

DOI: 10.2478/ausm-2023-0015

# Fixed point in $\mathcal{M}_{\nu}^{b}$ —metric space and applications

#### Meena Joshi

S. S. J. Campus, Soban Singh Jeena, Uttarakhand University, Almora-263601, India email: joshimeena35@gmail.com

## Anita Tomar

†Pt. L. M. S. Campus, Sri Dev Suman Uttarakhand University, Rishikesh-246201, India email: anitatmr@yahoo.com

## Izhar Uddin

Jamia Millia Islamia, New Delhi-110025, India email: izharuddin1@jmi.ac.in

**Abstract.** The aim is to utilize a new metric called an  $M^b_\nu$ -metric which is an improvement and generalization of  $M_\nu$ -metric to revisit the celebrated Banach and Sehgal contractions in  $M^b_\nu$ -metric space. We demonstrate that the collection of open balls forms a basis on  $M^b_\nu$ -metric space. Further, we give some examples for the verification of established results. Towards the end, we solve a non-linear matrix equation and an equation of rotation of a hanging cable to substantiate the utility of these extensions.

# 1 Introduction and preliminaries

Distance is one of the earliest perceptions appreciated by humans. Initially, the idea of distance appeared during the period of Euclid. In 1906, Maurice Rene Frechet [7] introduced the general and more axiomatic form of a distance and named it "L-space". Felix Hausdorff [9] reviewed it as a metric space. Subsequently, numerous refined, generalized, and extended versions of the metric

2010 Mathematics Subject Classification: 47H10, 54H25, 55M20, 37E10 Key words and phrases: fixed point in  $\mathcal{M}_{\nu}^{b}$ -metric space and applications

structure appeared in the literature. For details, about the generalizations of the metric notion, one may refer to Kirk and Shahzad [12]. In most of these improvements, extensions and generalizations of Banach's result [4] have been announced.

The aim of the present work is to utilize a novel notion of distance called an  $M_{\nu}^b$ -metric [10], which is an improvement and generalization of the  $M_{\nu}$ -metric [3], to revisit the acclaimed Banach contraction principle [4] and Sehgal [20] besides validating it with suitable examples. We also compare some of the existing structures, M-metric [1],  $M_{\nu}$ -metric [3], usual metric [4], b-metric [5], rectangular metric [6], generalized  $\nu$ -metric [6], rectangular b-metric [8], generalized partial metric  $p_{\nu}^b$  [11],  $M_b$ -metric [13], partial metric [14], generalized  $d_{\nu}^b$ -metric [15], rectangular M-metric [17], rectangular partial metric [19], partial b-metric [21] to demonstrate the superiority of  $M_{\nu}^b$ -metric over existing notions of distances. Besides, we demonstrate that the collection of open balls forms a basis on  $M_{\nu}^b$ -metric space. Towards the end, we solve a non-linear matrix equation and an equation of rotation of a hanging cable to substantiate the utility of these extensions. These fixed point results promote further examinations and applications in metric fixed point theory.

# 2 Preliminaries

In the following, we denote:

$$m_{\nu_{u,w}} = \min\{m_{\nu}(u,u), \ m_{\nu}(w,w)\} \ \mathrm{and} \ M_{\nu_{u,w}} = \max\{m_{\nu}(u,u), \ m_{\nu}(w,w)\}.$$

In 2017, Mitrović and Radenović [15] announced a generalized  $d_{\nu}^{b}$ —metric.

**Definition 1** A generalized  $d_{\nu}^b$  – metric on a nonempty set  $\mathcal{M}$  with  $s \geq 1$ , is a map  $d_{\nu}^b : \mathcal{M} \times \mathcal{M} \to \mathbb{R}^+$  satisfying:

$$(d_{\nu}^b(\mathfrak{i})) \quad d_{\nu}^b(\mathfrak{u},\mathfrak{w}) = 0 \text{ if and only if } \mathfrak{u} = \mathfrak{w},$$

$$(d_{\nu}^{b}(ii)) \quad d_{\nu}^{b}(\mathfrak{u},\mathfrak{w}) \geq 0,$$

$$(d_{\nu}^{b}(iii)) d_{\nu}^{b}(\mathfrak{u},\mathfrak{w}) = d_{\nu}^{b}(\mathfrak{w},\mathfrak{u}),$$

$$(d_{\nu}^b(i\nu)) \quad (d_{\nu}^b(\mathfrak{u},\mathfrak{w}) \leq s[(d_{\nu}^b(\mathfrak{u},\mathfrak{z}_1) + (d_{\nu}^b(\mathfrak{z}_1,\mathfrak{z}_2) + \dots + (d_{\nu}^b(\mathfrak{z}_{\nu},\mathfrak{w})],$$

 $\mathfrak{u},\ \mathfrak{z}_1,\ \mathfrak{z}_2,\ \ldots,\ \mathfrak{z}_{\mathfrak{v}},\ \mathfrak{w}\in\mathcal{M}\ \text{and are distinct. A pair}\ (\mathcal{M},d^b_{\mathfrak{v}})\ \text{is called a generalized}\ d^b_{\mathfrak{v}}-\text{metric space}.$ 

**Remark 1** A generalized  $d_{\nu}^{b}$ —metric [15] reduces to a  $\nu$ —generalized metric [6] on taking  $\mathfrak{s}=1$ , a rectangular metric [6] on taking  $\nu=2$  and  $\mathfrak{s}=1$ , a rectangular  $\mathfrak{b}$ —metric [8] on taking  $\nu=2$ ,  $\mathfrak{b}$ —metric [5] on taking  $\nu=1$  and a usual metric [4] on taking  $\nu=\mathfrak{s}=1$ .

In 2018, Karahan and Isik [11] introduced the notion of a generalized partial metric space  $p_{\nu}^{b}$ .

