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Abstract. The aim is to utilize a new metric called an MY—metric
which is an improvement and generalization of M,—metric to revisit
the celebrated Banach and Sehgal contractions in MY —metric space. We
demonstrate that the collection of open balls forms a basis on M-metric
space. Further, we give some examples for the verification of established
results. Towards the end, we solve a non-linear matrix equation and an
equation of rotation of a hanging cable to substantiate the utility of these
extensions.

1 Introduction and preliminaries

Distance is one of the earliest perceptions appreciated by humans. Initially,
the idea of distance appeared during the period of Euclid. In 1906, Maurice
Rene Frechet [7] introduced the general and more axiomatic form of a distance
and named it “L-space”. Felix Hausdorff [9] reviewed it as a metric space. Sub-
sequently, numerous refined, generalized, and extended versions of the metric
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structure appeared in the literature. For details, about the generalizations of
the metric notion, one may refer to Kirk and Shahzad [12]. In most of these
improvements, extensions and generalizations of Banach’s result [4] have been
announced.

The aim of the present work is to utilize a novel notion of distance called an
MY —metric [10], which is an improvement and generalization of the M,—metric
[3], to revisit the acclaimed Banach contraction principle [4] and Sehgal [20]
besides validating it with suitable examples. We also compare some of the
existing structures, M—metric [1], My—metric [3], usual metric [4], b—metric
[5], rectangular metric [6], generalized v—metric [6], rectangular b—metric [8],
generalized partial metric pd [11], Mp—metric [13], partial metric [14], gener-
alized d9—metric [15], rectangular M—metric [17], rectangular partial metric
[19], partial b—metric [21] to demonstrate the superiority of MY —metric over
existing notions of distances. Besides, we demonstrate that the collection of
open balls forms a basis on M?—metric space. Towards the end, we solve a
non-linear matrix equation and an equation of rotation of a hanging cable to
substantiate the utility of these extensions. These fixed point results promote
further examinations and applications in metric fixed point theory.

2  Preliminaries
In the following, we denote:
My, ,, = min{m,(u,u), m,(w,w)}and M, ,, = max{m,(u,u), m,(w,w)}

In 2017, Mitrovié and Radenovié¢ [15] announced a generalized d—metric.

Definition 1 A generalized d2— metric on a nonempty set M with s > 1, s
a map dS : M x M — R satisfying:

(d5()  d®(u 1) = 0 if and only if u = o,

(dp(it)  dY(u,w) >0,

(dY(iii)) dP(u,w) = df(tv,u),

(dY(iv))  (dY(u,0) < s[(dP(uy,30) + (Y (30y32) + -+ + (A (3, 0],

W, 31y 32y --+y 3vy, 0 € M and are distinct. A pair (M, dl) is called a gener-
alized d0—metric space.
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Remark 1 A generalized dS—metric [15] reduces to a v—generalized metric
[6] on taking s = 1, a rectangular metric [6] on takingv =2 and s = 1, a
rectangular b—metric [8] on taking v = 2, b—metric [5] on takingv =1 and a
usual metric [4] on takingv =5 = 1.

In 2018, Karahan and Isik [11] introduced the notion of a generalized partial
metric space pJ.

Definition 2 A generalized pS—partial metric on a nonempty set M with
s> 1, is a map pS: M x M — R satisfying:

(pP1)  py(u,u) =pY(w,w) = py(u, 1) if and only if u =1

(pYi) pRu,u) < pP(u,w),

(pYiii) pY(u, 1) = pY(w,u),

(pyiv) pYlu,10) < slpPluy51) +pPla1,52) + -+ + PY v, 10)] — 2V (53, 31),
U, 31y 32y --+y 3vy, 0 € M and are distinct. A pair (M,pY) is a generalized

pB —partial metric space.

Remark 2 A generalized pb—partial metric reduces to a rectangular partial
metric [19] on takingv =2 and s =1, a rectangular partial b—metric [11] on
taking v = 2, a partial b—metric [21] on taking v =1 and a partial metric [14]
on takingv =5 = 1.

