mathbb{Z}_2, & \textit{if } d = q \textit{ and } 2t(s+1) \equiv 0 \pmod{\mathfrak{m}} \\ \mathbb{Z}_2 \rtimes (\mathbb{Z}_2 \times U(\mathfrak{m})), & \textit{if } d = q \textit{ and } 2t(s+1) \not\equiv 0 \pmod{\mathfrak{m}} \\ \mathbb{Z}_2 \rtimes (\mathbb{Z}_2 \times U(\mathfrak{m})), & \textit{if } d \neq q \textit{ and } n-2 \leq i \leq n \\ \mathbb{Z}_2 \times U(\mathfrak{m}), & \textit{if } d \neq q \textit{ and } i = n-3 \end{array} \right.$$

Proof. We consider the following four cases to find the structure of $Aut_H(G)$.

Case(i): Let d = q and gcd(t+1,m) = u. Since, t+1 is odd, u is odd and u divides q. Thus, u divides t and so, u = 1. Therefore, using (G2) and (G3), $s \equiv 1 \pmod{\frac{m}{2}}$ and $t \equiv 0 \pmod{\frac{m}{8}}$. By the similar argument used in the proof of the Theorem 6 (i), we get,

$$\text{Aut}_H(G) \simeq \left\{ \begin{array}{ll} (\mathbb{Z}_4 \rtimes U(\mathfrak{m})) \rtimes \mathbb{Z}_2, & \text{if } 2t(s+1) \equiv 0 \pmod{\mathfrak{m}} \\ \mathbb{Z}_2 \rtimes (\mathbb{Z}_2 \times U(\mathfrak{m})), & \text{if } 2t(s+1) \not\equiv 0 \pmod{\mathfrak{m}} \end{array} \right..$$

Case(ii): Let $n-2 \le i \le n$ d $\ne q$ and q = du, for some odd integer u. Then using (G2), $s \equiv -1 \pmod u$ and so, s = lu - 1, where $0 \le l \le 2^n d$. Since, $\gcd(s, \frac{m}{2}) = 1$, s is odd and so, l is even. Now, using (G1), $\frac{1}{2}(\frac{1}{2}u - 1) \equiv 0 \pmod{2^{n-3}d}$ and by (G3), $t \equiv \frac{1}{2}u - 1 \pmod{2^{n-2}q}$. Since, t is even, $\frac{1}{2}$ is odd and $\gcd(\frac{1}{2}, d) = 1$. Thus, $\frac{1}{2}u \equiv 1 \pmod{2^{n-3}d}$ and $t \equiv 2^i d \pmod{2^{n-2}q}$. One can easily observe that $2t(s+1) \equiv 0 \pmod m$. Therefore, using the similar argument as in the proof of the Theorem 4, we get, $Aut_H(G) \simeq B \rtimes E \simeq \mathbb{Z}_2 \rtimes (\mathbb{Z}_2 \times U(m))$.

 $\begin{array}{l} \textit{Case(iii):} \ \text{Let} \ i = n-3, \ d \neq q \ \text{and} \ q = du, \ \text{for some odd integer} \ u. \ \text{Then using} \\ (\text{G2}), \ s \equiv -1 \ (\text{mod } 2u), \ \text{that is, } \ s = 2lu-1, \ \text{where} \ 1 \leq l \leq 2^{n-1}d. \ \text{Now, using} \\ (\text{G1}) \ \text{and} \ (\text{G3}), \ l(lu-1) \equiv 0 \ (\text{mod } 2^{n-3}d) \ \text{and} \ (t+1)(lu-1) \equiv 0 \ (\text{mod } 2^{n-2}q). \\ \text{If } \ l \ \text{is even, then} \ t \equiv lu-1 \ (\text{mod } 2^{n-2}q) \ \text{gives that } t \ \text{is odd, which is a contradiction.} \ \text{Therefore, } \ l \ \text{is odd.} \ \text{Using} \ (t+1)(lu-1) \equiv 0 \ (\text{mod } 2^{n-2}q), \ \text{one} \ \text{can easily observe that} \ \gcd(l,d) = 1. \ \text{Then, } \ lu-1 = 2^{n-3}dl' \ \text{and} \ s = 2^{n-2}dl'+1, \ \text{where} \ 1 \leq l' \leq 8u. \ \text{Clearly, } \ \gcd(l',u) = 1. \ \text{Thus, } \ (t+1)l' \equiv 0 \ (\text{mod } 2u). \ \text{If } \ l' \ \text{is odd, then} \ (t+1) \equiv 0 \ (\text{mod } 2u) \ \text{which implies that } t \ \text{is odd. So, } \ l' \ \text{is even and} \ \text{so, } t = uq'-1, \ 1 \leq q' < 2^{n-1}d, \ q' \ \text{is odd as } t \ \text{is even. Note that} \ s - 2t-1 = 2^{n-2}dl'-2t = 2^{n-2}d(l'-\frac{t}{2^{n-3}d}) = 2^{n-2}d\left(\frac{lu-1}{2^{n-3}d}-\frac{uq'-1}{2^{n-3}d}\right) = 2^{n-2}du\left(\frac{l-q'}{2^{n-3}d}\right). \end{array}$