**Definition 2** A generalized  $p_{\nu}^{b}$ -partial metric on a nonempty set  $\mathcal{M}$  with  $s \geq 1$ , is a map  $p_{\nu}^{b} : \mathcal{M} \times \mathcal{M} \to \mathbb{R}^{+}$  satisfying:

$$(\mathfrak{p}_{\nu}^{\mathfrak{b}}\mathfrak{i})$$
  $\mathfrak{p}_{\nu}^{\mathfrak{b}}(\mathfrak{u},\mathfrak{u}) = \mathfrak{p}_{\nu}^{\mathfrak{b}}(\mathfrak{w},\mathfrak{w}) = \mathfrak{p}_{\nu}^{\mathfrak{b}}(\mathfrak{u},\mathfrak{w})$  if and only if  $\mathfrak{u} = \mathfrak{w}$ ,

$$(p_{\nu}^{b}ii)$$
  $p_{\nu}^{b}(\mathfrak{u},\mathfrak{u}) \leq p_{\nu}^{b}(\mathfrak{u},\mathfrak{w}),$ 

$$(\mathfrak{p}_{\nu}^{b}\mathfrak{i}\mathfrak{i}\mathfrak{i}\mathfrak{i})\ \mathfrak{p}_{\nu}^{b}(\mathfrak{u},\mathfrak{w})=\mathfrak{p}_{\nu}^{b}(\mathfrak{w},\mathfrak{u}),$$

$$(\mathfrak{p}_{\nu}^b \mathfrak{i} \nu) \quad \mathfrak{p}_{\nu}^b (\mathfrak{u},\mathfrak{w}) \leq s[\mathfrak{p}_{\nu}^b (\mathfrak{u},\mathfrak{z}_1) + \mathfrak{p}_{\nu}^b (\mathfrak{z}_1,\mathfrak{z}_2) + \dots + \mathfrak{p}_{\nu}^b (\mathfrak{z}_{\nu},\mathfrak{w})] - \Sigma_{i=1}^{\nu} \mathfrak{p}_{\nu}^b (\mathfrak{z}_i,\mathfrak{z}_i),$$

 $\mathfrak{u}, \mathfrak{z}_1, \mathfrak{z}_2, \ldots, \mathfrak{z}_{\nu}, \mathfrak{w} \in \mathcal{M} \text{ and are distinct. A pair } (\mathcal{M}, \mathfrak{p}^b_{\nu}) \text{ is a generalized } \mathfrak{p}^b_{\nu}-partial \text{ metric space.}$ 

**Remark 2** A generalized  $\mathfrak{p}_{\nu}^b$ -partial metric reduces to a rectangular partial metric [19] on taking  $\nu=2$  and  $\mathfrak{s}=1$ , a rectangular partial b-metric [11] on taking  $\nu=2$ , a partial b-metric [21] on taking  $\nu=1$  and a partial metric [14] on taking  $\nu=\mathfrak{s}=1$ .

In 2019, Asim et al. [3] announced  $M_{\nu}$ -metric.

**Definition 3** An  $M_{\nu}$ -metric on a nonempty set  $\mathcal{M}$  is a map  $\mathfrak{m}_{\nu}: \mathcal{M} \times \mathcal{M} \to \mathbb{R}^+$  satisfying:

$$(\mathfrak{m}_{\nu}\mathfrak{i})\quad \mathfrak{m}_{\nu}(\mathfrak{u},\mathfrak{u})=\mathfrak{m}_{\nu}(\mathfrak{w},\mathfrak{w})=\mathfrak{m}_{\nu}(\mathfrak{u},\mathfrak{w}) \text{ if and only if } \mathfrak{u}=\mathfrak{w},$$

$$(m_{\nu}ii)$$
  $m_{\nu_{\mathfrak{u},\mathfrak{w}}} \leq m_{\nu}(\mathfrak{u},\mathfrak{w}),$ 

$$(m_{\nu}iii)$$
  $m_{\nu}(\mathfrak{u},\mathfrak{w}) = m_{\nu}(\mathfrak{w},\mathfrak{u}),$ 

$$\begin{array}{ll} (m_{\nu}i\nu) \ (m_{\nu}(\mathfrak{u},\mathfrak{w})-m_{\nu_{\mathfrak{u},\mathfrak{w}}}) \leq (m_{\nu}(\mathfrak{u},\mathfrak{z}_1)-m_{\nu_{\mathfrak{u},\mathfrak{z}_1}}) + (m_{\nu}(\mathfrak{z}_1,\mathfrak{z}_2)-m_{\nu_{\mathfrak{z}_1,\mathfrak{z}_2}}) + \\ \cdots + (m_{\nu}(\mathfrak{z}_{\nu},\mathfrak{w})-m_{\nu_{\mathfrak{z}_1,\mathfrak{w}}}), \end{array}$$

 $\mathfrak{u}$ ,  $\mathfrak{z}_1$ ,  $\mathfrak{z}_2$ , ...,  $\mathfrak{z}_{\nu}$ ,  $\mathfrak{w} \in \mathcal{M}$  and are distinct. A pair  $(\mathcal{M}, \mathfrak{m}_{\nu})$  is an  $M_{\nu}-metric$  space.

**Remark 3** If  $\nu = 1$ ,  $M_{\nu}$  is an M-metric [1] and if  $\nu = 2$ , it is a rectangular metric [17].

**Example 1** [3] Let  $\mathcal{M} = \mathbb{R}$ . Define  $\mathfrak{m}_{\nu} : \mathcal{M} \times \mathcal{M} \to \mathbb{R}^+$  by  $\mathfrak{m}_{\nu}(\mathfrak{u}, \mathfrak{w}) = \frac{|\mathfrak{u}| + |\mathfrak{w}|}{2}$ ,  $\mathfrak{u}, \mathfrak{w} \in \mathcal{M}$ , then  $\mathfrak{m}_{\nu}$  is an  $M_{\nu}$ -metric.

