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Abstract. In this paper, we have found the automorphism group of the
Zappa-Szép product of two groups fixing a subgroup. We have computed
these automorphisms for a subgroup of order p2 of a group G which is
the Zappa-Szép product of two cyclic groups in which one is of order p2

and other is of order m.

1 Introduction

G. Zappa in [10], introduced the general product of two groups called the
Zappa-Szép product. J. Szép studied such products in the series of papers
(few of them are [6, 4, 5, 7]). Let H and K be two subgroups of a group G.
Then G is called Zappa-Szép product of H and K if G = HK and H ∩ K = {1}

and is written as G = H ▷◁ K. Moreover, any element g ∈ G can be uniquely
expressed as g = hk, where h ∈ H and k ∈ K. So, for kh ∈ G, we must have
elements σ(k, h) ∈ H and θ(k, h) ∈ K such that kh = σ(k, h)θ(k, h). Thus we
have matched pair of maps σ : K × H → H and θ : K × H → K defined by
σ(k, h) = k ·h and θ(k, h) = kh and satisfies the following conditions (See [2])

(C1) 1 · h = h and k1 = k,
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(C2) k · 1 = 1 = 1h,

(C3) kk′ · h = k · (k′ · h),

(C4) (kk′)h = kk
′·hk′h,

(C5) k · (hh′) = (k · h)(kh · h′),

(C6) khh
′
= (kh)h

′
,

for all h, h′ ∈ H and k, k′ ∈ K.

The automorphisms of the Zappa-Szép product of two groups is studied in
[3] as the 2 × 2 matrices of maps satisfying some certain conditions. The
terminology used in this paper is same as in [3]. In this paper, we have found
the automorphism group of the Zappa-Szép product fixing the subgroup H as
the 2×2matrices of maps satisfying some certain conditions. As an application,
we have computed the automorphism group fixing a subgroup of order p2 of
a group G which is the Zappa-Szép product of two cyclic groups in which one
is of order p2 and other is of order m. Throughout the paper, Zn denotes the
cyclic group of order n and U(n) denotes the group of units of (mod n). Also,
AutH(G) = {ϕ ∈ Aut(G) | ϕ(H) = H} denotes the group of all automorphisms
of a group G fixing the subgroup H. Let a group U acts on a group V, then
StabU(V) denotes the stabilizer of V in U.

2 Structure of automorphism group, AutH(G)

Let G = H ▷◁ K be the Zappa-Szép product of two groups H and K. Let U,V
and W be any groups. Map(U,V) denotes the set of all maps between the
groups U and V. If ϕ,ψ ∈ Map(U,V) and η ∈ Map(V,W), then ϕ + ψ ∈
Map(U,V) is defined by (ϕ+ψ)(u) = ϕ(u)ψ(u), ηϕ ∈Map(U,W) is defined
by ηϕ(u) = η(ϕ(u)), ϕ ·ψ ∈Map(U,V) is defined by ϕ ·ψ(u) = ϕ(u) ·ψ(u)
and ϕψ ∈Map(U,V) is defined by ϕψ(u) = ϕ(u)ψ(u), for all u ∈ U.

Now, consider the set,

AH =

{(
α β

0 δ

)
|
α ∈ Aut(H), β ∈Map(K,H),

and δ ∈Map(K,K)

}
,

where α, β and δ satisfy the following conditions,

(A1) β(kk′) = β(k)(δ(k) · β(k′)),
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(A2) δ(kk′) = δ(k)β(k
′)δ(k′),

(A3) β(k)(δ(k) · α(h)) = α(k · h)β(kh),

(A4) δ(k)α(h) = δ(kh),

(A5) For any h′k′ ∈ G, there exists a unique h ∈ H and k ∈ K such that
h′ = α(h)β(k) and k′ = δ(k).

Then, the set AH forms a group with the binary operation as the usual mul-
tiplication of matrices defined by(

α′ β′

0 δ′

)(
α β

0 δ

)
=

(
α′α α′β+ β′δ
0 δ′δ

)
.

Clearly, AutH(K) is a subgroup of Aut(G).

Theorem 1 Let G = H ▷◁ K be the Zappa-Szép product of two groups H
and K, and AH be as above. Then there is an isomorphism of groups between

AutH(G) and AH given by θ ←→ (
α β

0 δ

)
, where θ(h) = α(h) and θ(k) =

β(k)δ(k), for all h ∈ H and k ∈ K.

Proof.
Let θ ∈ AutH(G) be defined by θ(h) = α(h) and θ(k) = β(k)δ(k), for all
h ∈ H and k ∈ K. Then α = θ|H, so α ∈ Aut(H). Now, for all k, k′ ∈ K,
θ(kk′) = θ(k)θ(k′) = (β(k)δ(k))(β(k′)δ(k′)) = β(k)(δ(k) ·β(k′))δ(k)β(k′)δ(k′).
Thus, β(kk′)δ(kk′) = β(k)(δ(k)·β(k′)) δ(k)β(k′)δ(k′). Therefore, by uniqueness
of representation, we have (A1) and (A2).

