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Abstract. In this paper we study a Neumann boundary value problem
of a new p(x)-Kirchhoff type problems driven by p(x)-Laplacian-like op-
erators. Using the theory of variable exponent Sobolev spaces and the
method of the topological degree for a class of demicontinuous operators
of generalized (S+) type, we prove the existence of a weak solutions of
this problem. Our results are a natural generalisation of some existing
ones in the context of p(x)-Kirchhoff type problems.
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1 Introduction and motivation

The study of differential equations and variational problems with nonlinearities
and nonstandard p(x)-growth conditions or nonstandard (p(x), q(x))− growth
conditions have received a lot of attention. Perhaps the impulse for this comes
from the new search field that reflects a new type of physical phenomenon is
a class of nonlinear problems with variable exponents (see [5, 9, 11, 21]). The
motivation for this research comes from the application of similar problems
in physics to model the behavior of elasticity [26] and electrorheological flu-
ids [24], which have the ability to modify their mechanical properties when
exposed to an electric field (see [19, 20, 22, 23]), specifically the phenomenon
of capillarity, which depends solid-liquid interfacial characteristics as surface
tension, contact angle, and solid surface geometry.
Let Ω be a bounded domain in R

N(N > 1) with smooth boundary denoted
by ∂Ω, and let λ be a real parameters, δ ∈ L∞(Ω) and p(·), α(·) ∈ C+(Ω)

such that the exponent p(·) satisfies the log-Hölder continuity condition, i.e.

there is a constant a > 0 such that for every x, y ∈ Ω, x ̸= y with |x− y| ≤
1

2
one has

|p(x) − p(y)| ≤
a

− log |x− y|
. (1)

In this paper, we consider a certain class of p(x)-Kirchhoff type problems
involving the p(x)-Laplacian-like operators under Neumann boundary condi-
tions of the following form:






−M
(

Θ(u)
)(

∆lp(x)u− |u|p(x)−2u
)

+ δ(x)|u|α(x)−2u = λf(x, u,∇u) in Ω,

∂u
∂η = ∂

∂η(∆
l
p(x)u) = 0 on ∂Ω,

(2)
where

Θ(u) :=

∫

Ω

1

p(x)

(

|∇u|p(x) +

√

1+ |∇u|2p(x) + |u|p(x)
)

dx,

and

∆lp(x)u := div
(

|∇u|p(x)−2∇u+
|∇u|2p(x)−2∇u
√

1+ |∇u|2p(x)

)

is the p(x)-Laplacian-like operators, η is the outer unit normal to ∂Ω, f : Ω×R

×R
N → R is a Carathéodory function that satisfies the assumption of growth

and M(t) : R+ → R
+ is a continuous function.
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Studying this type of problems is both significant and relevant. In the one
hand, we have the physical motivation; since the p(x)-Laplacian-like operators
and p(x)-Laplacian operators has been used to model the steady-state solu-
tions of reactiondiffusion problems, that arise in biophysic, plasma-physic and
in the study of chemical reactions. In the other hand, these operators provide a
useful paradigm for describing the behaviour of strongly anisotropic materials,
whose hardening properties are linked to the exponent governing the growth
of the gradient change radically with the point (see [1, 6, 10, 21, 24] and the
references given there).
Problems related to (2) have been studied by many scholars, for example,

Ni and Serrin [18] study the following equation

−div
( ∇u
√

1+ |∇u|2

)

= f(u) in R
N.

The operator −div
( ∇u
√

1+ |∇u|2

)

is most often denoted by the specified mean

curvature operator and ∇u√
1+|∇u|2

is the Kirchhoff stress term.

Elliptic boundary value problems involving the mean curvature operator
play apivotal role in the mathematical analysis of several physical or geomet-
rical issues,such as capillarity phenomena for incompressible or compressible
fluids, mathematicalmodels in physiology or in electrostatics, flux-limited dif-
fusion phenomena, prescribedmean curvature problems for Cartesian surfaces
in the Euclidean space: relevantreferences on these topics include [3, 7, 8, 13].