#### 3 Main results

Joshi et al. [10] used the following notations

$$\begin{split} \mathfrak{m}_{\nu_{\mathfrak{u},\mathfrak{w}}}^{b} &= \min\{\mathfrak{m}_{\nu}^{b}(\mathfrak{u},\mathfrak{u}),\ \mathfrak{m}_{\nu}^{b}(\mathfrak{w},\mathfrak{w})\} \ \mathrm{and} \ M_{\nu_{\mathfrak{u},\mathfrak{w}}}^{b} &= \max\{\mathfrak{m}_{\nu}^{b}(\mathfrak{u},\mathfrak{u}),\ \mathfrak{m}_{\nu}^{b}(\mathfrak{w},\mathfrak{w})\},\\ \mathrm{and\ introduced}\ M_{\nu}^{b}\text{-metric\ space}. \end{split}$$

**Definition 4** An  $M_v^b$ -metric on a non-empty set  $\mathcal{M}$  with  $s \geq 1$ , is a map  $\mathfrak{m}_{\nu}^{\mathfrak{b}}: \mathcal{M} \times \mathcal{M} \to \mathbb{R}^{+}$  satisfying:

$$(\mathfrak{m}_{\nu}^{\mathfrak{b}}\mathfrak{i})$$
  $\mathfrak{m}_{\nu}^{\mathfrak{b}}(\mathfrak{u},\mathfrak{u})=\mathfrak{m}_{\nu}^{\mathfrak{b}}(\mathfrak{w},\mathfrak{w})=\mathfrak{m}_{\nu}^{\mathfrak{b}}(\mathfrak{u},\mathfrak{w})$  if and only if  $\mathfrak{u}=\mathfrak{w},$ 

$$(\mathfrak{m}_{v}^{b}ii)$$
  $\mathfrak{m}_{v_{u,w}}^{b} \leq \mathfrak{m}_{v}^{b}(\mathfrak{u},w),$ 

$$(\mathfrak{m}_{\nu}^{\mathfrak{b}}\mathfrak{i}\mathfrak{i}\mathfrak{i}\mathfrak{i})$$
  $\mathfrak{m}_{\nu}^{\mathfrak{b}}(\mathfrak{u},\mathfrak{w})=\mathfrak{m}_{\nu}^{\mathfrak{b}}(\mathfrak{w},\mathfrak{u}),$ 

$$\begin{split} (\mathfrak{m}_{\nu}^b \mathrm{i} \nu) \ & (\mathfrak{m}_{\nu}^b (\mathfrak{u}, w) - \mathfrak{m}_{\nu_{\mathfrak{u}, w}}^b) \leq s [(\mathfrak{m}_{\nu}^b (\mathfrak{u}, \mathfrak{z}_1) - \mathfrak{m}_{\nu_{\mathfrak{u}, \mathfrak{z}_1}}^b) + (\mathfrak{m}_{\nu}^b (\mathfrak{z}_1, \mathfrak{z}_2) - \mathfrak{m}_{\nu_{\mathfrak{z}_1, \mathfrak{z}_2}}^b) + \\ & \cdots + (\mathfrak{m}_{\nu}^b (\mathfrak{z}_{\nu}, w) - \mathfrak{m}_{\nu_{\mathfrak{z}_{\nu}, w}}^b)] - \Sigma_{i=1}^{\nu} \mathfrak{m}_{\nu}^b (\mathfrak{z}_i, \mathfrak{z}_i), \end{split}$$

 $\mathfrak{u},\ \mathfrak{z}_1,\ \mathfrak{z}_2,\ \ldots,\ \mathfrak{z}_{\nu},\ w\in\mathcal{M}\ and\ are\ distinct.\ A\ pair\ (\mathcal{M},\mathfrak{m}_{\nu}^b)\ is\ called\ an$  $M_{\nu}^{b}-metric\ space.$ 

**Remark 4** If s = 1,  $(\mathcal{M}, \mathfrak{m}_{\nu}^{b})$  is an improvement and extension of  $M_{\nu}$ -metric space [3]. In particular, if  $v = \mathfrak{s} = 1$ ,  $(\mathcal{M}, \mathfrak{m}_{v}^{b})$  is an  $M_{b}$ -metric space [13].

**Example 2** Let  $\mathcal{M} = \mathbb{R}^+$  and  $\mathfrak{m}_{\nu}^b : \mathcal{M} \times \mathcal{M} \longrightarrow [0, \infty)$  be defined as:  $m_{\nu}^b(\mathfrak{u},\mathfrak{w}) = \frac{1+|\mathfrak{u}-\mathfrak{w}|^{\alpha}}{|\mathfrak{u}-\mathfrak{w}|^{\alpha}} + \max\{\mathfrak{u},\ \mathfrak{w}\}^{\alpha}, \quad \alpha > 1. \ \textit{By routine calculations, one may}$ verify that  $(\mathcal{M}, \mathfrak{m}_{\nu}^b)$  is an  $\mathcal{M}_{\nu}^b$ -metric space with  $s \geq 2^{\alpha-1}$ . But  $(\mathcal{M}, \mathfrak{m}_{\nu}^b)$  is not an  $M_{\nu}$ -metric space. Since, for  $u=1,\ w=n$  and  $\mathfrak{z}_1=2,\ \mathfrak{z}_2=3,\ \ldots,\ \mathfrak{z}_{\nu}=1$ n-1, we obtain

$$\begin{array}{ll} n-1, & \textit{we obtain} \\ m_{\nu}^{b}(1,n)-m_{\nu_{1,n}}^{b} = \frac{|1-n|^{\alpha}}{1+|1-n|^{\alpha}} + \max\{1,n\}^{\alpha} - 1^{\alpha} = \frac{|1-n|^{\alpha}}{1+|1-n|^{\alpha}} + n^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(1,2)-m_{\nu_{1,2}}^{b} = \frac{|1-2|^{\alpha}}{1+|1-2|^{\alpha}} + \max\{1,2\}^{\alpha} - 1^{\alpha} = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{|2-3|^{\alpha}}{2} + \max\{1,2\}^{\alpha} - 2^{\alpha} = \frac{1}{2} + 2^{\alpha} - 2^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{|2-3|^{\alpha}}{2} + \max\{1,2\}^{\alpha} - 2^{\alpha} = \frac{1}{2} + 2^{\alpha} - 2^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{|2-3|^{\alpha}}{2} + \max\{1,2\}^{\alpha} - 2^{\alpha} = \frac{1}{2} + 2^{\alpha} - 2^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{|2-3|^{\alpha}}{2} + \max\{1,2\}^{\alpha} - 2^{\alpha} = \frac{1}{2} + 2^{\alpha} - 2^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{|2-3|^{\alpha}}{2} + \max\{1,2\}^{\alpha} - 2^{\alpha} = \frac{1}{2} + 2^{\alpha} - 2^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{|2-3|^{\alpha}}{2} + m_{\nu}^{b}(2,2) = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{1}{2} + 2^{\alpha} - 1^{\alpha}, \\ m_{\nu}^{b}(2,2) = m_{\nu}^{b} = \frac{1}{2} +$$