In 2019, Asim et al. [3] announced M, —metric.

Definition 3 An M,—metric on a nonempty set M is a map m, : M XM —
R* satisfying:

(myil)  my(u,u) = my(to,w) = my(u, w) if and only if u = to,

(myil) my,,, < my(u, ),

(myiit) my(u, ) = my (o, u),

(m W) (my(uy ) —my, ) < (Mo (u,31) — My, ) + (M(30,3.) — oy, L) +
(M (v, 0) — My L)y

Uy 31y 32y «--y 3vy, 0 € M and are distinct. A pair (M, m,) is an M, —metric
space.

Remark 3 If v=1, M, is an M—metric [1] and if v =2, it is a rectangular
metric [17].

Example 1 [3] Let M = R. Define m, : M x M —R* by m,(u, 1) = 23
u, 1w € M, then m, is an M,—metric.
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3 Main results

Joshi et al. [10] used the following notations

TTLlJu‘m = min{ﬁLL’(u,u), TTLE(‘U,YU)} and Meu’m = max{m&(u, u)) TTLB(tU,m)},

and introduced MJ-metric space.

Definition 4 An MY—metric on a non-empty set M with s > 1, is a map
mb: M x M — RT satisfying:

(ml\jl) m&(u)u) = ml\j(m)m) = m}:(u)m) if and only if u = w,

(mbit) mb, < mbu,w),

(ml\zlll) TTLE(U, ) = Tn'E(m)u))

(mbiv) (mBu,w)—m®, )< s[(m'a(u,m—m‘sum )+ (mB(31,32) b, )
J—

+ (ms(ﬁww) —TTLVMW) 1m8(5i>5i))

W, 31y 32y +--y 3vy W € M and are distinct. A pair (M, mb) is called an
MY —metric space.

Remark 4 Ifs=1, (M, mB) is an improvement and extension of My,—metric
space [3]. In particular, if v=s=1, (M, mY) is an Myp—metric space [13].

Example 2 Let M = RT and m® : M x M — [0,00) be defined as:

— [ . .
md(u, 1) = ]Eim‘ﬁxl + max{u, w}*, « > 1. By routine calculations, one may

verify that (M, mb) is an ME—metric space with s > 2°7'. But (M, mY) is not
an My—metric space. Since, foru=1, w=nand 31 =2, 532 =3, ..., 3y =
n—1, we obtain

m8(1,n) —mf, | = s + max{l,n)* — 1% = % +n

m8(1,2) —mS, , = 12 + max{], 2}“—1“ R L}

m8(2,3) —m, | = 125200 + max(2,3)% — 2% = } 4 3% — 2%

cx_]a’

mb(n—2,n—1)—md , =52 maxfn —2,n — 1) — (n—2)°

=l+m—-1%—(n-2)~
Therefore, mS(1,n) — mgm > md(1,2) —msu +mb(2,3) _m\b’z,s R

nﬁ(n—z,n—l)—m\t}niz’nq.
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To discuss the topology corresponding to MY—metric, Joshi et al. [10] defined
the open ball centered at u and radius ¢ € (0,00) as
Unps (1, €) ={ro € M: m?d(u, ) < mBu‘m + <k

Similarly, the closed ball [10] centered at u and radius € € (0, 00) is defined as
Z/IME[u, el ={m e M:md(umnw) < me + <k

Lemma 1 The collection of all open balls in an ME—metric space (./\/l,TrLB),
Unp (u,t) = {0 € M: m(u, 1) < T“Bu,m + ¢}y forms a basis on M.

Proof. Let my € L[mg(u, t), then mb(u,m,) < mEMO + ;- Choose, ¢ =
my o+ E—mY(u,w,) > 0.

Again, let 11 € Uy (105,¢), 50 MY (01, 10,) <MY+
my 4 £ —mf(i,,w,) > 0.