Note that, in the case when Θ(u) =

∫

Ω

1

p(x)
(|∇u|p(x))dx, δ ≡ 0, λ = 1, f

independent of ∇u and without the term |u|p(x)−2u with Dirichlet boundary
condition, then we obtain the following problem






−M
(

∫

Ω

1

p(x)
(|∇u|p(x))dx

)

div(|∇u|p(x)−2∇u) = f(x, u) in Ω,

u = 0 on ∂Ω,

(3)

which is called the p(x)-Kirchhoff type problem.
In this case, Dai et al. [4], by a direct variational approach, established

conditions ensuring the existence and multiplicity of solutions to (3). Further-
more, the problem (3) is a generalization of the stationary problem of a model
introduced by Kirchhoff [15] of the following form:

ρ
∂2u

∂t2
−
(ρ0

h
+
E

2L

∫L

0

∣

∣

∣

∂u

∂x

∣

∣

∣

2
dx

)∂2u

∂x2
= 0, (4)
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where ρ, ρ0, h, E, L are all constants, which extends the classical D’Alembert’s
wave equation, by considering the effect of the changing in the length of the
string during the vibration.
In the present paper, we will generalized these works, by proving, under

some conditions on M and f, the existence of weak solutions for the problem
(2). Note that the problem (2) does not have a variational structure, so the
most usual variational methods can not used to study it. To attack it we
will employ a topological degree for a class of demicontinuous operators of
generalized (S+) type of [2].
The remainder of the paper is organized as follows. In Section 2, we review

some fundamental preliminaries about the functional framework where we
will treat our problem. In Section 3, we introduce some classes of operators of
generalized (S+) type, as well as the Berkovits topological degrees. Finaly, in
the Section 4, we give our basic assumptions, some technical lemmas, and we
will state and prove the main result of the paper.

2 Preliminaries

In order to deal with the Problem (2), we need some theory of the variable
exponent Lebesgue-Sobolev spaces Lp(x)(Ω) and W1,p(x)(Ω). For convenience,
we only recall some basic facts with will be used later, we refer to [12, 16] for
more details.
Let Ω be a smooth bounded domain in R

N(N ≥ 2), with a Lipschitz bound-
ary denoted by ∂Ω. Denote

C+(Ω) =
{
h : h ∈ C(Ω) such that h(x) > 1 for any x ∈ Ω

}
.

For any h ∈ C+(Ω), we define

h+ := max
{
h(x), x ∈ Ω

}
and h− := min

{
h(x), x ∈ Ω

}
.

For any p ∈ C+(Ω) we define the variable exponent Lebesgue space

Lp(x)(Ω) =
{
u : Ω→ R is measurable such that

∫

Ω

|u(x)|p(x) dx < +∞
}
,

with the norm
|u|p(x) = inf

{
λ > 0 : ρp(x)

(u

λ

)

≤ 1
}
.

where

ρp(x)(u) =

∫

Ω

|u(x)|p(x) dx, ∀ u ∈ Lp(x)(Ω).
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Proposition 1 [12] Let (un) and u ∈ Lp(x)(Ω), then

|u|p(x) < 1(resp. = 1;> 1) ⇔ ρp(x)(u) < 1(resp. = 1;> 1), (5)

|u|p(x) > 1 ⇒ |u|
p−

p(x)
≤ ρp(x)(u) ≤ |u|

p+

p(x)
, (6)

|u|p(x) < 1 ⇒ |u|
p+

p(x)
≤ ρp(x)(u) ≤ |u|

p−

p(x)
, (7)

lim
n→∞

|un − u|p(x) = 0 ⇔ lim
n→∞

ρp(x)(un − u) = 0. (8)

Remark 1 Notice that, from (6) and (7), we can deduce the inequalities

|u|p(x) ≤ ρp(x)(u) + 1, (9)

ρp(x)(u) ≤ |u|
p−

p(x)
+ |u|

p+

p(x)
. (10)

Proposition 2 [16] The space
(

Lp(x)(Ω), | · |p(x)

)

is a separable and reflexive

Banach space.

