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Abstract. The aim is to utilize a new metric called an Mb
v−metric

which is an improvement and generalization of Mv−metric to revisit
the celebrated Banach and Sehgal contractions in Mb

v−metric space. We
demonstrate that the collection of open balls forms a basis on Mb

v -metric
space. Further, we give some examples for the verification of established
results. Towards the end, we solve a non-linear matrix equation and an
equation of rotation of a hanging cable to substantiate the utility of these
extensions.

1 Introduction and preliminaries

Distance is one of the earliest perceptions appreciated by humans. Initially,
the idea of distance appeared during the period of Euclid. In 1906, Maurice
Rene Frećhet [7] introduced the general and more axiomatic form of a distance
and named it “L-space”. Felix Hausdorff [9] reviewed it as a metric space. Sub-
sequently, numerous refined, generalized, and extended versions of the metric
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structure appeared in the literature. For details, about the generalizations of
the metric notion, one may refer to Kirk and Shahzad [12]. In most of these
improvements, extensions and generalizations of Banach’s result [4] have been
announced.
The aim of the present work is to utilize a novel notion of distance called an

Mb
v−metric [10], which is an improvement and generalization of theMv−metric

[3], to revisit the acclaimed Banach contraction principle [4] and Sehgal [20]
besides validating it with suitable examples. We also compare some of the
existing structures, M−metric [1], Mv−metric [3], usual metric [4], b−metric
[5], rectangular metric [6], generalized v−metric [6], rectangular b−metric [8],
generalized partial metric pb

v [11], Mb−metric [13], partial metric [14], gener-
alized db

v−metric [15], rectangular M−metric [17], rectangular partial metric
[19], partial b−metric [21] to demonstrate the superiority of Mb

v−metric over
existing notions of distances. Besides, we demonstrate that the collection of
open balls forms a basis on Mb

v−metric space. Towards the end, we solve a
non-linear matrix equation and an equation of rotation of a hanging cable to
substantiate the utility of these extensions. These fixed point results promote
further examinations and applications in metric fixed point theory.

2 Preliminaries

In the following, we denote:

mvu,w = min{mv(u, u), mv(w,w)} and Mvu,w = max{mv(u, u), mv(w,w)}.

In 2017, Mitrović and Radenović [15] announced a generalized db
v−metric.

Definition 1 A generalized db
v− metric on a nonempty set M with s ≥ 1, is

a map db
v : M×M → R+ satisfying:

(db
v(i)) db

v(u,w) = 0 if and only if u = w,

(db
v(ii)) db

v(u,w) ≥ 0,

(db
v(iii)) db

v(u,w) = db
v(w, u),

(db
v(iv)) (db

v(u,w) ≤ s[(db
v(u, z1) + (db

v(z1, z2) + · · ·+ (db
v(zv,w)],

u, z1, z2, . . . , zv, w ∈ M and are distinct. A pair (M, db
v) is called a gener-

alized db
v−metric space.
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Remark 1 A generalized db
v−metric [15] reduces to a v−generalized metric

[6] on taking s = 1, a rectangular metric [6] on taking v = 2 and s = 1, a
rectangular b−metric [8] on taking v = 2, b−metric [5] on taking v = 1 and a
usual metric [4] on taking v = s = 1.

In 2018, Karahan and Isik [11] introduced the notion of a generalized partial
metric space pb

v .

Definition 2 A generalized pb
v−partial metric on a nonempty set M with

s ≥ 1, is a map pb
v : M×M → R+ satisfying:

(pb
v i) pb

v(u, u) = pb
v(w,w) = pb

v(u,w) if and only if u = w,

(pb
v ii) pb

v(u, u) ≤ pb
v(u,w),

(pb
v iii) pb

v(u,w) = pb
v(w, u),

(pb
v iv) pb

v(u,w) ≤ s[pb
v(u, z1) + pb

v(z1, z2) + · · ·+ pb
v(zv,w)] − Σv

i=1p
b
v(zi, zi),

u, z1, z2, . . . , zv, w ∈ M and are distinct. A pair (M, pb
v) is a generalized

pb
v−partial metric space.

Remark 2 A generalized pb
v−partial metric reduces to a rectangular partial

metric [19] on taking v = 2 and s = 1, a rectangular partial b−metric [11] on
taking v = 2, a partial b−metric [21] on taking v = 1 and a partial metric [14]
on taking v = s = 1.