In same way, let w, € umlg(mv_l,s\;), so mY(roy, 10, 1) < mEmv‘qu 4 &

g and choose

choose & = m},’mwmvf + 821 md(u,r0,) > 0.

1 5
Now, for u,to,, 10,,...,t0y,

my (u,y) —my, < sl(my(u, o) —my,, )+ (M (g, w7)

DA MYy 0y) —my, )
—mY(ry, 7)) — MY (rg, 1) — -+ — MY (twy_1, 10y_1)
< s[(m (u, o) — My, ) + (MY (w0, 07) — My, )
+o 4 (MY (o gy 0y) —my, )]

-9 (59

=T — &y.

- m\’mo,m

Hence, Z/{ms(mo, ) C Uy (u,t). O
Joshi et al. [10] discussed the convergence of the sequence and introduced
definitions related to it.

Definition 5 (i) A sequence {un} in (M, mY) is mb—convergent to u € M
if and only if limn 0o MY (Up,u) — My, , = 0.
In other words, a sequence {uy} in a topological space (M,T8) converges
to a point w in M if for each open ball Up (u,€) containing u, there
exists a number k such that for each n >k, u, € Uny (u,¢).

(i1) A sequence {un} in (M, md) is an mY—Cauchy if and only if limp m—e0

(nﬁ,’(un,um)—mb’umum) and limn,m_,oo(Mb _Tn'eun,um) exist and are

finite.

Vun,um
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(ii1) An MO—metric space is an mS—complete if every mb—Cauchy sequence

{un} converges to a point u € M such that limn,m_,oo(m,s’(un,u) —

b _ : b b _
mv“mu) =0 and hmn,m—wo(Mvun,u mwmu) =0.

We shall use the following lemma to revisit the Banach contraction principle
[4] in MY-metric space (M, mD).

Lemma 2 [10] Let (M, md) be an MS—metric space and A: M — M be a

self map on M. If there exists n € [0, %), satisfying:

mY (Au, Aw) < nmd(u, ). (1)

Consider the sequence {un} defined as uny1 = Aun. If uy — u as n — oo,
then Au, — Au as n — oo.

Theorem 1 Let (M, mY) be an ME—complete metric space. Suppose a self
map A: M — M satisfies

1
md(Au, Aro) <nmb(u,w), ne 0,2) and u, we M. (2)
Then, A has a unique fized point w € M such that mY(u,u) = 0..

Proof. Starting from the given element uy € M, form the sequence {u,} ,
where 1, = Aun_1, n € N. If m8(up, tny1) =0, 1 = 0, then Auy =ty = Uy
and MY (un, un) = 0 and this completes the proof.

Further, take m®(un,un1) > 0, m > 0. For u=1u,, o =1u,,q, utilizing
condition (2),

Tn's(unﬂ y un+2) = m’E(Aum Aun+1)
< ﬂmE(una Un1)
<n"md(ug,11) — 0, as, n — oo.

Also,

Tn's(unﬂ y un+1) = m’E(Aum Auy)
< nm}?(umun)
<n"md(ug,1up) — 0, as, n — oo.

First, we show that u, # up, for n # m. Suppose u, = i, for n > m, then
Aun = uny = Auy = upyg. Now, by using inequality (2), for u = u, and
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0 = Uny1,

mvg(umaumﬂ) = me(-Aunthun) < nmlv’(unq,un) < ﬂzmb’(unfz,unq) <
<MY (U 1) < M8 (U, g 1), @ contradiction. Thus, uy # i,
for n # m.