Now, θ(kh) = θ((k · h)(kh)) = θ(k · h)θ(kh) = α(k · h)β(kh)δ(kh). Also,
θ(kh) = θ(k)θ(h) = β(k)δ(k)α(h) = β(k)(δ(k) · α(h))δ(k)α(h). Therefore,
by the uniqueness, β(k)(δ(k) · α(h)) = α(k · h)β(kh)) and δ(k)α(h) = δ(kh),
which proves (A3) and (A4). Finally, (A5) holds because θ is onto. Thus, to

every θ ∈ AutH(G) we can associate the matrix

(
α β

0 δ

)
∈ AH. This defines

a map T : AutH(G) −→ AH given by θ 7−→ (
α β

0 δ

)
. Now, if

(
α β

0 δ

)
∈

AH satisfying the conditions (A1) − (A5), then we associate to it, the map
θ : G −→ G defined by θ(h) = α(h) and θ(k) = β(k)δ(k), for all h ∈ H and
k ∈ K. Using (A1)−(A4), one can check that θ is an endomorphism of G. Also,
by (A5), the map θ is onto. Now, let hk ∈ ker(θ). Then θ(hk) = 1. Therefore,
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α(h)β(k)δ(k) = 1 and so, by the uniqueness of representation α(h)β(k) = 1

and δ(k) = 1. By (A5), δ is a bijection and so, k = 1. Thus using [3, Proposition
2.1, p. 3], β(k) = 1 which further implies that α(h) = 1. Again, by (A5), α
is a bijection so, h = 1. Therefore, h = 1 = k and so, ker(θ) = {1}. Thus, θ
is one-one and hence, θ ∈ AutH(G). Thus, T is a bijection. Let α, β and δ
be the maps associated with θ and α′, β′ and δ′ be the maps associated with
θ′. Now, for all h ∈ H and k ∈ K, we have θ′θ(h) = α′α(h) and θ′θ(k) =
θ′(β(k)δ(k)) = α′(β(k))β′(δ(k))δ′(δ(k)) = (α′β+ β′δ)(k)δ′(δ(k)).

Therefore, if we write hk as

(
h

k

)
, then θ′θ(h) =

(
α′α
0

)(
h

1

)
and θ′θ(k) =(

α′β+ β′δ
δ′δ

)(
1

k

)
. Thus, θ′θ(hk) =

(
α′α α′β+ β′δ
0 δ′δ

)(
h

k

)
. Therefore, T(θ′θ)

=

(
α′α α′β+ β′δ
0 δ′δ

)
= T(θ)T(θ′). Hence, T is an isomorphism of groups. □

From here on, we will identify the automorphisms of G fixing the subgroup H
with the matrices in AH. Now, we have the following remarks,

(i)

(
α 0

0 1

)
∈ AH if and only if α ∈ Aut(H), k · α(h) = α(k · h) and

kh = kα(h) for all h ∈ H and k ∈ K.

(ii)

(
1 β

0 1

)
∈ AH if and only if β(kk′) = β(k)(k · β(k′)), k = kβ(k

′), β(k) =

β(kh) for all h ∈ H and k ∈ K.

(iii)

(
1 0

0 δ

)
∈ AH if and only if δ ∈ Aut(K), δ(k) · h = k · h, δ(k)h = δ(kh)

for all h ∈ H and k ∈ K.

(iv)

(
α 0

0 δ

)
∈ AH if and only if α ∈ Aut(H), δ ∈ Aut(K), δ(k) · α(h) =

α(k · h), and δ(k)α(h) = δ(kh) for all h ∈ H and k ∈ K.

Let

P ={α ∈ Aut(H) | k · α(h) = α(k · h) and kα(h) = kh},

Q ={β ∈Map(K,H) | β(kk′) = β(k)(k · β(k′)), k = kβ(k
′), β(k) = β(kh)},

S ={δ ∈ Aut(K) | δ(k) · h = k · h, δ(k)h = δ(kh)},

X ={(α, δ) ∈ Aut(H)×Aut(K) | δ(k) · α(h) = α(k · h), δ(k)α(h) = δ(kh)},
Y ={(β, δ) ∈Map(K,H)×Map(K,K) | β(kk′) = β(k)(δ(k) · β(k′)),



292 V. Kakkar, R. Lal

δ(kk′) = δ(k)β(k
′)δ(k′), β(k)(δ(k) · h) = (k · h)β(kh), δ(k)h = δ(kh)}.

Then one can easily check that P, S, X and Y are all subgroups of the group
AutH(G). But Q need not be subgroup of the group AutH(G). However, if H
is abelian, then Q is subgroups of AutH(G). Also, note that P × S ≤ X. Let

A =

{(
α 0

0 1

)
| α ∈ P

}
, B =

{(
1 β

0 1

)
| β ∈ Q

}
,

D =

{(
1 0

0 δ

)
| δ ∈ S

}
, E =

{(
α 0

0 δ

)
| (α, δ) ∈ X

}
,

F =

{(
1 β

0 δ

)
| (β, δ) ∈ Y

}
.

be the corresponding subsets of AH. Then one can easily check that A, D, E
and F are subgroups of AH, and if H is abelian group, then B is also a subgroup
of AH.