In 2019, Asim et al. [3] announced Mv−metric.

Definition 3 An Mv−metric on a nonempty set M is a map mv : M×M →
R+ satisfying:

(mvi) mv(u, u) = mv(w,w) = mv(u,w) if and only if u = w,

(mvii) mvu,w ≤ mv(u,w),

(mviii) mv(u,w) = mv(w, u),

(mviv) (mv(u,w) − mvu,w) ≤ (mv(u, z1) − mvu,z1 ) + (mv(z1, z2) − mvz1,z2
) +

· · ·+ (mv(zv,w) −mvzv,w),

u, z1, z2, . . . , zv, w ∈ M and are distinct. A pair (M,mv) is an Mv−metric
space.

Remark 3 If v = 1, Mv is an M−metric [1] and if v = 2, it is a rectangular
metric [17].

Example 1 [3] Let M = R. Define mv : M×M →R+ by mv(u,w) = |u|+|w|
2 ,

u,w ∈ M, then mv is an Mv−metric.
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3 Main results

Joshi et al. [10] used the following notations

mb
vu,w = min{mb

v(u, u), mb
v(w,w)} and Mb

vu,w = max{mb
v(u, u), mb

v(w,w)},

and introduced Mb
v -metric space.

Definition 4 An Mb
v−metric on a non-empty set M with s ≥ 1, is a map

mb
v : M×M → R+ satisfying:

(mb
v i) mb

v(u, u) = mb
v(w,w) = mb

v(u,w) if and only if u = w,

(mb
v ii) mb

vu,w
≤ mb

v(u,w),

(mb
v iii) mb

v(u,w) = mb
v(w, u),

(mb
v iv) (mb

v(u,w)−mb
vu,w

) ≤ s[(mb
v(u, z1)−mb

vu,z1
)+(mb

v(z1, z2)−mb
vz1,z2

)+

· · ·+ (mb
v(zv, w) −mb

vzv,w
)] − Σv

i=1m
b
v(zi, zi),

u, z1, z2, . . . , zv, w ∈ M and are distinct. A pair (M,mb
v) is called an

Mb
v−metric space.

Remark 4 If s = 1, (M,mb
v) is an improvement and extension of Mv−metric

space [3]. In particular, if v = s = 1, (M,mb
v) is an Mb−metric space [13].

Example 2 Let M = R+ and mb
v : M × M −→ [0,∞) be defined as:

mb
v(u,w) = 1+|u−w|α

|u−w|α
+max{u, w}α, α > 1. By routine calculations, one may

verify that (M,mb
v) is an Mb

v−metric space with s ≥ 2α−1. But (M,mb
v) is not

an Mv−metric space. Since, for u = 1, w = n and z1 = 2, z2 = 3, . . . , zv =
n− 1, we obtain
mb

v(1, n) −mb
v1,n

= |1−n|α

1+|1−n|α
+max{1, n}α − 1α = |1−n|α

1+|1−n|α
+ nα − 1α,

mb
v(1, 2) −mb

v1,2
= |1−2|α

1+|1−2|α
+max{1, 2}α − 1α = 1

2 + 2α − 1α,

mb
v(2, 3) −mb

v2,3
= |2−3|α

1+|2−3|α
+max{2, 3}α − 2α = 1

2 + 3α − 2α,

...
mb

v(n− 2, n− 1) −mb
vn−2,n−1

= |n−2−n+1|α

1+|n−2−n+1|α
+max{n− 2, n− 1}α − (n− 2)α

= 1
2 + (n− 1)α − (n− 2)α.

Therefore, mb
v(1, n) − mb

v1,n
> mb

v(1, 2) − mb
v1,2

+ mb
v(2, 3) − mb

v2,3
+ · · · +

mb
v(n− 2, n− 1) −mb

vn−2,n−1
.
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To discuss the topology corresponding to Mb
v−metric, Joshi et al. [10] defined

the open ball centered at u and radius ε ∈ (0,∞) as
UMb

v
(u, ε) = {w ∈ M : mb

v(u,w) < mb
vu,w + ε

s }.