Let $(\alpha, \delta) \in X$ be such that $\alpha(b) = b^i$, and $\delta(a) = a^r$, where $i \in \{1, 3\}$ and $r \in U(m)$. Then, using $\delta(a)^{\alpha(b)} = \delta(a^b)$, $a^{(2t+1)r} = \delta(a^{2t+1}) = \delta(a^b) = \delta(a)^{\alpha(b)} = (a^r)^{b^i} = a^{2t+1+(r-1)s+\frac{i-1}{2}2t(s+1)}$. Thus

$$(r-1)(2t+1-s) \equiv \frac{i-1}{2}2t(s+1) \pmod{m}.$$

Therefore, $-2^{n-2}du(r-1)\left(\frac{l-q'}{2^{n-3}d}\right)\equiv\frac{i-1}{2}(4tul)\ (\mathrm{mod}\ 2^nq)$ which implies that $-(r-1)\left(\frac{l-q'}{2^{n-3}d}\right)\equiv(i-1)l\ (\mathrm{mod}\ 4).$ Since, $\frac{l-q'}{2^{n-3}d}$ and l is odd, $r\equiv i\ (\mathrm{mod}\ 4).$ Thus, the choices for the maps α and δ are, $\alpha_i(b)=b^i$ and $\delta_r(a)=a^r$, where $i\in\{1,3\}$ and $r\in U(m).$ So, $X\simeq A\times D\simeq \mathbb{Z}_2\times U(m).$ At last, since, l is odd, $2t(s+1)\equiv 4tlu\not\equiv 0\ (\mathrm{mod}\ m).$ Therefore, using [3, Lemma 3.3, p. 9], $Im(\beta)=\{1\}.$ Thus, B is a trivial group. Hence, using the Theorem 3, $Aut_H(G)\simeq B\rtimes E\simeq \mathbb{Z}_2\times U(m).$

Case(iv): Let $1 \le i \le n-4$. and q = du, for some odd integer u. Then using (G2), $s \equiv -1 \pmod{2^{n-i-2}u}$, that is, $s = 2^{n-i-2}lu - 1$, where $1 \le l \le 2^{i+2}d$. Now, using (G1) and (G3), $l(2^{n-i-3}lu - 1) \equiv 0 \pmod{2^id}$ and $(t+1)(lu2^{n-i-3}-1) \equiv 0 \pmod{2^{n-2}q}$. Since, n-i-3>0, $lu2^{n-i-3}-1$ is odd. If l is even, then $t \equiv lu2^{n-i-3}-1 \pmod{2^{n-2}q}$ gives that t is odd, which

is a contradiction. Now, if l is odd, then Using $(t+1)(l\mathfrak{u}-1)\equiv 0\ (\mathrm{mod}\ 2^{n-2}\mathfrak{q}),$ one can easily observe that $\gcd(l,d)=1.$ Thus, $2^{n-i-3}l\mathfrak{u}-1\equiv 0\ (\mathrm{mod}\ 2^id),$ which is impossible. Hence, there is no such l exist and so, no such t and s exist and hence no group G exists as the Zappa-Szép product of H and K in this case. $\hfill\Box$