$$m_{\nu}^{b}(2,3) - m_{\nu_{2,3}}^{b} = \frac{|2-3|^{\alpha}}{1+|2-3|^{\alpha}} + \max\{2,3\}^{\alpha} - 2^{\alpha} = \frac{1}{2} + 3^{\alpha} - 2^{\alpha},$$

$$\begin{split} m_{\nu}^b(n-2,n-1) - m_{\nu_{n-2,n-1}}^b &= \frac{|n-2-n+1|^{\alpha}}{1+|n-2-n+1|^{\alpha}} + \max\{n-2,n-1\}^{\alpha} - (n-2)^{\alpha} \\ &= \frac{1}{2} + (n-1)^{\alpha} - (n-2)^{\alpha}. \\ Therefore, \quad m_{\nu}^b(1,n) - m_{\nu_{1,n}}^b &> m_{\nu}^b(1,2) - m_{\nu_{1,2}}^b + m_{\nu}^b(2,3) - m_{\nu_{2,3}}^b + \cdots + m_{\nu_{2,n}}^b + m_{\nu_{2,n}}^b - m_{\nu_{2,n}}^$$

Therefore, 
$$m_{\nu}^{b}(1,n) - m_{\nu_{1,n}}^{b} > m_{\nu}^{b}(1,2) - m_{\nu_{1,2}}^{b} + m_{\nu}^{b}(2,3) - m_{\nu_{2,3}}^{b} + \cdots + m_{\nu}^{b}(n-2,n-1) - m_{\nu_{n-2,n-1}}^{b}$$
.

To discuss the topology corresponding to  $M^b_{\nu}$ —metric, Joshi et al. [10] defined the open ball centered at  $\mathfrak u$  and radius  $\epsilon \in (0,\infty)$  as

 $\mathcal{U}_{\mathsf{M}^b_{\upsilon}}(\mathfrak{u},\epsilon) = \{\mathfrak{w} \in \mathcal{M} : \mathfrak{m}^b_{\upsilon}(\mathfrak{u},\mathfrak{w}) < \mathfrak{m}^b_{\upsilon_{\mathfrak{u},\mathfrak{w}}} + \tfrac{\epsilon}{\mathfrak{s}}\}.$ 

Similarly, the closed ball [10] centered at  $\mathfrak u$  and radius  $\varepsilon \in (0, \infty)$  is defined as  $\mathcal U_{M^b_{\mathfrak v}}[\mathfrak u, \varepsilon] = \{\mathfrak w \in \mathcal M : \mathfrak m^b_{\mathfrak v}(\mathfrak u, \mathfrak w) \leq \mathfrak m^b_{\mathfrak v_{\mathfrak u, \mathfrak w}} + \frac{\varepsilon}{\mathfrak s} \}.$ 

**Lemma 1** The collection of all open balls in an  $M^b_{\nu}$ -metric space  $(\mathcal{M}, \mathfrak{m}^b_{\nu})$ ,  $\mathcal{U}_{\mathfrak{m}^b_{\nu}}(\mathfrak{u},\mathfrak{r}) = \{\mathfrak{w} \in \mathcal{M} : \mathfrak{m}^b_{\nu}(\mathfrak{u},\mathfrak{w}) < \mathfrak{m}^b_{\nu_{\mathfrak{u},\mathfrak{w}}} + \frac{\epsilon}{\mathfrak{s}}\}$ , forms a basis on  $\mathcal{M}$ .

 $\begin{array}{ll} \textbf{Proof.} \ \mathrm{Let} \ \mathfrak{w}_0 \in \mathcal{U}_{\mathfrak{m}_{\nu}^b}(\mathfrak{u},\mathfrak{r}), \quad \mathrm{then} \ \mathfrak{m}_{\nu}^b(\mathfrak{u},\mathfrak{w}_o) < \mathfrak{m}_{\nu_{\mathfrak{u},\mathfrak{w}_o}}^b + \frac{\mathfrak{r}}{\mathfrak{s}}. \quad \mathrm{Choose}, \ \tfrac{\epsilon}{\mathfrak{s}} = \\ \mathfrak{m}_{\nu_{\mathfrak{u},\mathfrak{w}_o}}^b + \frac{\mathfrak{r}}{\mathfrak{s}} - \mathfrak{m}_{\nu}^b(\mathfrak{u},\mathfrak{w}_o) > 0. \end{array}$ 

Again, let  $\mathfrak{w}_1 \in \mathcal{U}_{\mathfrak{m}_v^b}(\mathfrak{w}_o, \varepsilon)$ , so  $\mathfrak{m}_v^b(\mathfrak{w}_1, \mathfrak{w}_o) < \mathfrak{m}_{v_{\mathfrak{w}_1, \mathfrak{w}_o}}^b + \frac{\varepsilon}{\mathfrak{s}}$  and choose  $\frac{\varepsilon_1}{\mathfrak{s}} = \mathfrak{m}_{v_{\mathfrak{w}_1, \mathfrak{w}_o}}^b + \frac{\varepsilon}{\mathfrak{s}} - \mathfrak{m}_v^b(\mathfrak{w}_1, \mathfrak{w}_o) > 0$ .

In same way, let  $\mathfrak{w}_{\nu} \in \mathcal{U}_{\mathfrak{m}_{\nu}^b}(\mathfrak{w}_{\nu-1},\epsilon_{\nu}), \text{ so } \mathfrak{m}_{\nu}^b(\mathfrak{w}_{\nu},\mathfrak{w}_{\nu-1}) < \mathfrak{m}_{\nu_{\mathfrak{w}_{\nu},\mathfrak{w}_{\nu-1}}}^b + \frac{\epsilon_{\nu-1}}{\mathfrak{s}},$  choose  $\frac{\epsilon_{\nu}}{\mathfrak{s}} = \mathfrak{m}_{\nu_{\mathfrak{w}_{\nu},\mathfrak{w}_{\nu-1}}}^b + \frac{\epsilon_{\nu-1}}{\mathfrak{s}} - \mathfrak{m}_{\nu}^b(\mathfrak{u},\mathfrak{w}_{\scriptscriptstyle{\perp}}) > 0.$ 