Proposition 3 [16] The conjugate space of Lp(x)(Ω) is Lp
′(x)(Ω) where 1

p(x)
+

1
p ′(x)

= 1 for all x ∈ Ω. For any u ∈ Lp(x)(Ω) and v ∈ Lp
′(x)(Ω), we have the

following Hölder-type inequality

∣

∣

∣

∫

Ω

uv dx
∣

∣

∣
≤

( 1

p−
+

1

p
′−

)

|u|p(x)|v|p ′(x) ≤ 2|u|p(x)|v|p ′(x). (11)

Remark 2 If p1, p2 ∈ C+(Ω) with p1(x) ≤ p2(x) for any x ∈ Ω, then there
exists the continuous embedding Lp2(x)(Ω) →֒ Lp1(x)(Ω).

Now, we define the variable exponent Sobolev space W1,p(x)(Ω) as

W1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) such that |∇u| ∈ Lp(x)(Ω)

}
,

with the norm
|u|1,p(x) = |u|p(x) + |∇u|p(x).

Furthermore, we have the compact embedding W1,p(x)(Ω) →֒→֒ Lp(x)(Ω) (see
[16]).

Remark 3 Note that for all u ∈W1,p(x)(Ω), we have

|u|p(x) ≤ |u|1,p(x) and |∇u|p(x) ≤ |u|1,p(x).
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Next, for all u ∈W1,p(x)(Ω), we introduce the following notation

ρ1,p(x)(u) = ρp(x)(u) + ρp(x)(∇u).

Then, from [12, Theorem 1.3], we have the following result.

Proposition 4 If u ∈W1,p(x)(Ω), then the following properties hold true

|u|1,p(x) < 1(resp. = 1;> 1) ⇔ ρ1,p(x)(u) < 1(resp. = 1;> 1), (12)

|u|1,p(x) > 1 ⇒ |u|
p−

1,p(x)
≤ ρ1,p(x)(u) ≤ |u|

p+

1,p(x)
, (13)

|u|1,p(x) < 1 ⇒ |u|
p+

1,p(x)
≤ ρ1,p(x)(u) ≤ |u|

p−

1,p(x)
. (14)

Proposition 5 [12, 16] The space
(

W1,p(x)(Ω), | · |1,p(x)

)

is a separable and

reflexive Banach space.

Remark 4 The dual space of W1,p(x)(Ω) denoted W−1,p ′(x)(Ω), is equipped
with the norm

|u|−1,p ′(x) = inf
{
|u0|p ′(x) +

N∑

i=1

|ui|p ′(x)

}
,

where the infinimum is taken on all possible decompositions u = u0−divF with
u0 ∈ L

p ′(x)(Ω) and F = (u1, . . . , uN) ∈ (Lp
′(x)(Ω))N.

3 A review on the topological degree theory

We start by defining some classes of mappings. In what follows, let X be a real
separable reflexive Banach space and X∗ be its dual space with dual pairing
⟨ · , · ⟩ and given a nonempty subset D of X. Strong (weak) convergence is
represented by the symbol → (⇀).

Definition 1 Let Y be another real Banach space. An operator F : D ⊂ X→ Y

is said to be

1. bounded, if it maps any bounded set to a bounded set.

2. demicontinuous, if (un) ⊂ D, and un → u in X as n→ ∞, then F(un) ⇀
F(u) in Y.
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3. compact, if it is continuous and the image of any bounded set in X is
relatively compact in Y.

Definition 2 A mapping F : D ⊂ X→ X∗ is said to be

1. of class (S+), if for any sequence (un) ⊂ D with un ⇀ u in X and
lim sup
n→∞

⟨Fun, un − u⟩ ≤ 0, we have un → u in X.

2. quasimonotone, if for any sequence (un) ⊂ D with un ⇀ u in X, we
have lim sup

n→∞

⟨Fun, un − u⟩ ≥ 0.