Theorem 10 Let $\mathfrak{m}=2^n\mathfrak{q}$, \mathfrak{t} be odd and $\gcd(\mathfrak{t},\mathfrak{m})=\mathfrak{d}$, where $\mathfrak{n}\geq 4$ and \mathfrak{q} is odd. Then

$$\operatorname{Aut}_{\mathsf{H}}(\mathsf{G}) \simeq \left\{ \begin{array}{ll} \mathbb{Z}_2 \rtimes (\mathbb{Z}_2 \times \mathsf{U}(\mathsf{m})), & \textit{if } 2\mathsf{t}(\mathsf{s}+1) \equiv \mathsf{0} \pmod{\mathsf{m}} \\ \mathbb{Z}_2 \times \mathsf{U}(\mathsf{m}), & \textit{if } 2\mathsf{t}(\mathsf{s}+1) \not\equiv \mathsf{0} \pmod{\mathsf{m}} \end{array} \right.$$

Proof. Let q = du, for some odd integer u. Then using (G2), we have $s \equiv -1 \pmod{2^{n-2}u}$ which implies that $s = 2^{n-2}lu - 1$, where $1 \leq l \leq 4d$. Now, using (G1), $l(2^{n-3}ul - 1) \equiv 0 \pmod{d}$. Using (G3), we get

$$(t+1)(lu2^{n-3}-1) \equiv 0 \pmod{2^{n-2}q}.$$
 (5)

 $\mathit{Case}(i)$: If l is even, then by the Equation (5), $t \equiv l \mathfrak{u} 2^{n-3} - 1 \pmod{2^{n-2} \mathfrak{q}}$. Note that, $2t(s+1) \equiv 2t(2^{n-2}l\mathfrak{u}) \equiv 0 \pmod{\mathfrak{m}}$. Using the similar argument as in the proof of the Theorem 4, we get $X \simeq A \times D \simeq \mathbb{Z}_2 \times U(\mathfrak{m})$ and $B \simeq \mathbb{Z}_2$. Hence, $A\mathfrak{u}_H(G) \simeq B \rtimes E \simeq \mathbb{Z}_2 \rtimes (\mathbb{Z}_2 \times U(\mathfrak{m}))$.

 $\begin{array}{l} {\it Case(ii):} \ {\it If} \ l \ {\it is} \ {\it odd}, \ then \ using \ the \ Equation \ (5), \ one \ can \ easily \ observe \ that \\ {\it gcd}(l,d)=1 \ {\it which} \ {\it means} \ that \ 2^{n-3}lu-1=dl', \ {\it where} \ l' \ {\it is} \ {\it odd}, \ {\it gcd}(l',u)=1 \\ {\it and} \ 1 \leq l' \leq 2^nu. \ {\it Thus}, \ using \ the \ Equation \ (5), \ (t+1)dl' \equiv 0 \ ({\it mod} \ 2^{n-2}q). \\ {\it Since}, \ {\it gcd}(l',u)=1, \ t=2^{n-2}uq'-1, \ {\it where} \ 1 \leq q' \leq 4d. \ {\it Now}, \ s-2t-1=2dl'-2t=2d(l'-\frac{t}{d})=2d(\frac{2^{n-3}ul-2^{n-2}uq'}{d})=2^{n-2}du^{\frac{l-2q'}{d}}. \end{array}$

Let $(\alpha, \delta) \in X$ be such that $\alpha(b) = b^i$, and $\delta(a) = a^r$, where $i \in \{1, 3\}$ and $r \in U(m)$. Then, using $\delta(a)^{\alpha(b)} = \delta(a^b)$, $\alpha^{(2t+1)r} = \delta(\alpha^{2t+1}) = \delta(a^b) = \delta(a)^{\alpha(b)} = (a^r)^{b^i} = a^{2t+1+(r-1)s+\frac{i-1}{2}2t(s+1)}$. Thus