Similarly, the closed ball [10] centered at u and radius ε ∈ (0,∞) is defined as
UMb

v
[u, ε] = {w ∈ M : mb

v(u,w) ≤ mb
vu,w + ε

s }.

Lemma 1 The collection of all open balls in an Mb
v−metric space (M,mb

v),
Umb

v
(u, r) = {w ∈ M : mb

v(u,w) < mb
vu,w + ε

s }, forms a basis on M.

Proof. Let w0 ∈ Umb
v
(u, r), then mb

v(u,w0) < mb
vu,w0

+ r
s . Choose, ε

s =

mb
vu,w0

+ r
s −mb

v(u,w0) > 0.

Again, let w1 ∈ Umb
v
(w0,ε), so mb

v(w1,w0) < mb
vw1,w0

+ ε
s and choose ε1

s =

mb
vw1,w0

+ ε
s −mb

v(w1,w0) > 0.

In same way, let wv ∈ Umb
v
(wv−1, εv), so mb

v(wv,wv−1) < mb
vwv,wv−1

+ εv−1

s ,

choose εv
s = mb

vwv,wv−1
+ εv−1

s −mb
v(u,w1) > 0.

Now, for u,w0,w1, . . . ,wv,

mb
v(u,wv) −mvu,wv

≤ s[(mb
v(u,w0) −m1u,w0

) + (mb
v(w0,w1)

−mvw0,w1
) + · · ·+ (mb

v(wv−1,wv) −mvwv−1,wv
)]

−mb
v(w1,w1) −mb

v(w2,w2) − · · ·−mb
v(wv−1,wv−1)

≤ s[(mb
v(u,w0) −m1u,w0

) + (mb
v(w0,w1) −mvw0,w1

)

+ · · ·+ (mb
v(wv−1,wv) −mvwv−1,wv

)]

= s

[( r
s
−

ε

s

)
+
(ε
s
−

ε1
s

)
+ · · ·+

(εv−1

s
−

εv

s

)]
= r − εv.

Hence, Umb
v
(w0, ε) ⊆ Umb

v
(u, r). □

Joshi et al. [10] discussed the convergence of the sequence and introduced
definitions related to it.

Definition 5 (i) A sequence {un} in (M,mb
v) is mb

v−convergent to u ∈ M
if and only if limn−→∞mb

v(un, u) −mvun,u = 0.

In other words, a sequence {un} in a topological space (M, τbv) converges
to a point u in M if for each open ball UMb

v
(u, ε) containing u, there

exists a number k such that for each n > k, un ∈ UMb
v
(u, ε).

(ii) A sequence {un} in (M,mb
v) is an mb

v−Cauchy if and only if limn,m−→∞
(mb

v(un, um)−mb
vun,um

) and limn,m−→∞(Mb
vun,um

−mb
vun,um

) exist and are
finite.
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(iii) An Mb
v−metric space is an mb

v−complete if every mb
v−Cauchy sequence

{un} converges to a point u ∈ M such that limn,m−→∞(mb
v(un, u) −

mb
vun,u

) = 0 and limn,m−→∞(Mb
vun,u

−mb
vun,u

) = 0.

We shall use the following lemma to revisit the Banach contraction principle
[4] in Mb

v -metric space (M,mb
v).

Lemma 2 [10] Let (M,mb
v) be an Mb

v−metric space and A : M −→ M be a
self map on M. If there exists η ∈ [0, 1s ), satisfying:

mb
v(Au,Aw) ≤ ηmb

v(u,w). (1)

Consider the sequence {un} defined as un+1 = Aun. If un −→ u as n −→ ∞,

then Aun −→ Au as n −→ ∞.

Theorem 1 Let (M,mb
v) be an Mb

v−complete metric space. Suppose a self
map A : M −→ M satisfies

mb
v(Au,Aw) ≤ ηmb

v(u,w), η ∈ [0,
1

s
) and u, w ∈ M. (2)

Then, A has a unique fixed point u ∈ M such that mb
v(u, u) = 0..

Proof. Starting from the given element u0 ∈ M, form the sequence {un} ,
where un = Aun−1, n ∈ N. If mb

v(un, un+1) = 0, n ⩾ 0, then Aun = un+1 = un
and mb

v(un, un) = 0 and this completes the proof.
Further, take mb

v(un, un+1) > 0, n ⩾ 0 . For u = un, w = un+1, utilizing
condition (2),

mb
v(un+1, un+2) = mb

v(Aun,Aun+1)

≤ ηmb
v(un, un+1)

≤ ηnmb
v(u0, u1) −→ 0, as, n −→ ∞.

