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Abstract. The notion of Hankel determinant Hq in univalent functions
theory is initiated by Noonan and Thomas while studying it for areally
mean multivalent mappings. This determinant has significant role while
dealing with singularities and particularly it’s important for analyzing
integral coefficient. Fekete-Szegö functional used in the study of the area
theorem is a particular case of this determinant. We explore a known
class of holomorphic mappings which is related with the various classes of
functions with conjugate symmetric points We also study upper bounds
in different settings of the coefficients of these mappings. We also relate
our exploration with the existing literature of the subject.
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1 Introduction

Suppose that an analytic function f is expressed in the following series form:

f(z) = z+

∞∑
j=2

ηjz
j, z ∈ E01 (1)

where E01 ⊂ Ez0r = {|z ∈ C : z− z0| < r}. We use A to represent the family of
these functions. Also S ⊂ A deputize for the family of one-to-one or univalent
functions defined in E01. Let Q stand for the collection of functions ℏ such that

ℏ(z) = 1+
∞∑
j=1

ϑjz
j : Re ℏ(z) > 0, z ∈ E01. (2)

If for a Schwarz mapping w, we write f(z) = g(w(z)), where f and g are
analytic in E01, then it is said that f is subordinate g, and mathematically, we
write f ≺ g.
A large number of subfamilies are related with the class P and some of

its generalizations. These may include the family S∗ of starlike and a related
family C of convex mappings. These families are further studied with the order
and arguments or in such a way that the function f maps on to the right half
plane as well as some specific plane region. Ma and Minda as seen in [8]
introduced two classes of analytic functions namely;

S∗(ψ) =

{
g ∈ A :

zg′(z)

g(z)
≺ ψ(z) (z ∈ E01)

}
and

C(ψ) =
{
g ∈ A : ϕ (z) =

zg′(z)

g(z)
≺ ψ(z) (z ∈ E01

}
,

where the function ψ is an analytic univalent function such that ℜ(ψ) > 0 in
U with ψ(0) = 1, ψ′(0) > 0 and g maps z ∈ E01 onto a region starlike with
respect to 1 and the symbol ≺ denotes the subordination between two analytic
functions ϕ and ψ. By varying the function ψ, several familiar families will be
deduced as seen below:

(i) For ψ = 1+Az
1+Bz (−1 ≤ B ≤ A ≤ 1), we get the family S∗(A,B), see [5].

(ii) For A = 1− 2α and B = −1, the family S∗(α) is studied at large as seen
in [11].



On Hankel determinant problems 77

(iii) In case ψ = 1+ 2
π2

(
log 1+

√
z

1−
√
z

)2
, the desired family is studied in [12].

Recently as seen in [7] and by choosing a particular function for ψ as above,
inequalities related with coefficient bounds of some subfamiles of univalent
functions have been discussed extensively.
A function f ∈ A is said to be in the class SℓB, if and only if∣∣∣∣∣

(
zf′(z)

f(z)

)2
− 1

∣∣∣∣∣ < 1, z ∈ E01. (3)

For f ∈ SℓB, zf
′(z)
f(z) is bounded by the lemniscate of Bernoulli{

ψ ∈ C with Re (ψ) > 0 :
∣∣∣ψ2 − 1∣∣∣ < 1} (4)

in the right half of the w−plane. In term of subordination, we say that f ∈ SℓB,
if and only if

zf′(z)

f(z)
≺

√
1+ z, z ∈ E01. (5)

The known family of functions starlike with respect to symmetric points were
introduced by Sakaguchi. Subsequently, we make use the same idea along with
(6) or (7) and define the family SℓBSP of Sakaguchi functions associated with
the lemniscate of the Bernoulli as:∣∣∣∣( zf′(z)

f(z) − f (−z)

)2
− 1

∣∣∣∣ < 1, z ∈ E01. (6)

Thuswmaps E01 onto the the right half of the lemniscate of Bernoulli defined
by the inequality Re (ψ) > 0 : |ψ2 − 1| < 1. It is obvious that f ∈ SℓBSP, iff

2zf′(z)

f(z) − f (−z)
≺

√
1+ z, z ∈ E01. (7)

Let f ∈ A. Then the family SℓBSP is defined by∣∣∣∣∣∣
(

2zf
′
(z)

f(z) + f(z)