Definition 3 Let T : D1 ⊂ X→ X∗ be a bounded operator such that D ⊂ D1.
For any operator F : D ⊂ X→ X we say that

1. F of class (S+)T , if for any sequence (un) ⊂ D with un ⇀ u in X,
yn := Tun ⇀ y in X∗ and lim sup

n→∞

⟨Fun, yn − y⟩ ≤ 0, we have un → u

in X.

2. F has the property (QM)T , if for any sequence (un) ⊂ D with un ⇀ u

in X, yn := Tun ⇀ y in X∗, we have lim sup
n→∞

⟨Fun, y− yn⟩ ≥ 0.

In the sequel, we consider the following classes of operators:

F1(D) :=
{
F : D → X∗ : F is bounded, demicontinuous and of class (S+)

}
,

FT (D) :=
{
F : D → X : F is demicontinuous and of class (S+)T

}
,

FT,B(D) :=
{
F ∈ FT (D) : F is bounded

}
,

for any D ⊂ D(F), where D(F) denotes the domain of F, and any T ∈ F1(D).
Now, let O be the collection of all bounded open sets in X and we define

F(X) :=
{
F ∈ FT (E) : E ∈ O, T ∈ F1(E)

}
,

where, T ∈ F1(E) is called an essential inner map to F.

Lemma 1 [14, Lemma 2.3] Let E be a bounded open set in a real reflexive
Banach space X, and let T ∈ F1(E) be a continuous operator. Let S : D(S) ⊂

X∗ → X be a demicontinuous operator, such that T(E) ⊂ D(S). Then, the
following statements hold.
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1. If S is quasimonotone, then I + S ◦ T ∈ FT (E), where I denotes the
identity operator.

2. If S is of class (S+), then S ◦ T ∈ FT (E).

Definition 4 Suppose that E is bounded open subset of a real reflexive Banach
space X, T ∈ F1(E) is continuous and F, S ∈ FT (E). Then the affine homotopy
H : [0, 1]× E→ X defined by

H(t, u) := (1− t)Fu+ tSu, for all (t, u) ∈ [0, 1]× E

is called an admissible affine homotopy with the common continuous essential
inner map T .

Remark 5 [14, Lemma 2.5] The above affine homotopy is of class (S+)T .

As in [14] we give the topological degree for the class F(X).

Theorem 1 Let

M =
{
(F, E, h) : E ∈ O, T ∈ F1(E), F ∈ FT,B(E), h ̸∈ F(∂E)

}
.

Then, there exists a unique degree function d : M −→ Z that satisfies the
following properties:

1. (Normalization) For any h ∈ F(E), we have

d(I, E, h) = 1.

2. (Additivity) Let F ∈ FT,B(E). If E1 and E2 are two disjoint open subsets
of E such that h ̸∈ F(E\(E1 ∪ E2)), then we have

d(F, E, h) = d(F, E1, h) + d(F, E2, h).

3. (Homotopy invariance) If H : [0, 1] × E → X is a bounded admissible
affine homotopy with a common continuous essential inner map and h:
[0, 1] → X is a continuous path in X such that h(t) ̸∈ H(t, ∂E) for all
t ∈ [0, 1], then

d(H(t, ·), E, h(t)) = C for all t ∈ [0, 1].

4. (Existence) If d(F, E, h) ̸= 0, then the equation Fu = h has a solution
in E.
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Definition 5 [14, Definition 3.3] The above degree is defined as follows:

d(F, E, h) := dB(F|E0 , E0, h),

where dB is the Berkovits degree and E0 is any open subset of E with F−1(h) ⊂
E0 and F is bounded on E0.

4 Weak solutions

In this section, we will discuss the existence of weak solutions of (2). We
assume that Ω ⊂ R

N(N > 1) is a bounded domain with a Lipschitz boundary
∂Ω, p ∈ C+(Ω) satisfy the log-Hölder continuity condition (1), α ∈ C+(Ω)

with 2 ≤ α− ≤ α(x) ≤ α+ < p−, δ ∈ L∞(Ω), M(t) : R+ → R
+ and

f : Ω× R× R
N → R are functions such that:

(M0) M(t) : [0,+∞) → (m0,+∞) is a continuous-increasing function with
m0 > 0.