Now, for  $\mathfrak{u}, \mathfrak{w}_{\mathfrak{o}}, \mathfrak{w}_{\mathfrak{1}}, \ldots, \mathfrak{w}_{\mathfrak{v}}$ 

$$\begin{split} m_{\nu}^b(\mathfrak{u},\mathfrak{w}_{\nu}) - m_{\nu_{\mathfrak{u},\mathfrak{w}_{\nu}}} &\leq \mathfrak{s}[(m_{\nu}^b(\mathfrak{u},\mathfrak{w}_0) - m_{1_{\mathfrak{u},\mathfrak{w}_0}}) + (m_{\nu}^b(\mathfrak{w}_0,\mathfrak{w}_1) \\ &- m_{\nu_{\mathfrak{w}_0,\mathfrak{w}_1}}) + \dots + (m_{\nu}^b(\mathfrak{w}_{\nu-1},\mathfrak{w}_{\nu}) - m_{\nu_{\mathfrak{w}_{\nu-1},\mathfrak{w}_{\nu}}})] \\ &- m_{\nu}^b(\mathfrak{w}_1,\mathfrak{w}_1) - m_{\nu}^b(\mathfrak{w}_2,\mathfrak{w}_2) - \dots - m_{\nu}^b(\mathfrak{w}_{\nu-1},\mathfrak{w}_{\nu-1}) \\ &\leq \mathfrak{s}[(m_{\nu}^b(\mathfrak{u},\mathfrak{w}_0) - m_{1_{\mathfrak{u},\mathfrak{w}_0}}) + (m_{\nu}^b(\mathfrak{w}_0,\mathfrak{w}_1) - m_{\nu_{\mathfrak{w}_0,\mathfrak{w}_1}}) \\ &+ \dots + (m_{\nu}^b(\mathfrak{w}_{\nu-1},\mathfrak{w}_{\nu}) - m_{\nu_{\mathfrak{w}_{\nu-1},\mathfrak{w}_{\nu}}})] \\ &= \mathfrak{s}\left[\left(\frac{\mathfrak{r}}{\mathfrak{s}} - \frac{\varepsilon}{\mathfrak{s}}\right) + \left(\frac{\varepsilon}{\mathfrak{s}} - \frac{\varepsilon_1}{\mathfrak{s}}\right) + \dots + \left(\frac{\varepsilon_{\nu-1}}{\mathfrak{s}} - \frac{\varepsilon_{\nu}}{\mathfrak{s}}\right)\right] \\ &= \mathfrak{r} - \varepsilon_{\nu}. \end{split}$$

Hence,  $\mathcal{U}_{\mathfrak{m}_{\mathfrak{d}}^{\mathfrak{b}}}(\mathfrak{w}_{\mathfrak{d}}, \varepsilon) \subseteq \mathcal{U}_{\mathfrak{m}_{\mathfrak{d}}^{\mathfrak{b}}}(\mathfrak{u}, \mathfrak{r})$ .

Joshi et al. [10] discussed the convergence of the sequence and introduced definitions related to it.

- **Definition 5** (i) A sequence  $\{\mathfrak{u}_n\}$  in  $(\mathcal{M},\mathfrak{m}_{\nu}^b)$  is  $\mathfrak{m}_{\nu}^b-$ convergent to  $\mathfrak{u}\in\mathcal{M}$  if and only if  $\lim_{n\longrightarrow\infty}\mathfrak{m}_{\nu}^b(\mathfrak{u}_n,\mathfrak{u})-\mathfrak{m}_{\nu\mathfrak{u}_n,\mathfrak{u}}=0$ .

  In other words, a sequence  $\{\mathfrak{u}_n\}$  in a topological space  $(\mathcal{M},\tau_{\nu}^b)$  converges to a point  $\mathfrak{u}$  in  $\mathcal{M}$  if for each open ball  $\mathcal{U}_{M_{\nu}^b}(\mathfrak{u},\epsilon)$  containing  $\mathfrak{u}$ , there exists a number k such that for each n>k,  $\mathfrak{u}_n\in\mathcal{U}_{M_{\nu}^b}(\mathfrak{u},\epsilon)$ .
  - (ii) A sequence  $\{\mathfrak{u}_n\}$  in  $(\mathcal{M},\mathfrak{m}_{\nu}^b)$  is an  $\mathfrak{m}_{\nu}^b-\text{Cauchy if and only if }\lim_{\mathfrak{n},\mathfrak{m}\longrightarrow\infty}$   $(\mathfrak{m}_{\nu}^b(\mathfrak{u}_n,\mathfrak{u}_m)-\mathfrak{m}_{\nu_{\mathfrak{u}_n,\mathfrak{u}_m}}^b)$  and  $\lim_{\mathfrak{n},\mathfrak{m}\longrightarrow\infty}(M_{\nu_{\mathfrak{u}_n,\mathfrak{u}_m}}^b-\mathfrak{m}_{\nu_{\mathfrak{u}_n,\mathfrak{u}_m}}^b)$  exist and are finite.

(iii) An  $M_{\nu}^{b}$ -metric space is an  $\mathfrak{m}_{\nu}^{b}$ -complete if every  $\mathfrak{m}_{\nu}^{b}$ -Cauchy sequence  $\{\mathfrak{u}_{n}\}$  converges to a point  $\mathfrak{u} \in \mathcal{M}$  such that  $\lim_{\mathfrak{n},\mathfrak{m}\longrightarrow\infty}(\mathfrak{m}_{\nu}^{b}(\mathfrak{u}_{\mathfrak{n}},\mathfrak{u})-\mathfrak{m}_{\nu\mathfrak{u}_{\mathfrak{n}},\mathfrak{u}}^{b})=0$  and  $\lim_{\mathfrak{n},\mathfrak{m}\longrightarrow\infty}(M_{\nu\mathfrak{u}_{\mathfrak{n}},\mathfrak{u}}^{b}-\mathfrak{m}_{\nu\mathfrak{u}_{\mathfrak{n}},\mathfrak{u}}^{b})=0$ .

We shall use the following lemma to revisit the Banach contraction principle [4] in  $\mathcal{M}_{\nu}^{b}$ -metric space  $(\mathcal{M}, \mathfrak{m}_{\nu}^{b})$ .