)2
− 1

∣∣∣∣∣∣ < 1, z ∈ E01, (8)

where Re 2zf
′
(z)

f(z)+f(z)
> 0. Thus a mapping f ∈ SℓBSCP, if

2zf
′
(z)

f(z)+f(z)
lies to the right

half of the lemniscate of Bernoulli as defined by (4). It is evident that f ∈ SℓBSCP,

if it satisfies
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2zf′(z)

f(z) + f(z)
≺

√
1+ z, z ∈ E01, (9)

where Re 2zf
′
(z)

f(z)+f(z)
> 0. Sokol and Stankiewicz [15] and other [1, 15] introduced

the same structure of other related families of these functions.
The coefficient bounds problem plays a significant role in dealing with the

geometrical aspects of complex mappings. Hankel matrices or catalecticant
matrices are square matrices, where ascending skew-diagonals from left to
right are constants. These matrices are obtained for a sequence of outputs,
when a realization of a hidden Markov model or a state-space model is re-
quired. Some decomposition of such matrices provide a mean of computing
those matrices which define these realizations. This matrix is also obtained
when signals are assumed useful for separation of non-stationary signals along
with time-frequency representation. Certain techniques used in polynomial dis-
tributions are leading to the Hankel matrix and it results in obtaining weight
parameters of their approximations.
The qth Hankel determinant Hd (q, j) is studied in [9] and it can be defined

as:

Hd(q, j) =

∣∣∣∣∣∣∣∣∣∣
ηj ηj+1 . . ηj+q−1
ηj+1 ηj+2 . . ηj+q−2
. . .

. . . .

ηj+q−1 ηj+q−2 . . ηj+2q−2

∣∣∣∣∣∣∣∣∣∣
,

where q ≥ 1, ηj : j = 2, 3, ... are the complex coefficients of an analytic function
f ∈ A. This determinant is also significant in the study of singularities, see [3].
This is particularly significant when analyzing integral coefficient in a power
series, for detail, again we refer [3]. We also find its applications in the study of
meromorphic functions. Fekete-Szegö problem Hd(2, 1) = η3−η

2
2 is a particular

form of the generalized functional η3 − τη
2
2 for some τ real or complex. For

τ real and f ∈ S, the family of injective, one-to-one or univalent functions,
Fekete and Szegö provided sharp estimates for |η3 − τη

2
2|. As seen, it is just a

combination of the first two coefficients that describe the known Gronwall’s
area problems. In addition, we know that the functional η2η4−η

2
3 is equivalent

to Hd(2, 2). For a few subclasses of holomorphic functions, this determinant
Hd(2, 2) has been lately investigated and many authors have looked into the
bounds of the functional η2η4 − η

2
3, see [3, 6]. Babalola [2] also investigated

Hd(3, 1) for few other classes involving analytic mappings. Using a well-known
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Toeplitz determinants, we find the upper bounds of Hd(3, 1) for functions
connected to the lemniscate of Bernoulli Γℓβ.

2 Preliminaries

The following lemmas are used in our major results. In the subsequent lemma
as seen in [8] on page 162, Section 4, we find bounds on ϑ2 − τϑ

2
1.

Lemma 1 Let ℏ(z) = 1 + ϑ1z + ϑ2z
2 + ... ∈ Q be represented by (2). Then

we have

|ϑ2 − τϑ
2
1| ≤


−4τ+ 2, τ < 0,

2, 0 ≤ τ ≤ 1,
4τ− 2, τ > 1.

For τ < 0 or τ > 1, we have the equality iff ℏ(z) = 1+z
1−z and 0 < τ < 1,

we have the equality iff ℏ(z) = 1+z2

1−z2
or its any rotation. If τ = 0, the equality

holds iff

ℏ(z) = (
1

2
+
η

2
)
1+ z

1− z
+ (
1

2
−
η

2
)
1− z

1+ z
, 0 ≤ η ≤ 1

or its any rotation. However, the previous upper bound can be improved for

∣∣∣ϑ2 − τϑ21∣∣∣+ τ|ϑ1|2 ≤ 2, 0 < τ ≤ 1

2

and ∣∣∣ϑ2 − τϑ21∣∣∣+ (1+ τ)|ϑ1|
2 ≤ 2, 1

2
< τ ≤ 1.

The following lemma also deals with the coefficients bounds for the functions
in class Q, when τ ∈ C.

Lemma 2 If ℏ(z) = 1+ ϑ1z+ ϑ2z2 + ... ∈ Q, then for τ ∈ C, we have

|ϑ2 − τϑ
2
1| ≤ 2max{1, |2τ− 1|}

This inequality is sharp. The equality is concerned with the function

ℏ1(z) =
1+ z

1− z
or ℏ2(z) =

1+ z2

1− z2
.

For the reference of aforementioned lemma, see [4]. The subsequently given
lemma also addresses the estimation of the coefficients under specific con-
straints.
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Lemma 3 If ℏ ∈ Q, then for some x : |x| ≤ 1, we have

2ϑ2 = x(4− ϑ
2
1) + ϑ

2
1

and also for some z : |z| ≤ 1, we obtain

4ϑ3 = (ϑ21 − 4)ϑ1x
2 + ϑ31 − 2(ϑ

2
1 − 4)ϑ1x− 2(ϑ

2
1 − 4)(1− |x|2)z.