Now, we show that {u,} is a Cauchy sequence in (M, m?). We discuss two
cases:

Case(i) First, let 1 be odd, that is, l = 2m + 1, for n, m € N. Now, by using
(mljiv) forn<v<n+l,

”LE(un,un+1) = T“B(umun+2m+1)
< s[mi’(un,unﬂ) + M (Ung 1, Unsa) o0 MG (Uny 1y Ungy)
A+ M (th gy g 2mg1)] — M (Ut 1)
- TTLE(unHa Uni2) — - — T‘l\}?(un-l-\))un-&-v)
<sm™ 40"+ ™) mb (uo, wy)
— (™0™ ™D mMY (w0, ur) 4 5ME (Ung,y Uns2me1)

n—1 1—nv nl_nv
=5<n1(_nn)>m‘3(uo,u1)—wn¢’(uo,u1)

+ 5m"\t)’(un+v> un+2m+1)
(1 —n") n"(1—n")
< 5<1_n my (ug, 1) — ﬁmg(uoﬁﬂ)
+ 52 [mt) (Untv, Un4v41 )+ m\lj (unJrvH y un+v+2)
+ o MY (Una2v—1y Una2y) + MY (Uns 2y, Ung2mr)]
- 5[“13(un+v+1 y Untv+1 )“‘nle(un-i-v—&-lv Ungv2)+. -+Tn3(un+2v» Uny2v)]
-1 v n v
"' (1—-m") n"(1—n")
< 5<1_n ml\f(uo,m) — ﬁms(uo,ul)
+52(nn+vf1 +nn+v 4. +nn+2v72)m‘5(u0)u1)
+ EZ”LS(unJrzv, Un+2m+1 ) - ﬁ(ﬂnﬂ + ﬂnﬂﬂ +---+ nn+2v*] )TTLE (an up )

n—1 1—nv n_nv
<o( T Ymbtuo,u) = S b )

n+v—1 1—nv vy _nv
+52<n]£nm>m‘3(uo,u1) —swm‘v’wo,m)

m_1 9
+--+sv o m, (Un-2m—vs Unt2m+1)
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n—1 1—nv nl_—_nv
§5<n1(_nn)>m}v’(umu1)—ng_$)mg(uo,ul)

n+v—1 1—nv (] _nv
+52<n]£nn) ](_T]n)m\t;)(uO)u1)

m . p b
+-t s [m\; (un+2mfva un+2m7v+1) + m, (un+2m7v+1 y un+2mfv+2)

)mh’(uo,m) —5

b am_jr b
+ -+ m, (unJer) Un2m+1 )] —5v [TTL\, (un+2m7v+1 y un+2mfv+1)

—+ .4 m]\:,)(un—&-lm) un+2m)]

n—1 v n1 _ v
éﬁ(n“m)ﬂ(uo,u])—wﬁﬁ(uo,m)

1—m 1
n4v—1 1—nv n+vy _nv
+5° G mi’(uo,m)—sni( L )mﬁ’(uo,lu)
T—m T—m
" n+2m—v—1 1—nVv
+"'+52“<n ( n)>mlvj(uo,u1)
T—m
" n+2m—v 1 v
_5ZT*T] 1—(11 n)m.s’(uo,m)—)O, as n — oo,
that is, limpy m——e0 mE(umun—&-Zm—&-]) =0.

Case (i1) Now, let 1 is even, that is, 1 = 2m for n,m € N.
Now, by using (mbiv) forn <v <n+1,

MW (U, tn) = MY (1, U 2m)
< s (n, tn1) + MY (Ungty Ung2) + -+ 4 MY (v, tny)
+ mS(UnJm Uny2om)] — mE(unH yUni1) — mS(UnJrZ» Unt2)
— mlv’(un+v>un+v)
<sm™ 0t 4™ md (u, )
— MM YT mY (ug, w) 4 SMY (U, Uns2m)

n—1 1—nVv nl_nv
:s(ﬂ](nﬂ )>m]3(uo,u1)—ng 7nﬂ )mE(UOaul)

+ 5m€ (un+v> un+2m)
=) nm"-n") 4
< - - [ S S
_5( - my (uo, u1) - my (uo, u1)
+ s [TTLE (Untvy Unpvp1) + me (Ungvr 1y Ungvr2)