(A1) f is a Carathéodory function.

(A2) There exists C1 > 0 and γ ∈ Lp
′(x)(Ω) such that

|f(x, ζ, ξ)| ≤ C1(γ(x) + |ζ|q(x)−1 + |ξ|q(x)−1),

for all (ζ, ξ) ∈ R×R
N, where q ∈ C+(Ω) with 2 ≤ q− ≤ q(x) ≤ q+ < p−.

Remark 6 ❼ Note that, for all u, v ∈W1,p(x)(Ω)

M
(

Θ(u)
)

∫

Ω

((

|∇u|p(x)−2∇u+
|∇u|2p(x)−2∇u
√

1+ |∇u|2p(x)

)

∇v+ |u|p(x)−2u v
)

dx

is well defined (see [17]).

❼ We have δ(x)|u|α(x)−2u ∈ Lp
′(x)(Ω) and λf(x, u,∇u) ∈ Lp

′(x)(Ω) under
u ∈ W1,p(x)(Ω), the assumptions (A2) and the given hypotheses about
the exponents p, α and q because: r(x) = (q(x) − 1)p ′(x) ∈ C+(Ω) with
r(x) < p(x), β(x) = (α(x) − 1)p ′(x) ∈ C+(Ω) with β(x) < p(x).
Then, by Remark 2 we can conclude that Lp(x) →֒ Lr(x) and Lp(x) →֒ Lβ(x).
Hence, since v ∈ Lp(x)(Ω), we have

(

− δ(x)|u|α(x)−2u+ λf(x, u,∇u)
)

v ∈ L1(Ω).
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This implies that, the integral

∫

Ω

(

− δ(x)|u|α(x)−2u+ λf(x, u,∇u)
)

vdx

exist.

Then, we shall use the definition of weak solution for problem (2) in the
following sense:

Definition 6 We say that a function u ∈ W1,p(x)(Ω) is a weak solution of
(2), if for any v ∈W1,p(x)(Ω), it satisfies the following:

M
(

Θ(u)
)

∫

Ω

((

|∇u|p(x)−2∇u+
|∇u|2p(x)−2∇u
√

1+ |∇u|2p(x)

)

∇v+ |u|p(x)−2u v
)

dx

=

∫

Ω

(

− δ(x)|u|α(x)−2u+ λf(x, u,∇u)
)

vdx.

Before giving the existence result for problem 2, we first give two lemmas that
will be used in the proof of this result.
First, let us consider the following functional:

J (u) := ̂M
(

Θ(u)
)

, where ̂M(t) =

∫ t

0

M(s)ds,

such that M(s) satisfies the assumption (M0).
From [17], it is obvious that the derivative operator of the functional J in
the weak sense at the point u ∈ W1,p(x)(Ω) is the functional M := J ′(u) ∈

W−1,p ′(x)(Ω) given by

⟨Mu, v⟩ =M
(

Θ(u)
)

∫

Ω

((

|∇u|p(x)−2∇u+
|∇u|2p(x)−2∇u
√

1+ |∇u|2p(x)

)

∇v+|u|p(x)−2u v
)

dx,

for all u, v ∈W1,p(x)(Ω), where ⟨·, ·⟩means the duality pairing betweenW−1,p ′(x)

(Ω) and W1,p(x)(Ω). In addition, the following lemma summarizes the prop-
erties of the operator M (see [17]).

Lemma 2 If (M0) holds, then M : W1,p(x)(Ω) → W−1,p ′(x)(Ω) is a continu-
ous, bounded and strictly monotone operator, and is a mapping of class (S+).
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Lemma 3 Assume that the assumptions (A1) − (A2) hold, then the operator

N :W1,p(x)(Ω) →W−1,p ′(x)(Ω)

⟨Nu, v⟩ = −

∫

Ω

(

− δ(x)|u|α(x)−2u+ λf(x, u,∇u)
)

vdx,

for all u, v ∈W1,p(x)(Ω), is compact.