$$(r-1)(2t+1-s) \equiv \frac{i-1}{2} 2t(s+1) \ (\mathrm{mod} \ m).$$

Therefore, $-2^{n-2}du(r-1)\left(\frac{1-2q'}{d}\right)\equiv (i-1)2^{n-2}tul\ (\mathrm{mod}\ 2^nq)$ which implies that $-(r-1)\left(\frac{1-2q'}{d}\right)\equiv (i-1)l\ (\mathrm{mod}\ 4).$ Since, $\frac{1-2q'}{d}$ and l is odd, $r\equiv i\ (\mathrm{mod}\ 4).$ Thus, the choices for the maps α and δ are, $\alpha_i(b)=b^i$ and $\delta_r(\alpha)=\alpha^r$, where $i\in\{1,3\}$ and $r\in U(m).$ So, $X\simeq A\times D\simeq \mathbb{Z}_2\times U(m).$ At last, since, l is odd, $2t(s+1)\equiv 2^{n-1}tlu\not\equiv 0\ (\mathrm{mod}\ m).$ Therefore, using [3, Lemma 3.3,

p. 9], $Im(\beta) = \{1\}$. Thus, B is a trivial group. Hence, using the Theorem 3, $Aut_H(G) \simeq B \rtimes E \simeq \mathbb{Z}_2 \times U(m)$.

Theorem 11 Let m = 8q, t is odd, and gcd(t, m) = d, where q > 1 is odd. Then

$$\text{Aut}_H(G) \simeq \left\{ \begin{array}{ll} \mathbb{Z}_2 \rtimes (\mathbb{Z}_2 \times U(m)), & \text{if } 2t(s+1) \equiv 0 \pmod m \\ \mathbb{Z}_2 \times U(m), & \text{if } 2t(s+1) \not\equiv 0 \pmod m \end{array} \right.$$

Proof. Let q = du, for some odd integer u. Then using (G2), $s \equiv -1 \pmod{2u}$ which implies that s = 2lu - 1, where $1 \leq l \leq 4d$. Now, using (G1), $l(lu - 1) \equiv 0 \pmod{d}$. Using (G3), we get

$$(t+1)(lu-1) \equiv 0 \pmod{2q}. \tag{6}$$

 $\mathit{Case}(i)$: If l is even, then by the Equation (6), $t \equiv l\mathfrak{u} - l \pmod{2\mathfrak{q}}$. Note that, $2t(s+1) \equiv 2t(2l\mathfrak{u}) \equiv 0 \pmod{\mathfrak{m}}$. Using the similar argument as in the proof of the Theorem 4, we get $X \simeq A \times D \simeq \mathbb{Z}_2 \times U(\mathfrak{m})$ and $B \simeq \mathbb{Z}_2$. Hence, $Aut_H(G) \simeq B \rtimes E \simeq \mathbb{Z}_2 \rtimes (\mathbb{Z}_2 \times U(\mathfrak{m}))$.

Case(ii): If l is odd, then using the Equation (6), one can easily observe that $\gcd(\mathfrak{l},\mathfrak{d})=1$ which means that $\mathfrak{lu}-1=\mathfrak{dl}'$, where $1\leq \mathfrak{l}'\leq 8\mathfrak{u}$ and $\gcd(\mathfrak{l}',\mathfrak{u})=1$. Since $\mathfrak{lu}-1$ is even, l' is even. Thus using the Equation (6), $(\mathfrak{t}+1)\mathfrak{dl}'\equiv 0\pmod{2\mathfrak{q}}$. Since, $\gcd(\mathfrak{l}',\mathfrak{u})=1$, $\mathfrak{t}=\mathfrak{u}\mathfrak{q}'-1$, where $1\leq \mathfrak{q}'\leq 8\mathfrak{d}$ and \mathfrak{q}' is even, as t is odd. Now, $s-2t-1=2\mathfrak{dl}'-2t=2\mathfrak{d}(\mathfrak{l}'-\frac{t}{\mathfrak{d}})=2\mathfrak{d}(\frac{\mathfrak{ul}-\mathfrak{u}\mathfrak{q}'}{\mathfrak{d}})=2\mathfrak{d}\mathfrak{u}\frac{\mathfrak{l}-\mathfrak{q}'}{\mathfrak{d}}$.