Also,

mb
v(un+1, un+1) = mb

v(Aun,Aun)

≤ ηmb
v(un, un)

≤ ηnmb
v(u0, u0) −→ 0, as, n −→ ∞.

First, we show that un ̸= um, for n ̸= m. Suppose un = um, for n > m, then
Aun = un+1 = Aum = um+1. Now, by using inequality (2), for u = un and
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w = un+1,
mb

v(um, um+1) = mb
v(Aun−1,Aun) ≤ ηmb

v(un−1, un) ≤ η2mb
v(un−2, un−1) ≤

· · · ≤ ηn−mmb
v(um, um+1) < mb

v(um, um+1), a contradiction. Thus, un ̸= um,
for n ̸= m.

Now, we show that {un} is a Cauchy sequence in (M,mb
v). We discuss two

cases:

Case(i) First, let l be odd, that is, l = 2m+ 1, for n,m ∈ N. Now, by using
(mb

v iv) for n ≤ v ≤ n+ l,

mb
v(un, un+l) = mb

v(un, un+2m+1)

≤ s
[
mb

v(un, un+1) +mb
v(un+1, un+2) + · · ·+mb

v(un+v−1, un+v)

+mb
v(un+v, un+2m+1)] −mb

v(un+1, un+1)

−mb
v(un+2, un+2) − · · ·−mb

v(un+v, un+v)

≤ s
(
ηn−1 + ηn + . . . ηn+v−2

)
mb

v(u0, u1)

−
(
ηn + ηn+1 + · · ·+ ηn+v−1

)
mb

v(u0, u1) + smb
v(un+v, un+2m+1)

= s

(
ηn−1(1− ηv)

1− η

)
mb

v(u0, u1) −
ηn(1− ηv)

1− η
mb

v(u0, u1)

+ smb
v(un+v, un+2m+1)

≤ s

(
ηn−1(1− ηv)

1− η

)
mb

v(u0, u1) −
ηn(1− ηv)

1− η
mb

v(u0, u1)

+ s2[mb
v(un+v, un+v+1) +mb

v(un+v+1, un+v+2)

+ · · ·+mb
v(un+2v−1, un+2v) +mb

v(un+2v, un+2m+1)]

− s[mb
v(un+v+1, un+v+1)+mb

v(un+v+2, un+v+2)+. . .+mb
v(un+2v, un+2v)]

≤ s

(
ηn−1(1− ηv)

1− η

)
mb

v(u0, u1) −
ηn(1− ηv)

1− η
mb

v(u0, u1)

+ s2(ηn+v−1 + ηn+v + · · ·+ ηn+2v−2)mb
v(u0, u1)

+ s2mb
v(un+2v, un+2m+1) − s(ηn+v + ηn+v+1 + · · ·+ ηn+2v−1)mb

v(u0, u1)

≤ s

(
ηn−1(1− ηv)

1− η

)
mb

v(u0, u1) −
ηn(1− ηv)

1− η
mb

v(u0, u1)

+ s2
(
ηn+v−1(1− ηv)

1− η

)
mb

v(u0, u1) − s
ηn+v(1− ηv)

1− η
mb

v(u0, u1)

+ · · ·+ s
2m
v

−1mb
v(un+2m−v, un+2m+1)
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≤ s

(
ηn−1(1− ηv)

1− η

)
mb

v(u0, u1) −
ηn(1− ηv)

1− η
mb

v(u0, u1)

+ s2
(
ηn+v−1(1− ηv)

1− η
)mb

v(u0, u1

)
− s

ηn+v(1− ηv)

1− η
mb

v(u0, u1)

+ · · ·+ s
2m
v [mb

v(un+2m−v, un+2m−v+1) +mb
v(un+2m−v+1, un+2m−v+2)

+ · · ·+mb
v(un+2m, un+2m+1)] − s

2m
v

−1[mb
v(un+2m−v+1, un+2m−v+1)

+ · · ·+mb
v(un+2m, un+2m)]

≤ s

(
ηn−1(1− ηv)