+---+ mg(un-s—lv—] ) un+2v) + nle (un+2v> Un+2m+1 )]
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- 5[m5(un+v+1 ) un+v+1) + m&(un+v+2a un+v+2) + -+ mE(un+2v» un+2v)]
—1 v n Y
n" ' (1-n" n"(1-n") -
< 5<1—n my (up, u1) — ﬁmg(uo,u]) +P MM
+ - +nn+2v_2)m3(u0)u1) +52n15(un+2w un—i—Zm)
_s(nn+v +nn+v+1 4. +nn+2v71)nl‘\t}>(uo)u])

n—1 1—nv n_nv
<o( T Ymbtao,un) - P )

n+v—1 1—nv (] _nv
+ 57 <n1£nn)>m€(uo,u1) —5n1(_nn)mh’(uo,u1)

m n+2m—v—2 1—nv
+...+SV<n 1_; n)>m€’(uo,u1)
27m_111n+2m7‘}71(1 _nv) b

—5 v T m, (up, 1) — 0, as, n — oo,

that is, limn m—00 MY (Un, Uni2m) = 0.

So, limn’m_m(ms’(un,um) — ms’umum) =0.

Let MY (un, 1) = MY (n, un ). Now,

M (1t tm) — T (U i) < MY (Ut i) = MY () < 1Ty (g, up) —
0, as n — oo.

So, hmn,m—)oo ME (U—n) Um) — mﬁ’(un, um) =0.

Consequently, the sequence {u, } is m—Cauchy in M. Since, M is m—complete,
there exists u € U so that uy, — u. Now, we assert that Au = u.

lim (1m0 (un,u) —m, ) =0

n——aoo

= lim (mf(ung,u) —my, ) =0

Un 1ok
: b b _
= lim (my(Aun,u) =my, ) =0
= my(Au,u) —my, =0, (using Lemma 2),

that is, m?(Au,u) = min{m®(Au, Au), md(u,u)}
= mb(Au, 1) = m(Au, Au) or m8(Au,u) = mb(u,u).

Hence, Au = u, that is, u is a fixed point of A.

To conclude the theorem, suppose u and to are two different fixed points of A,
SO

m?b(u,w) = md(Au, Aw) <nmb(u, ) = mb(u,w) = 0. Hence, u = 1.
Next, we assert that if u is a fixed point, then mb(u,u) = 0.
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md(u,u) = m8(Mu, Mu) < nm?d(u,u) < mb(u,u), a contradiction.
Hence, mY(u,u) = 0. d

Example 3 Consider M = [0,10]. Let an MS—metric m8 : M x M — RF
be defined as mY(u,tw) = (HT‘“)Z, s = 3, w0 € M. Then, (M,md) is a
complete MY —metric space. Define a self map A on M by Au = %u, ue M.
Observe that, for all u,to € M, we obtain

Au + Aw\? Zu+2Zw\? 4 futo)? 4
b _ _ (15 15 _ b
mv(Au,Am)< > ) ( > ) 775 (2 ) < —ZZSmV(u,m).

Consequently, all the postulates of Theorem 1 are verified and A has a unique

fized point at 0 € M. Clearly, m%(0,0) = 0.

The contractive condition used in the next result is the generalization of the
Sehgal contraction [20] in MY-metric space, which uses four possible combi-
nations of distances (mY(u,w); mS(Au, Aw); mY(u, Aw); md(w, Au)) in a
linear way. On the other hand, Banach [4] utilized only the first two distances.

Theorem 2 Let (M, mY) be an ME—complete metric space. Suppose a self
map A: M — M satisfies

m (Au, Aw) < nmax{m(u,v), mS(u, Au), mS(r, Aw)},

1
ne {0,5> and u,r0 € M.

Then, A has a unique fized point M such that m?(u,u) = 0.