Let $(\alpha, \delta) \in X$ be such that $\alpha(b) = b^i$, and $\delta(a) = a^r$, where $i \in \{1, 3\}$ and $r \in U(m)$. Then, using $\delta(a)^{\alpha(b)} = \delta(a^b)$, $a^{(2t+1)r} = \delta(a^{2t+1}) = \delta(a^b) = \delta(a)^{\alpha(b)} = (a^r)^{b^i} = a^{2t+1+(r-1)s+\frac{i-1}{2}2t(s+1)}$. Thus

$$(r-1)(2t+1-s) \equiv \frac{i-1}{2}2t(s+1) \pmod{m}.$$

Therefore, $-2du(r-1)\left(\frac{1-q'}{d}\right)\equiv (i-1)2tul\pmod{8q}$ which implies that $-(r-1)\left(\frac{1-q'}{d}\right)\equiv (i-1)l\pmod{4}$. Since, $\frac{1-q'}{d}$ and l is odd, $r\equiv i\pmod{4}$. Thus, the choices for the maps α and δ are, $\alpha_i(b)=b^i$ and $\delta_r(a)=a^r$, where $i\in\{1,3\}$ and $r\in U(m)$. So, $X\simeq A\times D\simeq \mathbb{Z}_2\times U(m)$. At last, since, l is odd, $2t(s+1)\equiv 4tlu\not\equiv 0\pmod{8q}$. Therefore, using [3, Lemma 3.3, p. 9], $Im(\beta)=\{1\}$. Thus, B is a trivial group. Hence, using the Theorem 3, $Aut_H(G)\simeq B\rtimes E\simeq \mathbb{Z}_2\times U(m)$.

4 $\operatorname{Aut}_H(G)$ of Zappa-Szép product of groups \mathbb{Z}_{p^2} and \mathbb{Z}_m , p is odd prime

In [9], Yacoub classified the groups which are Zappa-Szép product of cyclic groups of order p^2 and order m. He found that these are of the following type (see [9, Conclusion, p. 38])

$$\begin{split} &M_1 = \langle a, b \mid a^m = 1 = b^{p^2}, ab = ba^u, u^{p^2} \equiv 1 \pmod{m} \rangle, \\ &M_2 = \langle a, b \mid a^m = 1 = b^{p^2}, ab = b^t a, t^m \equiv 1 \pmod{p^2} \rangle, \\ &M_3 = \langle a, b \mid a^m = 1 = b^{p^2}, ab = b^t a^{pr+1}, a^p b = ba^{p(pr+1)} \rangle, \end{split}$$

where p is an odd prime and in M_3 , p divides m. These are not non isomorphic classes. The groups M_1 and M_2 may be isomorphic to the group M_3 depending on the values of $\mathfrak{m},\mathfrak{r}$ and \mathfrak{t} . Clearly, M_1 and M_2 are semidirect products. Throughout this section G will denote the group M_3 and we will be only concerned about groups M_3 which are the Zappa-Szép product but not the semidirect product. Note that $G = H \bowtie K$, where $H = \langle b \rangle$ and $K = \langle a \rangle$. For the group G, the mutual actions of H and K are defined by $a \cdot b = b^t$, $a^b = a^{pr+1}$ along with $a^p \cdot b = b$ and $(a^p)^b = a^{p(pr+1)}$, where t and r are integers satisfying the conditions

(G1)
$$gcd(t-1, p^2) = p$$
, that is, $t = 1 + \lambda p$, where $gcd(\lambda, p) = 1$,

$$(G2) \ \gcd(r,p) = 1,$$

(G3)
$$p(pr+1)^p \equiv p \pmod{m}$$
.

Theorem 12 Let G be as above. Then $Aut_H(G) \simeq \mathbb{Z}_p \rtimes (\mathbb{Z}_p \times \tilde{D})$, where \tilde{D} is a subgroup of $U(\mathfrak{m})$ of order $\frac{\varphi(\mathfrak{m})}{p-1}$.