1− η

)
mb

v(u0, u1) −
ηn(1− ηv)

1− η
mb

v(u0, u1)

+ s2
(
ηn+v−1(1− ηv)

1− η

)
mb

v(u0, u1) − s
ηn+v(1− ηv)

1− η
mb

v(u0, u1)

+ · · ·+ s
2m
v

(
ηn+2m−v−1(1− ηv)

1− η

)
mb

v(u0, u1)

− s
2m
v

−1η
n+2m−v(1− ηv)

1− η
mb

v(u0, u1) −→ 0, as n −→ ∞,

that is, limn,m−→∞mb
v(un, un+2m+1) = 0.

Case (ii) Now, let l is even, that is, l = 2m for n,m ∈ N.
Now, by using (mb

v iv) for n ≤ v ≤ n+ l,

mvw
b(un, un+l) = mb

v(un, un+2m)

≤ s[mb
v(un, un+1) +mb

v(un+1, un+2) + · · ·+mb
v(un+v−1, un+v)

+mb
v(un+v, un+2m)] −mb

v(un+1, un+1) −mb
v(un+2, un+2)

− · · ·−mb
v(un+v, un+v)

≤ s(ηn−1 + ηn + . . . ηn+v−2)mb
v(u0, u1)

− (ηn + ηn+1 + · · ·+ ηn+v−1)mb
v(u0, u1) + smb

v(un+v, un+2m)

= s

(
ηn−1(1− ηv)

1− η

)
mb

v(u0, u1) −
ηn(1− ηv)

1− η
mb

v(u0, u1)

+ smb
v(un+v, un+2m)

≤ s

(
ηn−1(1− ηv)

1− η

)
mb

v(u0, u1) −
ηn(1− ηv)

1− η
mb

v(u0, u1)

+ s2[mb
v(un+v, un+v+1) +mb

v(un+v+1, un+v+2)

+ · · ·+mb
v(un+2v−1, un+2v) +mb

v(un+2v, un+2m+1)]
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− s[mb
v(un+v+1, un+v+1) +mb

v(un+v+2, un+v+2) + · · ·+mb
v(un+2v, un+2v)]

≤ s

(
ηn−1(1− ηv)

1− η

)
mb

v(u0, u1) −
ηn(1− ηv)

1− η
mb

v(u0, u1) + s2(ηn+v−1 + ηn+v

+ · · ·+ ηn+2v−2)mb
v(u0, u1) + s2mb

v(un+2v, un+2m)

− s(ηn+v + ηn+v+1 + · · ·+ ηn+2v−1)mb
v(u0, u1)

≤ s

(
ηn−1(1− ηv)

1− η

)
mb

v(u0, u1) −
ηn(1− ηv)

1− η
mb

v(u0, u1)

+ s2
(
ηn+v−1(1− ηv)

1− η

)
mb

v(u0, u1) − s
ηn+v(1− ηv)

1− η
mb

v(u0, u1)

+ · · ·+ s
2m
v

(
ηn+2m−v−2(1− ηv)

1− η

)
mb

v(u0, u1)

− s
2m
v

−1η
n+2m−v−1(1− ηv)

1− η
mb

v(u0, u1) −→ 0, as, n −→ ∞,

that is, limn,m−→∞mb
v(un, un+2m) = 0.

So, limn,m−→∞(mb
v(un, um) −mb

vun,um
) = 0.

Let Mb
v(un, um) = mb

v(un, un). Now,
Mb

v(un, um) − mb
v(un, um) ≤ Mb

v(un, um) = mb
v(un, un) ≤ ηn−1mb

v(u0, u0) −→
0, as n −→ ∞.

So, limn,m−→∞Mb
v(un, um) −mb

v(un, um) = 0.

Consequently, the sequence {un} ism
b
v−Cauchy inM. Since,M ismb

v−complete,
there exists u ∈ U so that un −→ u. Now, we assert that Au = u.

lim
n−→∞(mb

v(un, u) −mb
vun,u

) = 0

⇒ lim
n−→∞(mb

v(un+1, u) −mb
vun+1,u

) = 0

⇒ lim
n−→∞(mb

v(Aun, u) −mb
vAun,u

) = 0

⇒ mb
v(Au, u) −mb

vAu,u
= 0, (using Lemma 2),

that is, mb
v(Au, u) = min{mb

v(Au,Au), mb
v(u, u)}⇒ mb

v(Au, u) = mb
v(Au,Au) or mb

v(Au, u) = mb
v(u, u).