Proof. In order to prove this lemma, we proceed in three steps.
Step 1 : We define the operator Ψ : W1,p(x)(Ω) → Lp

′(x)(Ω) by

Ψu(x) := δ(x)|u(x)|α(x)−2u(x).

We will prove that Ψ is bounded and continuous.
It is clear that Ψ is continuous. Next we show that Ψ is bounded.
Let u ∈W1,p(x)(Ω) and using (9) and (10), we obtain

|Ψu|p ′(x) ≤ ρp ′(x)(Ψu) + 1

=

∫

Ω

|δ(x)|u|α(x)−2u|p
′(x)dx+ 1

=

∫

Ω

|δ(x)|p
′(x)|u|(α(x)−1)p

′(x)dx+ 1

≤ ||δ||
p ′

L∞(Ω)

∫

Ω

|u|β(x)dx+ 1

= ||δ||
p ′

L∞(Ω)
ρβ(x)(u) + 1

≤ ||δ||
p ′

L∞(Ω)

(

|u|
β−

β(x)
+ |u|

β+

β(x)

)

+ 1.

Hence, we deduce from Lp(x) →֒ Lβ(x) and Remark 3 that

|Ψu|p ′(x) ≤ C
(

|u|
β−

1,p(x)
+ |u|

β+

1,p(x)

)

+ 1,

and consequently, Ψ is bounded on W1,p(x)(Ω).
Step 2 : Let us define the operator Φ : W1,p(x)(Ω) → Lp

′(x)(Ω) by

Φu(x) := −λf(x, u(x),∇u(x)).

We will show that Φ is bounded and continuous.
Let u ∈ W1,p(x)(Ω). According to (A2) and the inequalities (9) and (10), we
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obtain

|Φu|p ′(x) ≤ ρp ′(x)(Φu) + 1

=

∫

Ω

|λf(x, u(x),∇u(x))|p
′(x)dx+ 1

=

∫

Ω

|λ|p
′(x)|f(x, u(x),∇u(x))|p

′(x)dx+ 1

≤
(

|λ|p
′−

+ |λ|p
′+
)

∫

Ω

|C1

(

γ(x) + |u|q(x)−1 + |∇u|q(x)−1
)

|p
′(x)dx+ 1

≤ C
(

|λ|p
′−

+ |λ|p
′+
)

∫

Ω

(

|γ(x)|p
′(x) + |u|r(x) + |∇u|r(x)

)

dx+ 1

≤ C
(

|λ|p
′−

+ |λ|p
′+
)(

ρp ′(x)(γ) + ρr(x)(u) + ρr(x)(∇u)
)

+ 1

≤ C
(

|γ|
p′+

p(x)
+ |u|r

+

r(x) + |u|r
−

r(x) + |∇u|r
+

r(x) + |∇u|r
−

r(x)

)

+ 1.

Taking into account that Lp(x) →֒ Lr(x) and Remark 3, we have then

|Φu|p ′(x) ≤ C
(

|γ|
p′+

p(x)
+ |u|r

+

1,p(x) + |u|r
−

1,p(x)

)

+ 1,

and consequently Φ is bounded on W1,p(x)(Ω).
It remains to show that Φ is continuous. Let un → u in W1,p(x)(Ω), we need
to show that Φun → Φu in Lp

′(x)(Ω). We will apply the Lebesgue’s theorem.
Note that if un → u in W1,p(x)(Ω), then un → u in Lp(x)(Ω) and ∇un → ∇u

in (Lp(x)(Ω))N. Hence, there exist a subsequence (uk) and φ in Lp(x)(Ω) and
ψ in (Lp(x)(Ω))N such that

uk(x) → u(x) and ∇uk(x) → ∇u(x), (15)

|uk(x)| ≤ φ(x) and |∇uk(x)| ≤ |ψ(x)|, (16)

for a.e. x ∈ Ω and all k ∈ N.
Hence, thanks to (A1) and (15), we get, as k −→ ∞

f(x, uk(x),∇uk(x)) → f(x, u(x),∇u(x)) a.e. x ∈ Ω.