Theorem 2 If either P = Aut(H) or S = Aut(K), then X = P × S. Equiva-
lently, E = A×D.

Proof. Let (α, δ) ∈ X. Then δ(k) ·α(h) = α(k ·h) and δ(k)α(h) = δ(kh). Now,
if P = Aut(H), then k ·α(h) = α(k ·h). Therefore, using δ(k) ·α(h) = α(k ·h),
we get δ(k) · α(h) = k · α(h). Also, since P = Aut(H), kα(h) = kh. So, using
δ(k)α(h) = δ(kh), we get δ(kh) = δ(k)α(h) = δ(k)h. Thus, δ ∈ S and so,
(α, δ) ∈ P × S. Hence, X = P × S. By the similar argument, if S = Aut(K),
then X = P × S. □

Theorem 3 Let

(
α β

0 δ

)
∈ AH. If β ∈ Q, then AutH(G) ≃ B⋊ E.

Proof. Let

(
1 β

0 1

)
∈ B and

(
α 0

0 δ

)
∈ E. Then

(
α 0

0 δ

)(
1 β

0 1

)(
α 0

0 δ

)−1

=

(
1 αβδ−1

0 1

)
. (1)

Now, for all h ∈ H and k, k′ ∈ K,

αβδ−1(kk′) = αβ(δ−1(k)δ−1(k′)) = α(β(δ−1(k))(δ−1(k) · β(δ−1(k′))))
= α(β(δ−1(k))α(δ−1(k) · βδ−1(k′))
= αβδ−1(k)(δ(δ−1(k)) · α(βδ−1(k′)))
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= αβδ−1(k)(k · αβδ−1(k′)).

Also, one can easily observe that kαβδ
−1(k′) = k and αβδ−1(kh) = αβδ−1(k).

Thus, αβδ−1 ∈ Q. Therefore, by the Equation (1), we get(
α 0

0 δ

)(
1 β

0 1

)(
α 0

0 δ

)−1

=

(
1 αβδ−1

0 1

)
∈ B.

Thus, B ◁AH. Clearly, B ∩ E = {1}. If

(
α β

0 δ

)
∈ AH, then

(
α β

0 δ

)
=

(
α 0

0 δ

)(
1 α−1β

0 1

)
∈ EB.

Hence, AH = B⋊ E and so, AutH(G) ≃ B⋊ E. □

3 AutH(G) of Zappa-Szép product of groups Z4 and Zm
In [8], Yacoub classified the groups which are Zappa-Szép product of cyclic
groups of order 4 and order m. He found that these are of the following type
(see [8, Conclusion, p. 126])

L1 =⟨a, b | am = 1 = b4, ab = bar, r4 ≡ 1 (mod m)⟩,
L2 =⟨a, b | am = 1 = b4, ab = b3a2t+1, a2b = ba2s⟩,

where in L2, m is even. These are not non-isomorphic classes. The group L1
may be isomorphic to the group L2 depending on the values of m, r and t (see
[8, Theorem 5, p. 126]). Clearly, L1 is a semidirect product. Throughout this
section G will denote the group L2 and we will be only concerned about groups
L2 which are Zappa-Szép product but not the semidirect product. Note that
G = H ▷◁ K, where H = ⟨b⟩ and K = ⟨a⟩. For the group G, the mutual actions
of H and K are defined by a · b = b3, ab = a2t+1 along with a2 · b = b and
(a2)b = a2s, where t and s are the integers satisfying the conditions

(G1) 2s2 ≡ 2 (mod m),

(G2) 4t(s+ 1) ≡ 0 (mod m),

(G3) 2(t+ 1)(s− 1) ≡ 0 (mod m),

(G4) gcd(s, m2 ) = 1.
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Now, one can easily observe that for the given group G, k · α(h) = α(k · h),
β(k) = β(kh), δ(k) · h = k · h, δ(k) · α(h) = α(k · h) and β(k)(δ(k) · α(h)) =
α(k · h)β(kh) always holds for all α ∈ P, β ∈ Q, δ ∈ S, (α, δ) ∈ X, and
(β, δ) ∈ Y respectively. Thus the subgroups P, Q, S, X, and Y reduces to the
following,

P ={α ∈ Aut(H) | kα(h) = kh},

Q ={β ∈ Hom(K,H) | k = kβ(k
′)} = Hom(K, StabH(K)),

S ={δ ∈ Aut(K) | δ(k)h = δ(kh)},

X ={(α, δ) ∈ Aut(H)×Aut(K) | δ(k)α(h) = δ(kh)},
Y ={(β, δ) ∈Map(K,H)×Map(K,K) | β(kk′) = β(k)(δ(k) · β(k′)),

δ(kk′) = δ(k)β(k
′)δ(k′), δ(k)α(h) = δ(kh)}.

Now, we will find the structure of the automorphism group AutH(G). For this,
we will proceed by first taking t to be such that gcd(t,m) = 1 and then by
taking t such that gcd(t,m) = d, where d > 1.

Theorem 4 Let 4 divides m and t be odd such that gcd(t,m) = 1. Then

AutH(G) ≃
{

Z2 ⋊ (Z2 ×U(m)), if s ∈ {m2 − 1,m− 1}

Z2 ×U(m), if s ∈ {m4 − 1, 3m4 − 1}
.