**Lemma 2** [10] Let  $(\mathcal{M}, \mathfrak{m}_{\nu}^b)$  be an  $\mathcal{M}_{\nu}^b$ -metric space and  $\mathcal{A}: \mathcal{M} \longrightarrow \mathcal{M}$  be a self map on  $\mathcal{M}$ . If there exists  $\mathfrak{q} \in [0, \frac{1}{\mathfrak{s}})$ , satisfying:

$$m_{\nu}^{b}(\mathcal{A}\mathfrak{u},\mathcal{A}\mathfrak{w}) \leq \eta m_{\nu}^{b}(\mathfrak{u},\mathfrak{w}).$$
 (1)

Consider the sequence  $\{\mathfrak{u}_n\}$  defined as  $\mathfrak{u}_{n+1} = \mathcal{A}\mathfrak{u}_n$ . If  $\mathfrak{u}_n \longrightarrow \mathfrak{u}$  as  $n \longrightarrow \infty$ , then  $\mathcal{A}\mathfrak{u}_n \longrightarrow \mathcal{A}\mathfrak{u}$  as  $n \longrightarrow \infty$ .

**Theorem 1** Let  $(\mathcal{M}, \mathfrak{m}_{\nu}^b)$  be an  $M_{\nu}^b$ -complete metric space. Suppose a self map  $\mathcal{A}: \mathcal{M} \longrightarrow \mathcal{M}$  satisfies

$$m_{\nu}^{b}(\mathcal{A}\mathfrak{u}, \mathcal{A}\mathfrak{w}) \leq \eta m_{\nu}^{b}(\mathfrak{u}, \mathfrak{w}), \quad \eta \in [0, \frac{1}{\mathfrak{s}}) \quad and \quad \mathfrak{u}, \quad \mathfrak{w} \in \mathcal{M}.$$
 (2)

Then,  $\mathcal{A}$  has a unique fixed point  $\mathfrak{u} \in \mathcal{M}$  such that  $\mathfrak{m}_{\nu}^{b}(\mathfrak{u},\mathfrak{u}) = 0$ ..

**Proof.** Starting from the given element  $\mathfrak{u}_0 \in \mathcal{M}$ , form the sequence  $\{\mathfrak{u}_n\}$ , where  $\mathfrak{u}_n = \mathcal{A}\mathfrak{u}_{n-1}$ ,  $n \in \mathbb{N}$ . If  $\mathfrak{m}_{\nu}^b(\mathfrak{u}_n,\mathfrak{u}_{n+1}) = 0$ ,  $n \geq 0$ , then  $\mathcal{A}\mathfrak{u}_n = \mathfrak{u}_{n+1} = \mathfrak{u}_n$  and  $\mathfrak{m}_{\nu}^b(\mathfrak{u}_n,\mathfrak{u}_n) = 0$  and this completes the proof.

Further, take  $\mathfrak{m}_{\nu}^b(\mathfrak{u}_n,\mathfrak{u}_{n+1})>0, \quad n\geqslant 0$ . For  $\mathfrak{u}=\mathfrak{u}_n, \ \mathfrak{w}=\mathfrak{u}_{n+1},$  utilizing condition (2),

$$\begin{split} m_{\nu}^b(\mathfrak{u}_{n+1},\mathfrak{u}_{n+2}) &= m_{\nu}^b(\mathcal{A}\mathfrak{u}_n,\mathcal{A}\mathfrak{u}_{n+1}) \\ &\leq \eta m_{\nu}^b(\mathfrak{u}_n,\mathfrak{u}_{n+1}) \\ &\leq \eta^n m_{\nu}^b(\mathfrak{u}_0,\mathfrak{u}_1) \longrightarrow 0, \ \mathrm{as}, \ n \longrightarrow \infty. \end{split}$$

Also,

$$\begin{split} m_{\nu}^b(\mathfrak{u}_{n+1},\mathfrak{u}_{n+1}) &= m_{\nu}^b(\mathcal{A}\mathfrak{u}_n,\mathcal{A}\mathfrak{u}_n) \\ &\leq \eta m_{\nu}^b(\mathfrak{u}_n,\mathfrak{u}_n) \\ &\leq \eta^n m_{\nu}^b(\mathfrak{u}_0,\mathfrak{u}_0) \longrightarrow 0, \text{ as, } n \longrightarrow \infty. \end{split}$$

First, we show that  $\mathfrak{u}_n \neq \mathfrak{u}_m$ , for  $n \neq m$ . Suppose  $\mathfrak{u}_n = \mathfrak{u}_m$ , for n > m, then  $\mathcal{A}\mathfrak{u}_n = \mathfrak{u}_{n+1} = \mathcal{A}\mathfrak{u}_m = \mathfrak{u}_{m+1}$ . Now, by using inequality (2), for  $\mathfrak{u} = \mathfrak{u}_n$  and

 $\begin{array}{ll} \mathfrak{w}=\mathfrak{u}_{n+1},\\ \mathfrak{m}_{\nu}^{b}(\mathfrak{u}_{\mathfrak{m}},\mathfrak{u}_{m+1})=\mathfrak{m}_{\nu}^{b}(\mathcal{A}\mathfrak{u}_{n-1},\mathcal{A}\mathfrak{u}_{n})\leq \eta \mathfrak{m}_{\nu}^{b}(\mathfrak{u}_{n-1},\mathfrak{u}_{n})\leq \eta^{2}\mathfrak{m}_{\nu}^{b}(\mathfrak{u}_{n-2},\mathfrak{u}_{n-1})\leq \\ \cdots\leq \eta^{n-m}\mathfrak{m}_{\nu}^{b}(\mathfrak{u}_{\mathfrak{m}},\mathfrak{u}_{m+1})<\mathfrak{m}_{\nu}^{b}(\mathfrak{u}_{\mathfrak{m}},\mathfrak{u}_{m+1}), \text{ a contradiction. Thus, } \mathfrak{u}_{n}\neq \mathfrak{u}_{\mathfrak{m}},\\ \text{for } n\neq \mathfrak{m}. \end{array}$ 

Now, we show that  $\{\mathfrak{u}_n\}$  is a Cauchy sequence in  $(\mathcal{M},\mathfrak{m}_{\nu}^b)$ . We discuss two cases:

Case(i) First, let l be odd, that is, l = 2m + 1, for  $n, m \in \mathbb{N}$ . Now, by using  $(m_{\nu}^b i \nu)$  for  $n \le \nu \le n + l$ ,

$$\begin{split} & m_{\nu}^{b}(u_{n},u_{n+1}) = m_{\nu}^{b}(u_{n},u_{n+2m+1}) \\ & \leq \mathfrak{s} \Big[ m_{\nu}^{b}(u_{n},u_{n+1}) + m_{\nu}^{b}(u_{n+1},u_{n+2}) + \dots + m_{\nu}^{b}(u_{n+\nu-1},u_{n+\nu}) \\ & + m_{\nu}^{b}(u_{n+\nu},u_{n+2m+1}) \Big] - m_{\nu}^{b}(u_{n+1},u_{n+1}) \\ & - m_{\nu}^{b}(u_{n+2},u_{n+2}) - \dots - m_{\nu}^{b}(u_{n+\nu},u_{n+\nu}) \\ & \leq \mathfrak{s} \left( \eta^{n-1} + \eta^{n} + \dots \eta^{n+\nu-2} \right) m_{\nu}^{b}(u_{0},u_{1}) \\ & - \left( \eta^{n} + \eta^{n+1} + \dots + \eta^{n+\nu-1} \right) m_{\nu}^{b}(u_{0},u_{1}) + \mathfrak{s} m_{\nu}^{b}(u_{n+\nu},u_{n+2m+1}) \\ & = \mathfrak{s} \left( \frac{\eta^{n-1}(1-\eta^{\nu})}{1-\eta} \right) m_{\nu}^{b}(u_{0},u_{1}) - \frac{\eta^{n}(1-\eta^{\nu})}{1-\eta} m_{\nu}^{b}(u_{0},u_{1}) \\ & + \mathfrak{s} m_{\nu}^{b}(u_{n+\nu},u_{n+2m+1}) \\ & \leq \mathfrak{s} \left( \frac{\eta^{n-1}(1-\eta^{\nu})}{1-\eta} \right) m_{\nu}^{b}(u_{0},u_{1}) - \frac{\eta^{n}(1-\eta^{\nu})}{1-\eta} m_{\nu}^{b}(u_{0},u_{1}) \\ & + \mathfrak{s}^{2}[m_{\nu}^{b}(u_{n+\nu},u_{n+\nu+1}) + m_{\nu}^{b}(u_{n+\nu+1},u_{n+\nu+2}) \\ & + \dots + m_{\nu}^{b}(u_{n+2\nu-1},u_{n+2\nu}) + m_{\nu}^{b}(u_{n+2\nu},u_{n+2m+1})] \\ & - \mathfrak{s}[m_{\nu}^{b}(u_{n+\nu+1},u_{n+\nu+1}) + m_{\nu}^{b}(u_{n+\nu+2},u_{n+\nu+2}) + \dots + m_{\nu}^{b}(u_{n+2\nu},u_{n+2\nu})] \\ & \leq \mathfrak{s} \left( \frac{\eta^{n-1}(1-\eta^{\nu})}{1-\eta} \right) m_{\nu}^{b}(u_{0},u_{1}) - \frac{\eta^{n}(1-\eta^{\nu})}{1-\eta} m_{\nu}^{b}(u_{0},u_{1}) \\ & + \mathfrak{s}^{2}m_{\nu}^{b}(u_{n+2\nu},u_{n+2m+1}) - \mathfrak{s}(\eta^{n+\nu}+\eta^{n+\nu+1}+\dots+\eta^{n+2\nu-1}) m_{\nu}^{b}(u_{0},u_{1}) \\ & \leq \mathfrak{s} \left( \frac{\eta^{n-1}(1-\eta^{\nu})}{1-\eta} \right) m_{\nu}^{b}(u_{0},u_{1}) - \frac{\eta^{n}(1-\eta^{\nu})}{1-\eta} m_{\nu}^{b}(u_{0},u_{1}) \\ & + \mathfrak{s}^{2}\left( \frac{\eta^{n+\nu-1}(1-\eta^{\nu})}{1-\eta} \right) m_{\nu}^{b}(u_{0},u_{1}) - \mathfrak{s}\frac{\eta^{n+\nu}(1-\eta^{\nu})}{1-\eta} m_{\nu}^{b}(u_{0},u_{1}) \\ & + \mathfrak{s}^{2}\left( \frac{\eta^{n+\nu-1}(1-\eta^{\nu})}{1-\eta} \right) m_{\nu}^{b}(u_{0},u_{1}) - \mathfrak{s}\frac{\eta^{n+\nu}(1-\eta^{\nu})}{1-\eta} m_{\nu}^{b}(u_{0},u_{1}) \\ & + \mathfrak{s}^{2}\left( \frac{\eta^{n+\nu-1}(1-\eta^{\nu})}{1-\eta} \right) m_{\nu}^{b}(u_{0},u_{1}) - \mathfrak{s}\frac{\eta^{n+\nu}(1-\eta^{\nu})}{1-\eta} m_{\nu}^{b}(u_{0},u_{1}) \\ & + \mathfrak{s}^{2}\left( \frac{\eta^{n+\nu-1}(1-\eta^{\nu})}{1-\eta} \right) m_{\nu}^{b}(u_{0},u_{1}) - \mathfrak{s}\frac{\eta^{n+\nu}(1-\eta^{\nu})}{1-\eta} m_{\nu}^{b}(u_{0},u_{1}) \\ & + \mathfrak{s}^{2}\left( \frac{\eta^{n+\nu-1}(1-\eta^{\nu})}{1-\eta} \right) m_{\nu}^{b}(u_{0},u_{1}) - \mathfrak{s}\frac{\eta^{n+\nu}(1-\eta^{\nu})}{1-\eta} m_{\nu}^{b}(u_{0},u_{1}) \\ & + \mathfrak{s}^{2}\left( \frac{\eta^{n+\nu-1}(1-\eta^{\nu})}{1-\eta} \right) m_{\nu}^{b}(u_{0},u_{1}) - \mathfrak{s}\frac{\eta^{n+\nu}(1-\eta^{$$