Hence, Au = u, that is, u is a fixed point of A.
To conclude the theorem, suppose u and w are two different fixed points of A,
so
mb

v(u,w) = mb
v(Au,Aw) ≤ ηmb

v(u,w) ⇒ mb
v(u,w) = 0. Hence, u = w.

Next, we assert that if u is a fixed point, then mb
v(u, u) = 0.
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mb
v(u, u) = mb

v(Mu,Mu) ≤ ηmb
v(u, u) < mb

v(u, u), a contradiction.
Hence, mb

v(u, u) = 0. □

Example 3 Consider M = [0, 10]. Let an Mb
v−metric mb

v : M×M −→ R+

be defined as mb
v(u,w) = (u+w

2 )2, s = 3, u,w ∈ M. Then, (M,mb
v) is a

complete Mb
v−metric space. Define a self map A on M by Au = 2

15u, u ∈ M.

Observe that, for all u,w ∈ M, we obtain

mb
v(Au,Aw)=

(
Au +Aw

2

)2

=

( 2
15u +

2
15w

2

)2

=
4

225

(
u + v

2

)2

≤ 4

225
mb

v(u,w).

Consequently, all the postulates of Theorem 1 are verified and A has a unique
fixed point at 0 ∈ M. Clearly, mb

v(0, 0) = 0.

The contractive condition used in the next result is the generalization of the
Sehgal contraction [20] in Mb

v -metric space, which uses four possible combi-
nations of distances

(
mb

v(u,w); mb
v(Au,Aw); mb

v(u,Aw); mb
v(w,Au)

)
in a

linear way. On the other hand, Banach [4] utilized only the first two distances.

Theorem 2 Let (M,mb
v) be an Mb

v−complete metric space. Suppose a self
map A : M −→ M satisfies

mb
v(Au,Aw) ≤ ηmax{mb

v(u, v), mb
v(u,Au), mb

v(w,Aw)},

η ∈
[
0,

1

s

)
and u,w ∈ M.

(3)

Then, A has a unique fixed point ⊓ such that mb
v(u, u) = 0.

Proof. Let the sequence {un} be defined as in the proof of Theorem 1, un ̸=
un+1, u0 ∈ M, n ∈ N. Now,

mb
v(un, un+1) = mb

v(Aun−1,Aun)

≤ ηmax{mb
v(un−1, un), mb

v(un, un+1)}.

We discuss two cases:

(i) If mb
v(un−1, un) ≤ mb

v(un, un+1), then mb
v(un, un+1) ≤ ηmb

v(un, un+1) <

mb
v(un, un+1),

a contradiction.

(ii) If mb
v(un−1, un) ≥ mb

v(un, un+1), then mb
v(un, un+1) ≤ ηmb

v(un−1, un).
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Hence, the sequence {un} verifies the postulates of Theorem 1. So, following
similar steps as in Theorem 2, we may conclude that A has a unique fixed
point u ∈ M and mb

v(u, u) = 0. □

Example 4 Let M = R and an Mb
v−metric mb

v : M×M −→ R+ be defined
as:
mb

v(u,w) = max{|u|2, |w|2} + |u − w|2, u,w ∈ M. (M,mb
v) is an Mb

v−metric

with s = 3. Define a self map A : M×M −→ R by Au =

{
u
9 , u ∈ [−9, 9]
3u
5 , otherwise

.

Observe that, for all u, w ∈ M, we obtain
mb

v(Au,Aw) = max{|Au|2, |Aw|2}+ |Au−Aw|2 ≤ 9
25 max{|u|2, |w|2}+ |u − w|2 =

9
25m

b
v(u,w).

Consequently, all the postulates of Theorem 2 are verified and A has a unique
fixed point at 0 ∈ M and clearly, mb

v(0, 0) = 0. It is fascinating to see that a
self map A is not continuous.