Proof. Let gcd(t,m) = 1. Then, using (G2), we get, s ≡ −1 (mod m
4 ) which

implies that s ∈ {m4 − 1, m2 − 1, 3m4 − 1,m − 1}. Now, using (G3), we get

t ≡ −1 (mod m
4 ). Then t ∈ {m4 − 1, m2 − 1, 3m4 − 1,m− 1}.

Let (α, δ) ∈ X be such that α(b) = bi, and δ(a) = ar, where i ∈ {1, 3}

and r ∈ U(m). Then, using δ(a)α(b) = δ(ab), a(2t+1)r = δ(a2t+1) = δ(ab) =

δ(a)α(b) = (ar)b
i
= a2t+1+(r−1)s+ i−1

2
2t(s+1). Thus

(r− 1)(2t+ 1− s) ≡ i− 1

2
2t(s+ 1) (mod m). (2)

If s ∈ {m2 − 1,m − 1}, then the Equation (2) holds for all values of t and r. If

s ∈ {m4 − 1, 3m4 − 1}, then the Equation (2) holds for all t and r ≡ i (mod 4).
Thus, the choices for the maps α and δ are, αi(b) = b

i and δr(a) = a
r, for all

i ∈ {1, 3} and r ∈ U(m). So, X ≃ A×D ≃ Z2×U(m). Now, if s ∈ {m2 −1,m−1},
then 2t(s+1) ≡ 0 (modm). Therefore, using [3, Lemma 3.3, p. 9], Im(β) = {b2}

and so, B ≃ Z2. If s ∈ {m4 − 1, 3m4 − 1}, then 2t(s+ 1) ̸≡ 0 (mod m). Therefore,
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using [3, Lemma 3.3, p. 9], Im(β) = {1} and so, B is a trivial group. Hence, by
the Theorem 3,

AutH(G) ≃ B⋊ E ≃
{

Z2 ⋊ (Z2 ×U(m)), if s ∈ {m2 − 1,m− 1}

Z2 ×U(m), if s ∈ {m4 − 1, 3m4 − 1}
.

□

Theorem 5 Let m = 2q, where q > 1 is odd and gcd(t,m) = 1. Then,
AutH(G) ≃ Z2 ⋊ (Z2 ×U(m)).

Proof. Using (G1), (G2), and (G3), we get s, t ∈ {m2 − 1,m − 1}. Then, the
result follows on the lines of the proof of the Theorem 4. □

Theorem 6 Let m = 2n, n ≥ 3 and t be even. Then

AutH(G) ≃
{

(Z4 ⋊ (Z2 × Z2n−2))⋊ Z2, if 2t(s+ 1) ≡ 0 (mod 2n)
Z2 ⋊ (Z2 × (Z2 × Z2n−2)), if 2t(s+ 1) ̸≡ 0 (mod 2n)

.

Proof. Let t be even. Then 2(t + 1)(s − 1) ≡ 0 (mod 2n) implies that s ≡
1 (mod 2n−1). Therefore, s = 1, 2n−1+ 1. Now, 4t(s+ 1) ≡ 0 (mod 2n) implies
that t ≡ 0 (mod 2n−3). Therefore, by the defining relations of the group G,
t ∈ {2n−3, 2n−2, 3·2n−3, 2n−1, 5·2n−3, 3·2n−2, 7·2n−3, 2n}. Note that, for t = 2n−1
or t = 2n, G is the semidirect product of H and K. So, we consider the other
values of t.

Case(i). Let t ∈ {2n−2, 3 · 2n−2}. Then, one can easily observe that 2t(s+ 1) ≡
0 (mod 2n). Therefore, for all α ∈ P, (al)α(b) = (al)b

i
= a2it+l = a2t+l = (al)b.

Thus, P ≃ A ≃ Z2. Now, let (β, δ) ∈ Y be such that β(a) = bj, and δ(a) = ar,
where 0 ≤ j ≤ 3 and 0 ≤ r ≤ 2n − 1 and r is odd. Using [3, Lemma 3.2
(ii), p. 7], β(kk′) = β(k)(δ(k) · β(k′)) holds, for all k, k′ ∈ K. Now, using
δ(kk′) = δ(k)β(k

′)δ(k′), we get

δ(al) =

{
a(l−1)(jt+r)+r, if l is odd

al(jt+r), if l is even
. (3)

Finally, using δ(kh) = δ(k)h, a2t+r = (ar)b = δ(a)b = δ(ab) = δ(a2t+1) =
a2t(jt+r)+r = a2tr+r. Thus, 2t(r−1) ≡ 0 (mod 2n) which is true for all r ∈ U(2n).

So, Y ≃ B⋊D ≃ Z4 ⋊ (Z2 × Z2n−2). Now, let

(
α 0

0 1

)
∈ A and

(
1 β

0 δ

)
∈ F.

Then
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(
α 0

0 1

)(
1 β

0 δ

)(
α−1 0

0 1

)
=

(
1 αβ

0 δ

)
∈ F.