On the other hand, from (A2) and (16), we can deduce the estimate

|f(x, uk(x),∇uk(x))| ≤ C1(γ(x) + |φ(x)|q(x)−1 + |ψ(x)|q(x)−1),

for a.e. x ∈ Ω and for all k ∈ N.
Seeing that

γ+ |φ|q(x)−1 + |ψ(x)|q(x)−1 ∈ Lp
′(x)(Ω),
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and taking into account the equality

ρp ′(x)(Φuk −Φu) =

∫

Ω

|f(x, uk(x),∇uk(x)) − f(x, u(x),∇u(x))|
p ′(x)dx,

then, we conclude from the Lebesgue’s theorem and (8) that

Φuk → Φu in Lp
′(x)(Ω)

and consequently
Φun → Φu in Lp

′(x)(Ω),

and then Φ is continuous.
Step 3: Let I∗ : Lp

′(x)(Ω) → W−1,p ′(x)(Ω) be the adjoint operator of the
natural embedding mapping I :W1,p(x)(Ω) → Lp(x)(Ω). Then, we define

I∗ ◦ Ψ :W1,p(x)(Ω) →W−1,p ′(x)(Ω),

and
I∗ ◦Φ :W1,p(x)(Ω) →W−1,p ′(x)(Ω).

On another side, due to the compactness of I, I∗ also becomes compact. Thus,
the compositions I∗◦Ψ and I∗◦Φ are compact, that means N = I∗◦Ψ+I∗◦Φ

is compact. With this last step the proof of Lemma 3 is completed. □

We are now in the position to get the existence result of weak solution for (2).

Theorem 2 If (A1) − (A2) and (M0) hold, then for every δ ∈ L∞(Ω) and
λ ∈ R the problem (2) admits at least one weak solution u in W1,p(x)(Ω).

Proof. The basic idea of our proof is to reformulate the problem (2) to an
abstract formula governed by a Hammerstein equation, and apply the theory
of topological degree introduced in Section 3 to show the existence of a weak
solutions to the state problem.
First, for all u, v ∈W1,p(x)(Ω), we define the operators M and N , as defined

in Lemmas 2 and 3 respectively,

M :W1,p(x)(Ω) −→W−1,p ′(x)(Ω)

⟨Mu, v⟩=M
(

Θ(u)
)

∫

Ω

((

|∇u|p(x)−2∇u+
|∇u|2p(x)−2∇u
√

1+ |∇u|2p(x)

)

∇v+|u|p(x)−2u v
)

dx,

and
N :W1,p(x)(Ω) −→W−1,p ′(x)(Ω)

⟨Nu, v⟩ = −

∫

Ω

(

− δ|u|α(x)−2u+ λf(x, u,∇u)
)

vdx.
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Consequently, the problem (2) is equivalent to the equation

Mu+Nu = 0, u ∈W1,p(x)(Ω). (17)

Taking into account that, by Lemma 2, the operator M is a continuous,
bounded, strictly monotone and of class (S+), then, by [25, Theorem 26 A],
the inverse operator

P := M−1 :W−1,p ′(x)(Ω) →W1,p(x)(Ω),

is also bounded, continuous, strictly monotone and of class (S+).
On another side, according to Lemma 3, we have that the operator N is
bounded, continuous and quasimonotone.
Consequently, following Zeidler’s terminology [25], the equation (17) is equiv-
alent to the following abstract Hammerstein equation

u = Pv and v+N ◦ Pv = 0, u ∈W1,p(x)(Ω) and v ∈W−1,p ′(x)(Ω). (18)

Due to the equivalence of (17) and (18), it will be sufficient to solve (18). In
order to solve (18), we will apply the Berkovits topological degree introduced
in Section 3. First, let us set

E :=
{
v ∈W−1,p ′(x)(Ω) : ∃ t ∈ [0, 1] such that v+ tN ◦ Pv = 0

}
.