Remark 5 Theorems 1 and 2 are generalizations and extensions of Asadi et
al. [1], Asim et al. [2]-[3], Banach [4], Bakhtin [5], Branciari [6], George [8],
Karahan and Isik [11], Mlaiki et al. [13], Matthews [14], Özgür [17], Sehgal
[20], and so on to Mb

v−metric space. Noticeably, the map under consideration
is not even continuous in Theorem 2 (see Example 4).

4 Applications

Motivated by the fact that the theory of linear systems is the foundation
of numerical linear algebra, which performs a significant role in chem-
istry, physics, computer science, engineering, and economics, we resolve
the system of linear equations in an mv

b−metric space using Theorem 1.
Let Hn denote the set of all n × n Hermitian matrices, Pn the set

of all n × n Hermitian positive definite matrices, Pn0
the set of all n × n

positive semidefinite matrices. In the following, the symbol ∥.∥ is the spec-
tral norm of a matrix B = [bij]n×n, that is, ∥B∥ =

√
λ+(B∗B), λ+(B∗B)

is the largest eigenvalue of B∗B, where B∗ is the conjugate transpose of B.
Further, ∥.∥tr denotes the trace norm of B and ∥B∥tr =

√
Σn
i=1Σ

n
j=1|bij|2 =√

tr(B∗B) =
√

Σn
i=1σ

2
i (B), σi(B), i = 1, 2, . . . , n, denotes largest singular

values of B ∈ Mn(C). Let M = Pn and mb
v : M −→ M be defined as

mb
v(U ,W) = max{|tr(U)|, |tr(W)|}2 + |tr(U −W)|2, U , W ∈ M and s = 3.
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Theorem 3 Let a nonlinear matrix equation be

U = Σn
i=1B∗

i f(U)Bi, (4)

where Bi ∈ Mn(C) are the arbitrary matrix of order n. Let f : Hn(C) −→
Hn(C) be a monotone self map, which maps Pn(C) into Pn(C).

(i) max{|tr(fU)|, |tr(fW)|} ≼ 1√
4η

max{|tr(U)|, |tr(W)|},

(ii) |tr(fU) − fW | ≼ 1√
4η
|tr(U −W)|,

(iii) tr(WV) ≤ ∥W∥tr(V), W ∈ Mn(C),

(iv) Σn
i=1P∗

i P ≤ (4η2In)
1
2 , where In is the identity matrix of order n and

η ∈ (0, 1s ).

Then, the matrix equation (4) has one and only solution U∗ ∈ M. Further,
the iteration Un = Σn

i=1B∗
i f(U)Bi, U0 ∈ Mn(C) such that U0 ≤ Σn

i=1B∗
i f(U)Bi,

converges to U∗ ∈ M satisfying the nonlinear matrix equation (4).

Proof. Let a self map A : M −→ M be defined as

A(U) = Σn
i=1B∗

i f(U)Bi. (5)

Noticeably, a fixed point of A is a solution of a matrix Equation (4).

mb
v(AU ,AW) = max{|tr(AU)|, |tr(AW)|}2 + |tr(AU −AW)|2

= max{|tr(Σn
i=1B∗

i f(U)Bi)|, |tr(Σn
i=1B∗

i f(W)Bi)|}
2

+ |tr(Σn
i=1B∗

i (f(U) − f(W)Bi))|
2

= max{|tr(Σn
i=1B∗

i Bif(U))|, |tr(Σn
i=1B∗

i Bif(W))|}2

+ |tr(Σn
i=1B∗

i Bif(U) − f(W))|2

≤ (∥Σn
i=1B∗

i Bi∥)2
[
max{|tr(f(U))|, |tr(f(W))|}2 + tr|f(U) − f(W)|2]

≤ ∥4η2I∥
( 1√

4η

)2
[max{|tr(U)|, |tr(W)|}2 + |tr(U −W)|2]

= η
[
max{|tr(U)|, |tr(W)|}2 + |tr(U −W)|2

]
= ηmb

v(U ,W).

We may observe that postulates of Theorem 1 are verified, and A has only
one fixed point U∗ ∈ M, that is, matrix equation (4) has only one solution
U∗ ∈ M. □
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As an application of the main result, we solve the equation of the motion of
rotation of a cable. Let I = [−1, 1] and M = C[I,R] denote the set of all
continuous functions on [0, 1]. Define mb

v : M × M −→ R+ by mb
v(u,w) =(

|u|+|w|
2

)2
.