Thus F ◁AH. Clearly, A ∩ F = {1}. Also, if

(
α β

0 δ

)
∈ AH, then

(
α β

0 δ

)
=

(
1 β

0 δ

)(
α 0

0 1

)
∈ FA.

Hence, AH = F⋊A and so, AutH(G) ≃ F⋊A ≃ (Z4 ⋊ (Z2 × Z2n−2))⋊ Z2.

Case(ii). Let t ∈ {2n−3, 3 · 2n−3, 5 · 2n−3, 7 · 2n−3}. Then, one can easily observe
that 2t(s + 1) ̸≡ 0 (mod 2n). Let (α,β, δ) ∈ AutH(G) be such that α(b) =
bi, β(a) = bj, and δ(a) = ar, where i ∈ {1, 3}, 0 ≤ j ≤ 3, 0 ≤ r ≤ 2n − 1 and r
is odd. Using [3, Lemma 3.2 (ii), p. 7], β(kk′) = β(k)(δ(k) ·β(k′)) holds, for all
k, k′ ∈ K. Now, using (A5), for any bjal ∈ G there is unique bj ∈ H such that
bj = α(bj)β(al). Note that, if α(bj) = bj, then β(al) = 1 and if α(bj) = b−j,
then β(al) = b2. Thus, Im(β) = ⟨b2⟩.

Finally, using the definition of the map δ in the Equation (3) and δ(kh) =

δ(k)α(h), we get a2it+r = (ar)b
i
= δ(a)α(b) = δ(ab) = δ(a2t+1) = a2t(jt+r)+r.

Thus, 2t(jt+ r− i) ≡ 0 (mod 2n) which implies that

r ≡ i (mod 4), if t ∈ {2n−3, 3 · 2n−3, 5 · 2n−3, 7 · 2n−3} and n ≥ 5
r ≡ i+ 2j (mod 4), if t ∈ {2n−3, 3 · 2n−3, 5 · 2n−3, 7 · 2n−3} and n = 4

.

Thus r ≡ i (mod 4) and so, the choices for the maps α and δ are, αi(b) = b
i

and δr(a) = ar, where i ∈ {1, 3} and r ∈ U(m). Note that, if

(
α β

0 δ

)
∈ AH,

then (
α β

0 δ

)
=

(
α 0

0 δ

)(
1 α−1β

0 1

)
∈ EB.

Clearly, E ∩ B = {1} and E normalizes B. So, B ◁AH. Hence, AH = B⋊ E and
so, AutH(G) ≃ B⋊ E ≃ Z2 ⋊ (Z2 × (Z2 × Z2n−2)). □

Now, we will discuss the structure of the automorphism group AutH(G) in the
case when gcd(t,m) > 1.

Theorem 7 Let m = 4q, where q > 1 is odd and gcd(t,m) = 2id, where
i ∈ {0, 1, 2}, and d divides q. Then AutH(G) ≃ Z2 ⋊ (Z2 ×U(m)).
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Proof. Let q = du, for some integer u. Then, using (G2), s ≡ −1 (mod u)
which implies that s = lu − 1, where 1 ≤ l ≤ 4d. Since, gcd(s, m2 ) = 1, s is

odd and so, l is even. Using (G1) and (G3), we get l(u l2 − 1) ≡ 0 (mod d)

and t+ 1 ≡ u l2 (mod q). Now, one can easily observe that gcd(l, d) = 1 which

implies that u l2 − 1 ≡ 0 (mod d). Thus, 2t(s + 1) ≡ 2ltu ≡ 0 (mod m) and
gcd(s+ 1, m2 ) ̸= 1. Therefore, using [3, Lemma 3.3, p. 9], B ≃ Z2.

Let (α, δ) ∈ X be such that α(b) = bi and δ(a) = ar, where i ∈ {1, 3} and
r ∈ U(m). Then, using δ(a)α(b) = δ(ab) and the fact that 2t(s + 1) ≡
0 (mod m), we get a(2t+1)r = δ(a2t+1) = δ(ab) = δ(a)α(b) = (ar)b

i
=

a2t+1+(r−1)s+ i−1
2
2t(s+1) = a2t+1+(r−1)s. Thus

(r− 1)(s− 2t− 1) ≡ 0 (mod m). (4)

Since 2t(s + 1) ≡ 0 (mod m), using (G3), we get 2(s − 2t − 1) ≡ 0 (mod m).
Therefore, the Equation (4) holds for all r ∈ U(m). Thus, using the Theorem
2, X ≃ A×D ≃ Z2×U(m). Hence, using the Theorem 3, AutH(G) ≃ B⋊E ≃
Z2 ⋊ (Z2 ×U(m)). □

Theorem 8 Let m = 2q, where q > 1 is odd and gcd(t,m) = 2id, where
i ∈ {0, 1}, and d divides q. Then AutH(G) ≃ Z2 ⋊ (Z2 ×U(m)).