Next, we show that E is bounded in ∈W−1,p ′(x)(Ω).
Let v ∈ E and set u := Pv for all v ∈ E . Since |Pv|1,p(x) = |u|1,p(x), then we
have two cases:
Case 1 : If |u|1,p(x) ≤ 1, then |Pv|1,p(x) ≤ 1, that means

{
Pv : v ∈ E

}
is

bounded.
Case 2 : If |u|1,p(x) > 1, then, we deduce from (13), the growth condition (A2),
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the inequalities (10) and (11) and the Young inequality that

|Pv|p
−

1,p(x)
= |u|

p−

1,p(x)

≤ ρ1,p(x)(u)

= ρp(x)(u) + ρp(x)(∇u)

≤ ⟨v, Pv⟩

= −t⟨N ◦ Pv, Pv⟩

= t

∫

Ω

(

− δ(x)|u|α(x)−2u+ λf(x, u,∇u)
)

udx

≤ tmax(||δ||L∞(Ω), C1|λ|)
(

ρα(x)(u) +

∫

Ω

|γ(x)u(x)|dx+ ρq(x)(u)

+

∫

Ω

|∇u|q(x)−1|u|dx
)

≤ C
(

|u|α
−

α(x) + |u|α
+

α(x) + |γ|p ′(x)|u|p(x) + |u|
q+

q(x)
+ |u|

q−

q(x)

+
1

q ′−
ρq(x)(∇u) +

1

q−
ρq(x)(u)

)

≤ C
(

|u|α
−

α(x) + |u|α
+

α(x) + |u|p(x) + |u|
q+

q(x)
+ |u|

q−

q(x)
+ |∇u|q

+

q(x)

)

,

then, according to Remark 3 and the continuous embeddings Lp(x) →֒ Lα(x)

and Lp(x) →֒ Lq(x), we get

|Pv|p
−

1,p(x)
≤ C

(

|Pv|α
+

1,p(x) + |Pv|1,p(x) + |Pv|q
+

1,p(x)

)

,

what implies that
{
Pv : v ∈ E

}
is bounded. On the other hand, we have that

the operator is N is bounded, then N ◦ Pv is bounded. Thus, thanks to (18),
we have that E is bounded in W−1,p ′(x)(Ω). However, there exists a constant
a > 0 such that

|v|−1,p ′(x) < a for all v ∈ E ,

which leads to

v+ tN ◦ Pv ̸= 0, v ∈ ∂Ea(0) and t ∈ [0, 1],

where Ea(0) is the ball of center 0 and radius a in W−1,p ′(x)(Ω).
Moreover, by Lemma 1, we conclude that

I +N ◦ P ∈ FP(Ea(0)) and I = M◦P ∈ FP(Ea(0)).
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On the other hand, taking into account the fact that I, N and P are bounded,
then I +N ◦ P is bounded. Therefore, we deduce that

I +N ◦ P ∈ FP ,B(Ea(0)) and I = M◦P ∈ FP ,B(Ea(0)).

Next, we define the homotopy H : [0, 1]× Ea(0) →W−1,p ′(x)(Ω) by

(t, v) 7→ H(t, v) := v+ tN ◦ Pv.

Applying the homotopy invariance and normalization properties of the degree
d as in Theorem 1, we obtain

d(I +N ◦ P, Ea(0), 0) = d(I, Ea(0), 0) = 1 ̸= 0.

Since d(I +N ◦P, Ea(0), 0) ̸= 0, then by the existence property of the degree
d stated in Theorem 1, we conclude that there exists v ∈ BR(0) which verifies

(

I +N ◦ P
)

(v) = 0⇔ v+N ◦ Pv = 0⇔ M◦Pv+N ◦ Pv = 0.

At last, we deduce that u = Pv is a weak solution of (2). The proof of Theorem
2 is completed. □
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