Proof. Let the sequence {u,} be defined as in the proof of Theorem 1, u,, #
Unt1, Uo € M, n € N. Now,

m&(umun—s—]) = 1113(./411“_1 y Auy)
< n max{me(un—1 ) un)) TTL& (un) Un+1 )}
We discuss two cases:

(1) If m8(un_1,un) < MY (tn,uny1), then mY(un, uny1) < MY (un, unir) <
nle(un)unﬂ))
a contradiction.

(i) If mO(un—_1,un) > MO (tn, tni1), then MmO (un, uni1) < MM (U1, un).
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Hence, the sequence {u} verifies the postulates of Theorem 1. So, following
similar steps as in Theorem 2, we may conclude that A has a unique fixed
point u € M and m{(u,u) = 0. O

Example 4 Let M =R and an MY—metric md : M x M — R* be defined

as:

md(u, w) = max{[ul?, [} + [u—w>, uw e M. (M, mb) is an Mb—metric
L -2,9

with s = 3. Define a self map A: M x M — R by Au = ;: uel ,’].
=,  otherwise

Observe that, for all u, o € M, we obtain

m®(Au, Aro) = max{|Aul?, |Am|2}+|Au Arwf? < 2 max{jul?, [} + |u — w]? =
%m&(u,m).

Consequently, all the postulates of Theorem 2 are verified and A has a unique
fized point at 0 € M and clearly, m%(0,0) = 0. It is fascinating to see that a
self map A is not continuous.

Remark 5 Theorems 1 and 2 are generalizations and extensions of Asadi et
al. [1], Asim et al. [2]-[3], Banach [4], Bakhtin [5], Branciari [6], George [8],
Karahan and Isik [11), Mlaiki et al. [13], Matthews [14], Ozgiir [17], Sehgal
[20], and so on to MY—metric space. Noticeably, the map under consideration
is not even continuous in Theorem 2 (see Example 4).

4 Applications

Motivated by the fact that the theory of linear systems is the foundation
of numerical linear algebra, which performs a significant role in chem-
istry, physics, computer science, engineering, and economics, we resolve
the system of linear equations in an my—metric space using Theorem 1.

Let Hn denote the set of all n x n Hermitian matrices, P, the set
of all n x n Hermitian positive definite matrices, P, the set of all n x n
positive semidefinite matrices. In the following, the symbol ||. H is the spec—
tral norm of a matrix B = [bijlnxn, that is, ||B|| = /AT (B*B), A" (B*B
is the largest eigenvalue of B*B, where B* is the conjugate transpose of B

Further, ||.|[,, denotes the trace norm of B and ||B|,, = /X, Z]T‘:1|bij|2 =
tr(B*B) = (/£ ,02(B), 0i(B), i = 1,2,...,n, denotes largest singular

values of B € M,,(C). Let M =P, and m? : M — M be defined as
md (U, W) = max{tr(U)], [tr(W)|}* + [tr(Ud — W), U, W € M and s = 3.
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Theorem 3 Let a nonlinear matriz equation be
U =1, Bf(U)B;, (4)

where By € Mn(C) are the arbitrary matriz of order n. Let f : Hy(C) —
Hn(C) be a monotone self map, which maps Pn(C) into Pn(C).

(1) max{[tr(fi)], [tr(fW)]} < \ﬁmax{ltf( )y [er(W)IL

() [tr(fUd) — PVl < e ltr(@ — W,

(iii) trOVY) < [W|tr(V), W € My (C),

3

(iv) Z{‘:ﬂ?i*P] < (4n21n)%, where 1, is the identity matriz of order n and
n € (Oa g)

Then, the matriz equation (4) has one and only solution U* € M. Further,
the iteration Un = X' | BIf(U)By, Uy € My (C) such that Uy < I B f(U)B;,
converges to U* € M satisfying the nonlinear matrixz equation (4).