Proof. Follows on the lines of the proof of the Theorem 7. □

Theorem 9 Let m = 2nq, t be even and gcd(m, t) = 2id, where 1 ≤ i ≤ n,
n ≥ 3, q > 1 and d divides q. Then

AutH(G) ≃


(Z4 ⋊U(m))⋊ Z2, if d = q and 2t(s+ 1) ≡ 0 (mod m)
Z2 ⋊ (Z2 ×U(m)), if d = q and 2t(s+ 1) ̸≡ 0 (mod m)
Z2 ⋊ (Z2 ×U(m)), if d ̸= q and n− 2 ≤ i ≤ n
Z2 ×U(m), if d ̸= q and i = n− 3

.

Proof. We consider the following four cases to find the structure of AutH(G).

Case(i): Let d = q and gcd(t + 1,m) = u. Since, t + 1 is odd, u is odd and
u divides q. Thus, u divides t and so, u = 1. Therefore, using (G2) and (G3),
s ≡ 1 (mod m

2 ) and t ≡ 0 (mod m
8 ). By the similar argument used in the proof

of the Theorem 6 (i), we get,

AutH(G) ≃
{

(Z4 ⋊U(m))⋊ Z2, if 2t(s+ 1) ≡ 0 (mod m)
Z2 ⋊ (Z2 ×U(m)), if 2t(s+ 1) ̸≡ 0 (mod m)

.
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Case(ii): Let n − 2 ≤ i ≤ n d ̸= q and q = du, for some odd integer u.
Then using (G2), s ≡ −1 (mod u) and so, s = lu − 1, where 0 ≤ l ≤ 2nd.
Since, gcd(s, m2 ) = 1, s is odd and so, l is even. Now, using (G1), l2(

l
2u− 1) ≡

0 (mod 2n−3d) and by (G3), t ≡ l
2u−1 (mod 2n−2q). Since, t is even, l2 is odd

and gcd( l2 , d) = 1. Thus,
l
2u ≡ 1 (mod 2n−3d) and t ≡ 2id (mod 2n−2q). One

can easily observe that 2t(s + 1) ≡ 0 (mod m). Therefore, using the similar
argument as in the proof of the Theorem 4, we get, AutH(G) ≃ B ⋊ E ≃
Z2 ⋊ (Z2 ×U(m)).

Case(iii): Let i = n−3, d ̸= q and q = du, for some odd integer u. Then using
(G2), s ≡ −1 (mod 2u), that is, s = 2lu− 1, where 1 ≤ l ≤ 2n−1d. Now, using
(G1) and (G3), l(lu−1) ≡ 0 (mod 2n−3d) and (t+1)(lu−1) ≡ 0 (mod 2n−2q).
If l is even, then t ≡ lu − 1 (mod 2n−2q) gives that t is odd, which is a
contradiction. Therefore, l is odd. Using (t+ 1)(lu− 1) ≡ 0 (mod 2n−2q), one
can easily observe that gcd(l, d) = 1. Then, lu−1 = 2n−3dl′ and s = 2n−2dl′+
1, where 1 ≤ l′ ≤ 8u. Clearly, gcd(l′, u) = 1. Thus, (t+1)l′ ≡ 0 (mod 2u). If l′

is odd, then (t+1) ≡ 0 (mod 2u) which implies that t is odd. So, l′ is even and
so, t = uq′ − 1, 1 ≤ q′ < 2n−1d, q′ is odd as t is even. Note that s− 2t− 1 =

2n−2dl′ − 2t = 2n−2d(l′ − t
2n−3d

) = 2n−2d
(
lu−1
2n−3d

− uq′−1
2n−3d

)
= 2n−2du

(
l−q′

2n−3d

)
.

Let (α, δ) ∈ X be such that α(b) = bi, and δ(a) = ar, where i ∈ {1, 3}

and r ∈ U(m). Then, using δ(a)α(b) = δ(ab), a(2t+1)r = δ(a2t+1) = δ(ab) =

δ(a)α(b) = (ar)b
i
= a2t+1+(r−1)s+ i−1

2
2t(s+1). Thus

(r− 1)(2t+ 1− s) ≡ i− 1

2
2t(s+ 1) (mod m).

Therefore, −2n−2du(r−1)
(
l−q′

2n−3d

)
≡ i−1

2 (4tul) (mod 2nq) which implies that

−(r− 1)
(
l−q′

2n−3d

)
≡ (i− 1)l (mod 4). Since, l−q′

2n−3d
and l is odd, r ≡ i (mod 4).

Thus, the choices for the maps α and δ are, αi(b) = bi and δr(a) = ar,
where i ∈ {1, 3} and r ∈ U(m). So, X ≃ A × D ≃ Z2 × U(m). At last, since,
l is odd, 2t(s + 1) ≡ 4tlu ̸≡ 0 (mod m). Therefore, using [3, Lemma 3.3,
p. 9], Im(β) = {1}. Thus, B is a trivial group. Hence, using the Theorem 3,
AutH(G) ≃ B⋊ E ≃ Z2 ×U(m).