For reference, see [13].

3 Discussions

In this section, we study some Hankel determinant related problems. The
theorem below describes bounds estimates of the Fekete-Szegö functional η3−
τη22.

Theorem 1 Let f ∈ SℓBSCP be represented by (8) or equivalently, we have (9).
Then the bounds on the Fekete-Szegö functional η3 − τη

2
2 can be written as:

|η3 − τη
2
2| ≤


− 1
8(2τ+ 1), τ < − 5

2
1
2 , − 5

2 ≤ τ ≤
3
2

1
8(2τ+ 1), τ > 3

2

.

Moreover, we can see that∣∣∣η3 − τη22∣∣∣+ (2τ+ 5) |η2|
2 ≤ 1

2
, −
5

2
< τ ≤ −

1

2

and ∣∣∣η3 − τη22∣∣∣+ (3− τ) |η2|
2 ≤ 1

2
, −

1

2
< τ ≤ 3

2

These above results are sharp.

Proof. For the mapping f ∈ SℓBSCP, from the definition which is equivalent to

(8), we see that zf′(z)

f(z)+f(z)
≺ 1

2ϕ(z), when ϕ(z) =
√
1+ z. Assuming a functional

ℏ such that

ℏ(z) =
1+ ϑ(z)

1− ϑ(z)
= 1+ ϑ1z+ ϑ2z

2 + ...

Obviously ϑ(z) = ℏ(z)−1
ℏ(z)+1 . Thus,

2zf′(z)

f(z)+f(z)
= ϕ (ϑ(z)) or ϕ (ϑ(z)) =

(
2ℏ(z)
ℏ(z)+1

) 1
2
.

Now we see that(
2ℏ(z)

ℏ(z) + 1

) 1
2

= 1+
1

4
ϑ1z+

(
1

4
ϑ2 −

5

32
ϑ21

)
z2+

(
1

4
ϑ3 −

5

16
ϑ1ϑ2 +

13

128
ϑ31

)
z3+....
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Similarly, we can write

2zf′(z)

f(z) + f(z)
= 1+ η2z+ η3z

2 + η4z
3 + ...

Therefore, we conclude that

η2 =
1

4
ϑ1, (10)

η3 =
1

4
ϑ1 −

5

32
ϑ21 (11)

and also we see that

η4 =
1

4
ϑ3 −

5

16
ϑ1ϑ2 +

13

128
ϑ31. (12)

This implies that ∣∣∣η3 − τη22∣∣∣ = 1

4

∣∣∣∣ϑ2 − 1

8
(2τ+ 5)ϑ21

∣∣∣∣ .
Applying Lemma 1, we obtain the required result. The equality follows from
the functions ℏj(z), j = 1, 2, 3, 4, such that

zℏ′(z)
ℏ(z)

=


√
1+ z if τ < −5

2 or τ > 3
2 ,√

1+ z2 if −5
2 < τ <

3
2√

1+ ϕ(z) if τ = −5
2 ,√

1− ϕ(z), if τ = 3
2 .

where ϕ(z) = z(z+η)
1+η with 0 ≤ η ≤ 1. □

The subsequent theorem describes |η3 − τη
2
2|, when τ is a complex number.

Theorem 2 Let f ∈ SℓBSCP and τ be a complex number. Then

|η3 − τη
2
2| ≤

1

2
max

{
1;
1

4
|2τ+ 1|

}
.

Proof. From (10) and (12), we observe that

|η3 − τη
2
2| ≤

1

4

∣∣∣∣ϑ2 − 1

8
(τ+ 5)ϑ21

∣∣∣∣ .
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Thus application of Lemma 2 leads to the desired result. This result is sharp
and equality holds for the functions

2zf′(z)

f(z) + f(z)
=

√
1+ z

or
2zf′(z)

f(z) + f(z)
=
√
1+ z2.

□

Remark 1 For τ = 1, Hd2(1) = α3 − α
2
2 and for f ∈ S∗

ℓβ, |α3 − α
2
2| ≤

1
2 .

In context of the lemniscate of Bernoulli and in the view of above Lemma
3, we state that:

Theorem 3 Let f ∈ SℓBSCP. Then |η2η4 − η
2
3| ≤

1
4 .

Proof. Keeping in view the values for η2, η3 and η4 as given in (10), (11) and
(12) respectively, we calculate η2η4 − η

2
3 as:

η2η4 − η
2
3 =

1

16

(
ϑ1ϑ3 −

5

4
ϑ21ϑ2 +

13

32
ϑ41

)
−

(
1

4
ϑ2 −

5

32
ϑ21

)2
=
1

16
ϑ1ϑ3 +

1

1024
ϑ41 −

1

16
ϑ22.