Proof. Let a self map A: M — M be defined as
AU) = T B (U)B;. (5)
Noticeably, a fixed point of A is a solution of a matrix Equation (4).
ml (AU, AW) = max{[tr(AU)|, [tr(AW)[} + [tr(AU — AW)?
= max{[tr(Z], BIf(U)B;)l, [tr(Z], Bif (W) By
+ [er (IR B (F(U) — F(V) B
= max{[tr(Z1, B Bif(UU))], [tr(Z, B Bif (W)}
+ 1 (2 BB (U) — £(W) P
< (||Z0 B; Bil)* [ max{tr(£(24))], Kr(FOV)IF + trifUd) — F(WV)]
1 2
< 1421 [ —— 2 w2
< a1 (= ) max(er(@ol, fer OV + er@d = WP

=n[max{|tr(¥)], [trOV)[}* + [tr(td — W)I*]
=nmy (U, W).

We may observe that postulates of Theorem 1 are verified, and A has only
one fixed point U* € M, that is, matrix equation (4) has only one solution

u* e M. O
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As an application of the main result, we solve the equation of the motion of
rotation of a cable. Let I = [—1,1] and M = CI[I,R] denote the set of all
continuous functions on [0, 1]. Define m% : M x M — R* by md(u, ) =

(Iu\+\m\)2
> :
Theorem 4 The equation of motion of a rotation of cable is :

i[m —tZ)‘;ﬂ Fu =Kt ut), tel=1,1], ne [o, 1) (6)

with finite Dirichlet boundary conditions u(—1) and u(1), wheren is a constant
and I : M x [=1,1] — R, is a continuous function satisfying

(s, u(s))] + IK(s,(s))] < 72 max{my (1, 0), My (u, Au), m(w, Aw)},

L
nd +1

where u, w € R, a € [0,1).
Then, the Dirichlet boundary value problem (6) has a solution in M.

Proof. A Dirichlet boundary value problem (6) is identical to
1
u(t) :J G(s,t)(s,u(s))ds, t € [-1,1], (7)
—1

Here,

m2—-1-1
G5 = { 1y 11

is a continuous Green function on [—1,1]. Let M = (C[-1,1],R") be the set
of non negative real-valued continuous function. Define a map A4 : M — M
given by

tn(1—s)(1+t) 1 <t<s<1 (8)

n(l1+s)(1—t) ,—1<s<t<1’

Au(t) = fll G(s,t)K(s,u(s))ds.

Then, u is a solution of (7) if and only if u is a fixed point of A.
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Clearly, A: M — M is well defined, so

2
m? (Au(t), Ar(t)) = ('Au(t)l - lAm(t)|>

_ <| [116(s, 1)K (s, u(s))ds| + | [, g(s,tms,m(snds|>2
2

. (1‘1 Gls, t)|K(s,u(s))|ds + [T g(s,t)\n(s,m(s)mds)Z

2

-] 2

1
=7 <J] G(t,s)(IK(s,u(s))[ + |K(s,m(s))|)ds>

4
1 1 2
< 7 max(|K(s,u(s))| + |/C(s,m(s))|)2<J ]g(t,s)ds)
1 4
< fmmaxw(u,m),me(u, Au), mb (10, Ar)}

1 2
J g(t, s)ds>
-1

~—

n
= a1 max{mlv’(u,m),mt’(u,.Au),p(m,.Am)
‘ 11 2
In2—-—= —
(L (n2— 5~ (1 —s)( —l—s))ds)
< 0 maxm(u, ), m (u, Au), mS (1, Ar)}{n 4+ 12
= [1Tl4+”2 ) ) ) ) )
:ﬂmax{m}?(u»m)» mE(U)Au% m\b)(m)-Am)}-
(9)
Thus, all the postulates of Theorem 2 are verified and A has a fixed point,
which is indeed a solution to the problem (6). O

5 Conclusion

We utilized the MY —metric which is an improvement and generalization of an
M, —metric to create an environment for the survival of a unique fixed point.
Further, we demonstrated that the collection of open balls forms a basis on
Me—metric space. Examples and applications to solve the system of linear
equations and the equation of a motion of rotation of a cable substantiate the
utility of these extensions.
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