Theorem 4 The equation of motion of a rotation of cable is :

d

dt

[(
1− t2

)du
dt

]
+ ηu = K(t, u(t)), t ∈ [−1, 1], η ∈

[
0,

1

s

)
, (6)

with finite Dirichlet boundary conditions u(−1) and u(1), where η is a constant
and K : M× [−1, 1] −→ R, is a continuous function satisfying

|K(s, u(s))|+ |K(s,w(s))| ≤ 4η

[ln4+ 1]2
max{mb

v(u,w), mb
v(u,Au), mb

v(w,Aw)},

where u, w ∈ R, a ∈ [0, 1).
Then, the Dirichlet boundary value problem (6) has a solution in M.

Proof. A Dirichlet boundary value problem (6) is identical to

u(t) =

∫ 1
−1

G(s, t)K(s, u(s))ds, t ∈ [−1, 1], (7)

Here,

G(t, s) =
{

ln2− 1
2 −

1
2 ln(1− s)(1+ t) ,−1 ≤ t ≤ s ≤ 1

ln2− 1
2 −

1
2 ln(1+ s)(1− t) ,−1 ≤ s ≤ t ≤ 1

, (8)

is a continuous Green function on [−1, 1]. Let M = (C[−1, 1],R+) be the set
of non negative real-valued continuous function. Define a map A : M −→ M
given by

Au(t) =
∫1
−1G(s, t)K(s, u(s))ds.

Then, u is a solution of (7) if and only if u is a fixed point of A.
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Clearly, A : M −→ M is well defined, so

mb
v(Au(t),Aw(t)) =

(
|Au(t)|+ |Aw(t)|

2

)2

=

(∣∣ ∫1
−1 G(s, t)K(s, u(s))ds

∣∣+ ∣∣ ∫1
−1 G(s, t)K(s,w(s))ds

∣∣
2

)2

≤
(∫1

−1 G(s, t)
∣∣K(s, u(s))

∣∣ds+ ∫1
−1 G(s, t)

∣∣K(s,w(s))
∣∣ds

2

)2

=
1

4

( ∫ 1
−1

G(t, s)(|K(s, u(s))|+ |K(s,w(s))|)ds

)2

≤ 1

4
max(|K(s, u(s))|+ |K(s,w(s))|)2

( ∫ 1
−1

G(t, s)ds
)2

≤ 1

4

4η

[ln4+ 1]2
max{mb

v(u,w),mb
v(u,Au),mb

v(w,Aw)}( ∫ 1
−1

G(t, s)ds
)2

=
η

ln4+ 1
max{mb

v(u,w),mb
v(u,Au), p(w,Aw)( ∫ 1

t

(ln 2−
1

2
−

1

2
ln(1− s)(1+ s))ds

)2

≤ η

[ln4+ 1]2
max{mb

v(u,w),mb
v(u,Au),mb

v(w,Aw)}[ln 4+1]2

= ηmax{mb
v(u,w), mb

v(u,Au), mb
v(w,Aw)}.

(9)

Thus, all the postulates of Theorem 2 are verified and A has a fixed point,
which is indeed a solution to the problem (6). □

5 Conclusion

We utilized the Mb
v−metric which is an improvement and generalization of an

Mv−metric to create an environment for the survival of a unique fixed point.
Further, we demonstrated that the collection of open balls forms a basis on
Mb

v−metric space. Examples and applications to solve the system of linear
equations and the equation of a motion of rotation of a cable substantiate the
utility of these extensions.
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[17] N. Y. Özgür, N. Mlaki, N. Taş, N. Souayah, A new generalization of
metric spaces: rectangular M−metric spaces, Mathematical Sciences, 12,
(2018), 223–233.

[18] B. E. Rhoades, Contractive definitions and continuity, Contemp. Math.,
72, (1988), 233–245.

[19] S. Shukla, Partial rectangular metric spaces and fixed point theorems,
Sci. World J., 2014, (2014), 1–12.

[20] V. M. Sehgal, On fixed and periodic points for a class of mappings, J.
London Math. Soc. 2(5), (1972), 571–576.

[21] S. Shukla, Partial b−Metric Spaces and Fixed Point Theorems, Mediterr.
J. Math., 11, (2014), 703–711.

Received: December 22, 2020