By taking C =
∣∣η2η4 − η23∣∣ , (4−ϑ21) = c and then assuming that t = ϑ1 ∈ (0, 2]

and using the value of ϑ2 and ϑ3 in term of t, from Lemma 3, we write

C =
1

1024

∣∣∣16t{t3 + 2ctx− ctx2 + 2c(1− |x|2)z− 16{t2 + xc}2 + t41

}∣∣∣ .
After some simplification, we apply triangular inequality and replace |x| by ρ
to obtain

C =
1

1024

[
t4 + {16t2 + 16(4− t2)}(4− t2)ρ2 + 32t(4− t2)(1− ρ2)

]
= F(t, ρ).

On differentiating partially with ρ, we see that ∂F(t,ρ)
∂ρ is positive which means

that the multivariable function F(t, ρ) is increasing on the compact set [0, 1].
Thus the greatest value occurs at ρ = 1. Therefore, we take max F(t, ρ) = G(t).
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Considering G, we calculate G′ and G′′ and find that G′ > 0 along with
G′′ (z) < 0 for t = 0. Thus the maxG(t) occurs at t = 0. Therefore, we can
write

|η2η4 − η
2
3| ≤

1

4
.

This is a sharp result and equality holds for the functions zf
′
(z)

f(z)+f(z)
= 1

2

√
1+ z2

or 1
2

√
1+ z. □

In context of the lemniscate of Bernoulli, we determine the value of the
modulus of η2η3 − η4:

Theorem 4 For f ∈ SℓBSCP, we have |η2η3 − η4| ≤ 1
2 .

Proof. For f ∈ SℓBSCP, we can write □

η2 =
1

4
ϑ1, η3 =

1

4
ϑ2 −

5

32
ϑ21 and η4 =

1

4
ϑ3 −

5

16
ϑ1ϑ2 +

1

4
ϑ31,

which leads to

η2η4 − η
2
3 =

1

16

(
ϑ1ϑ2 −

5

8
ϑ31

)
−

(
1

4
ϑ2 −

5

16
ϑ1ϑ2 +

13

128
ϑ31

)
=
3

8
ϑ1ϑ2 +

1

4
ϑ3 −

9

64
ϑ31

=
1

64
(24ϑ1ϑ2 + 16ϑ3 − 9ϑ

3
1).

Therefore, in view of Lemma 3, we note that

∣∣∣η2η4 − η23∣∣∣ = 1

64

∣∣∣ϑ31 + 2cϑ1x− cϑ1x2 + 2c(1− |x|2)z− 12ϑ1{ϑ
2
1 + xc}+ 9ϑ

3
1

∣∣∣
where 4 − ϑ21 = c. Applying triangle inequality, replacing |x| with ρ, |z| by 1
and assuming that t > 0, such that ϑ1 = t ∈ [0, 2], we can write

∣∣∣η2η4 − η23∣∣∣ ≤ 1

64

{
t3 + 4(4− t2)tρ+ 4(4− t2)tρ2 + 8(4− t2)(1− ρ2)

}
.

Let us consider that

F(t, ρ) =
1

64

{
t3 + 4(4− t2)tρ+ 4(4− t2)tρ2 + 8(4− t2)(1− ρ2)

}
. (13)
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We further suppose the upper bounds exist in the interior of [0, 2] × [0, 1].
Differentiating 13 partially with ρ, we see that

∂

∂ρ
(F(t, ρ)) =

1

64

{
4t(4− t2) + 8ρ(t− 2)(4− t2)

}
.

For 0 < ρ < 1 and fixed t ∈ [0, 2], we see that ∂F(ω,ρ)
∂ρ < 0.This shows that

F(t, ρ) is decreasing which contradicts to our supposition. Hence, max F(t, ρ) =
F(t, 0) = G(t) and

G(t) =
1

64
[t3 − 8t2 + 32], G′(t) =

1

64
[3t2 − 16t],

which shows that G′′(t) = 1
64 [6t − 16] < 0 for t = 0. Therefore, at t = 0 a

maximum is achieved. Hence, we obtain the required proof.

4 Conclusion

The Fekete-Szegö inequality denoted as F-S inequality is one of the inequal-
ities involving certain coefficients related to the Bieberbach conjecture and
associated with this inequality is the Hankel determinant, which is used in the
investigations of the singularities and determination of integral coefficients. In
this investigation, we studied F-S inequalities for certain mappings f as defined
by (8) for which the image domain is related with the lemniscate of Bernoulli.
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