Proof. Let $\beta \in Q$. Then using [3, Lemma 4.4 (i), p. 22], we have that $\beta(\alpha^l) = b^{jl}$, where $j \equiv 0 \pmod{p}$. Thus, $B \simeq \mathbb{Z}_p$. Now, let $(\alpha, \delta) \in X$ be such that $\alpha(b) = b^i$ and $\delta(\alpha) = \alpha^s$, where $i \in U(\mathbb{Z}_{p^2})$ and $s \in U(m)$.

Now, $\delta(k) \cdot \alpha(h) = \alpha(k \cdot h)$, $b^{it} = \alpha(b^t) = \alpha(a \cdot b) = \delta(a) \cdot \alpha(b) = a^s \cdot b^i = b^{it^s}$. Thus, it $s \equiv it \pmod{p^2}$ which implies that $(1 + p\lambda)^{s-1} \equiv 1 \pmod{p^2}$. Therefore, $s \equiv 1 \pmod{p}$. Using $\delta(k)^{\alpha(h)} = \delta(k^h)$, (G3) and the fact that $s \equiv 1 \pmod{p}$, we get, $\alpha^{(pr+1)s} = \delta(\alpha^{pr+1}) = \delta(\alpha^b) = \delta(\alpha)^{\alpha(b)} = (\alpha^s)^{b^i} =$

 $\alpha^{\frac{\mathrm{i} s(s-1)}{2}((pr+1)^{\lambda p}-1)+s(pr+1)^{\mathfrak{i}}}=\alpha^{s(pr+1)^{\mathfrak{i}}}. \text{ Thus } (pr+1)s\equiv s(pr+1)^{\mathfrak{i}} \text{ (mod } \mathfrak{m}).$ Therefore, $\mathfrak{i}\equiv 1 \pmod{\mathfrak{p}}.$

Thus, the choices for the maps α and δ are, $\alpha_i(b) = b^i$ and $\delta_s(\alpha) = \alpha^s$, where $i \in U(p^2)$, $i \equiv 1 \pmod p$, $s \in U(m)$, and $s \equiv 1 \pmod p$. So, $X \simeq A \times D \simeq \mathbb{Z}_p \times \tilde{D}$, where \tilde{D} is a subgroup of U(m) of order $\frac{\varphi(m)}{p-1}$. Hence, using the Theorem 3, $\text{Aut}_H(G) \simeq B \rtimes E \simeq \mathbb{Z}_p \rtimes (\mathbb{Z}_p \times \tilde{D})$).

Acknowledgement

The Second author is supported by the Senior Research Fellowship of UGC, India.

References

- [1] Z. Arad, E. Fisman, On Finite Factorizable Groups, J. Algebra, 86 (1984), 522–548.
- [2] A. Firat, C. Sinan, Knit Products of Some Groups and Their Applications, Rend. Semin. Mat. Univ. Padova, 121 (2009), 1–11.
- [3] R. Lal, V. Kakkar, Automorphisms of Zappa-Szép product, https://arxiv.org/abs/2110.11743v1.
- [4] J. Szép, Uber die als Produkt zweier Untergruppen darstellbaren endlichen Gruppen, Comment. Math. Helv., 22 (1949), 31–33.
- [5] J. Szép, On the structure of groups which can be represented as the product of two subgroups, *Acta Sci. Math.* (Szeged), **12** (1950), 57–61.
- [6] J. Szép, Zur Theorie der faktorisierbaren Gruppen, Acta Sci. Math. (Szeged), 16 (1955), 54–57.
- [7] J. Szép, G. Zappa, Sui gruppi trifattorizzabili, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 45 (1968), 113–116.
- [8] K. R. Yacoub, On general products of two finite cyclic groups one being of order 4. (Arabic summary), Proc. Math. Phys. Soc. Egypt, 21 (1957), 119–126.

- [9] K. R. Yacoub, On general products of two finite cyclic groups one of which being of order p², Publ. Math. Debrecen, 6 (1959), 26–39.
- [10] G. Zappa, Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro, *Atti Secondo Congresso Un. Mat. Ital.*, Bologna, 1940, Edizioni Cremonense (Rome 1942), 119–125.

Received: December 21, 2021