Case(iv): Let 1 ≤ i ≤ n − 4. and q = du, for some odd integer u. Then
using (G2), s ≡ −1 (mod 2n−i−2u), that is, s = 2n−i−2lu − 1, where 1 ≤
l ≤ 2i+2d. Now, using (G1) and (G3), l(2n−i−3lu − 1) ≡ 0 (mod 2id) and
(t + 1)(lu2n−i−3 − 1) ≡ 0 (mod 2n−2q). Since, n − i − 3 > 0, lu2n−i−3 − 1 is
odd. If l is even, then t ≡ lu2n−i−3− 1 (mod 2n−2q) gives that t is odd, which
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is a contradiction. Now, if l is odd, then Using (t+1)(lu−1) ≡ 0 (mod 2n−2q),
one can easily observe that gcd(l, d) = 1. Thus, 2n−i−3lu − 1 ≡ 0 (mod 2id),
which is impossible. Hence, there is no such l exist and so, no such t and s
exist and hence no group G exists as the Zappa-Szép product of H and K in
this case. □

Theorem 10 Let m = 2nq, t be odd and gcd(t,m) = d, where n ≥ 4 and q
is odd. Then

AutH(G) ≃
{

Z2 ⋊ (Z2 ×U(m)), if 2t(s+ 1) ≡ 0 (mod m)
Z2 ×U(m), if 2t(s+ 1) ̸≡ 0 (mod m)

.

Proof. Let q = du, for some odd integer u. Then using (G2), we have s ≡
−1 (mod 2n−2u) which implies that s = 2n−2lu − 1, where 1 ≤ l ≤ 4d. Now,
using (G1), l(2n−3ul− 1) ≡ 0 (mod d). Using (G3), we get

(t+ 1)(lu2n−3 − 1) ≡ 0 (mod 2n−2q). (5)

Case(i): If l is even, then by the Equation (5), t ≡ lu2n−3 − 1 (mod 2n−2q).
Note that, 2t(s + 1) ≡ 2t(2n−2lu) ≡ 0 (mod m). Using the similar argument
as in the proof of the Theorem 4, we get X ≃ A×D ≃ Z2×U(m) and B ≃ Z2.
Hence, AutH(G) ≃ B⋊ E ≃ Z2 ⋊ (Z2 ×U(m)).

Case(ii): If l is odd, then using the Equation (5), one can easily observe that
gcd(l, d) = 1 which means that 2n−3lu−1 = dl′, where l′ is odd, gcd(l′, u) = 1
and 1 ≤ l′ ≤ 2nu. Thus, using the Equation (5), (t + 1)dl′ ≡ 0 (mod 2n−2q).
Since, gcd(l′, u) = 1, t = 2n−2uq′ − 1, where 1 ≤ q′ ≤ 4d. Now, s − 2t − 1 =

2dl′ − 2t = 2d(l′ − t
d) = 2d(

2n−3ul−2n−2uq′

d ) = 2n−2du l−2q
′

d .

Let (α, δ) ∈ X be such that α(b) = bi, and δ(a) = ar, where i ∈ {1, 3}

and r ∈ U(m). Then, using δ(a)α(b) = δ(ab), a(2t+1)r = δ(a2t+1) = δ(ab) =

δ(a)α(b) = (ar)b
i
= a2t+1+(r−1)s+ i−1

2
2t(s+1). Thus

(r− 1)(2t+ 1− s) ≡ i− 1

2
2t(s+ 1) (mod m).

Therefore, −2n−2du(r− 1)
(
l−2q′

d

)
≡ (i− 1)2n−2tul (mod 2nq) which implies

that −(r−1)
(
l−2q′

d

)
≡ (i−1)l (mod 4). Since, l−2q

′

d and l is odd, r ≡ i (mod 4).

Thus, the choices for the maps α and δ are, αi(b) = b
i and δr(a) = a

r, where
i ∈ {1, 3} and r ∈ U(m). So, X ≃ A × D ≃ Z2 × U(m). At last, since, l
is odd, 2t(s + 1) ≡ 2n−1tlu ̸≡ 0 (mod m). Therefore, using [3, Lemma 3.3,
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p. 9], Im(β) = {1}. Thus, B is a trivial group. Hence, using the Theorem 3,
AutH(G) ≃ B⋊ E ≃ Z2 ×U(m). □

Theorem 11 Let m = 8q, t is odd, and gcd(t,m) = d, where q > 1 is odd.
Then

AutH(G) ≃
{

Z2 ⋊ (Z2 ×U(m)), if 2t(s+ 1) ≡ 0 (mod m)
Z2 ×U(m), if 2t(s+ 1) ̸≡ 0 (mod m)

.

Proof. Let q = du, for some odd integer u. Then using (G2), s ≡ −1 (mod 2u)
which implies that s = 2lu−1, where 1 ≤ l ≤ 4d. Now, using (G1), l(lu−1) ≡
0 (mod d). Using (G3), we get

(t+ 1)(lu− 1) ≡ 0 (mod 2q). (6)

Case(i): If l is even, then by the Equation (6), t ≡ lu − 1 (mod 2q). Note
that, 2t(s + 1) ≡ 2t(2lu) ≡ 0 (mod m). Using the similar argument as in the
proof of the Theorem 4, we get X ≃ A×D ≃ Z2 ×U(m) and B ≃ Z2. Hence,
AutH(G) ≃ B⋊ E ≃ Z2 ⋊ (Z2 ×U(m)).

Case(ii): If l is odd, then using the Equation (6), one can easily observe
that gcd(l, d) = 1 which means that lu − 1 = dl′, where 1 ≤ l′ ≤ 8u and
gcd(l′, u) = 1. Since lu − 1 is even, l′ is even. Thus using the Equation (6),
(t+ 1)dl′ ≡ 0 (mod 2q). Since, gcd(l′, u) = 1, t = uq′ − 1, where 1 ≤ q′ ≤ 8d
and q′ is even, as t is odd. Now, s − 2t − 1 = 2dl′ − 2t = 2d(l′ − t

d) =

2d(ul−uq
′

d ) = 2du l−q
′

d .

Let (α, δ) ∈ X be such that α(b) = bi, and δ(a) = ar, where i ∈ {1, 3}

and r ∈ U(m). Then, using δ(a)α(b) = δ(ab), a(2t+1)r = δ(a2t+1) = δ(ab) =

δ(a)α(b) = (ar)b
i
= a2t+1+(r−1)s+ i−1

2
2t(s+1). Thus

(r− 1)(2t+ 1− s) ≡ i− 1

2
2t(s+ 1) (mod m).

Therefore, −2du(r − 1)
(
l−q′

d

)
≡ (i − 1)2tul (mod 8q) which implies that

−(r − 1)
(
l−q′

d

)
≡ (i − 1)l (mod 4). Since, l−q

′

d and l is odd, r ≡ i (mod 4).

Thus, the choices for the maps α and δ are, αi(b) = bi and δr(a) = ar,
where i ∈ {1, 3} and r ∈ U(m). So, X ≃ A × D ≃ Z2 × U(m). At last, since,
l is odd, 2t(s + 1) ≡ 4tlu ̸≡ 0 (mod 8q). Therefore, using [3, Lemma 3.3,
p. 9], Im(β) = {1}. Thus, B is a trivial group. Hence, using the Theorem 3,
AutH(G) ≃ B⋊ E ≃ Z2 ×U(m). □
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4 AutH(G) of Zappa-Szép product of groups Zp2 and
Zm, p is odd prime

In [9], Yacoub classified the groups which are Zappa-Szép product of cyclic
groups of order p2 and order m. He found that these are of the following type
(see [9, Conclusion, p. 38])

M1 =⟨a, b | am = 1 = bp
2

, ab = bau, up
2 ≡ 1 (mod m)⟩,

M2 =⟨a, b | am = 1 = bp
2

, ab = bta, tm ≡ 1 (mod p2)⟩,

M3 =⟨a, b | am = 1 = bp
2

, ab = btapr+1, apb = bap(pr+1)⟩,

where p is an odd prime and inM3, p dividesm. These are not non isomorphic
classes. The groupsM1 andM2 may be isomorphic to the groupM3 depending
on the values of m, r and t. Clearly, M1 and M2 are semidirect products.
Throughout this section G will denote the group M3 and we will be only
concerned about groups M3 which are the Zappa-Szép product but not the
semidirect product. Note that G = H ▷◁ K, where H = ⟨b⟩ and K = ⟨a⟩. For the
group G, the mutual actions of H and K are defined by a · b = bt, ab = apr+1

along with ap ·b = b and (ap)b = ap(pr+1), where t and r are integers satisfying
the conditions

(G1) gcd(t− 1, p2) = p, that is, t = 1+ λp, where gcd(λ, p) = 1,

(G2) gcd(r, p) = 1,

(G3) p(pr+ 1)p ≡ p (mod m).

Theorem 12 Let G be as above. Then AutH(G) ≃ Zp ⋊ (Zp × D̃), where D̃

is a subgroup of U(m) of order ϕ(m)
p−1 .

Proof. Let β ∈ Q. Then using [3, Lemma 4.4 (i), p. 22], we have that β(al) =
bjl, where j ≡ 0 (mod p). Thus, B ≃ Zp. Now, let (α, δ) ∈ X be such that
α(b) = bi and δ(a) = as, where i ∈ U(Zp2) and s ∈ U(m).

Now, δ(k) · α(h) = α(k · h), bit = α(bt) = α(a · b) = δ(a) · α(b) = as · bi =
bit

s
. Thus, its ≡ it (mod p2) which implies that (1 + pλ)s−1 ≡ 1 (mod p2).

Therefore, s ≡ 1 (mod p). Using δ(k)α(h) = δ(kh), (G3) and the fact that

s ≡ 1 (mod p), we get, a(pr+1)s = δ(apr+1) = δ(ab) = δ(a)α(b) = (as)b
i
=
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a
is(s−1)

2
((pr+1)λp−1)+s(pr+1)i = as(pr+1)

i
. Thus (pr + 1)s ≡ s(pr + 1)i (mod m).

Therefore, i ≡ 1 (mod p).

Thus, the choices for the maps α and δ are, αi(b) = bi and δs(a) = as,
where i ∈ U(p2), i ≡ 1 (mod p), s ∈ U(m), and s ≡ 1 (mod p). So, X ≃
A×D ≃ Zp × D̃, where D̃ is a subgroup of U(m) of order ϕ(m)

p−1 . Hence, using

the Theorem 3, AutH(G) ≃ B⋊ E ≃ Zp ⋊ (Zp × D̃)). □
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