$$\begin{split} & \leq \mathfrak{s} \left( \frac{\eta^{n-1}(1-\eta^{\nu})}{1-\eta} \right) m_{\nu}^{b}(\mathfrak{u}_{0},\mathfrak{u}_{1}) - \frac{\eta^{n}(1-\eta^{\nu})}{1-\eta} m_{\nu}^{b}(\mathfrak{u}_{0},\mathfrak{u}_{1}) \\ & + \mathfrak{s}^{2} \left( \frac{\eta^{n+\nu-1}(1-\eta^{\nu})}{1-\eta} \right) m_{\nu}^{b}(\mathfrak{u}_{0},\mathfrak{u}_{1}) - \mathfrak{s} \frac{\eta^{n+\nu}(1-\eta^{\nu})}{1-\eta} m_{\nu}^{b}(\mathfrak{u}_{0},\mathfrak{u}_{1}) \\ & + \cdots + \mathfrak{s}^{\frac{2m}{\nu}} \left[ m_{\nu}^{b}(\mathfrak{u}_{n+2m-\nu},\mathfrak{u}_{n+2m-\nu+1}) + m_{\nu}^{b}(\mathfrak{u}_{n+2m-\nu+1},\mathfrak{u}_{n+2m-\nu+2}) \right. \\ & + \cdots + m_{\nu}^{b}(\mathfrak{u}_{n+2m},\mathfrak{u}_{n+2m+1}) \right] - \mathfrak{s}^{\frac{2m}{\nu}-1} \left[ m_{\nu}^{b}(\mathfrak{u}_{n+2m-\nu+1},\mathfrak{u}_{n+2m-\nu+1}) \right. \\ & + \cdots + m_{\nu}^{b}(\mathfrak{u}_{n+2m},\mathfrak{u}_{n+2m}) \right] \\ & \leq \mathfrak{s} \left( \frac{\eta^{n-1}(1-\eta^{\nu})}{1-\eta} \right) m_{\nu}^{b}(\mathfrak{u}_{0},\mathfrak{u}_{1}) - \frac{\eta^{n}(1-\eta^{\nu})}{1-\eta} m_{\nu}^{b}(\mathfrak{u}_{0},\mathfrak{u}_{1}) \\ & + \mathfrak{s}^{2} \left( \frac{\eta^{n+\nu-1}(1-\eta^{\nu})}{1-\eta} \right) m_{\nu}^{b}(\mathfrak{u}_{0},\mathfrak{u}_{1}) - \mathfrak{s} \frac{\eta^{n+\nu}(1-\eta^{\nu})}{1-\eta} m_{\nu}^{b}(\mathfrak{u}_{0},\mathfrak{u}_{1}) \\ & + \cdots + \mathfrak{s}^{\frac{2m}{\nu}} \left( \frac{\eta^{n+2m-\nu-1}(1-\eta^{\nu})}{1-\eta} \right) m_{\nu}^{b}(\mathfrak{u}_{0},\mathfrak{u}_{1}) \\ & - \mathfrak{s}^{\frac{2m}{\nu}-1} \frac{\eta^{n+2m-\nu}(1-\eta^{\nu})}{1-\eta} m_{\nu}^{b}(\mathfrak{u}_{0},\mathfrak{u}_{1}) \longrightarrow 0, \quad \text{as} \quad n \longrightarrow \infty, \end{split}$$

that is,  $\lim_{n,m\longrightarrow\infty} m_{\nu}^b(\mathfrak{u}_n,\mathfrak{u}_{n+2m+1}) = 0$ .

Case (ii) Now, let l is even, that is, l = 2m for  $n, m \in \mathbb{N}$ . Now, by using  $(m_{\nu}^b i \nu)$  for  $n \le \nu \le n + l$ ,

$$\begin{split} m_{\nu} w^b(\mathfrak{u}_n,\mathfrak{u}_{n+1}) &= m_{\nu}^b(\mathfrak{u}_n,\mathfrak{u}_{n+2m}) \\ &\leq \mathfrak{s}[m_{\nu}^b(\mathfrak{u}_n,\mathfrak{u}_{n+1}) + m_{\nu}^b(\mathfrak{u}_{n+1},\mathfrak{u}_{n+2}) + \dots + m_{\nu}^b(\mathfrak{u}_{n+\nu-1},\mathfrak{u}_{n+\nu}) \\ &+ m_{\nu}^b(\mathfrak{u}_{n+\nu},\mathfrak{u}_{n+2m})] - m_{\nu}^b(\mathfrak{u}_{n+1},\mathfrak{u}_{n+1}) - m_{\nu}^b(\mathfrak{u}_{n+2},\mathfrak{u}_{n+2}) \\ &- \dots - m_{\nu}^b(\mathfrak{u}_{n+\nu},\mathfrak{u}_{n+\nu}) \\ &\leq \mathfrak{s}(\eta^{n-1} + \eta^n + \dots \eta^{n+\nu-2}) m_{\nu}^b(\mathfrak{u}_0,\mathfrak{u}_1) \\ &- (\eta^n + \eta^{n+1} + \dots + \eta^{n+\nu-1}) m_{\nu}^b(\mathfrak{u}_0,\mathfrak{u}_1) + \mathfrak{s} m_{\nu}^b(\mathfrak{u}_{n+\nu},\mathfrak{u}_{n+2m}) \\ &= \mathfrak{s}\left(\frac{\eta^{n-1}(1-\eta^{\nu})}{1-\eta}\right) m_{\nu}^b(\mathfrak{u}_0,\mathfrak{u}_1) - \frac{\eta^n(1-\eta^{\nu})}{1-\eta} m_{\nu}^b(\mathfrak{u}_0,\mathfrak{u}_1) \\ &+ \mathfrak{s} m_{\nu}^b(\mathfrak{u}_{n+\nu},\mathfrak{u}_{n+2m}) \\ &\leq \mathfrak{s}\left(\frac{\eta^{n-1}(1-\eta^{\nu})}{1-\eta}\right) m_{\nu}^b(\mathfrak{u}_0,\mathfrak{u}_1) - \frac{\eta^n(1-\eta^{\nu})}{1-\eta} m_{\nu}^b(\mathfrak{u}_0,\mathfrak{u}_1) \\ &+ \mathfrak{s}^2[m_{\nu}^b(\mathfrak{u}_{n+\nu},\mathfrak{u}_{n+\nu+1}) + m_{\nu}^b(\mathfrak{u}_{n+\nu+1},\mathfrak{u}_{n+\nu+2}) \\ &+ \dots + m_{\nu}^b(\mathfrak{u}_{n+2\nu-1},\mathfrak{u}_{n+2\nu}) + m_{\nu}^b(\mathfrak{u}_{n+2\nu},\mathfrak{u}_{n+2m+1})] \end{split}$$

$$\begin{split} &-\mathfrak{s}[m_{\nu}^{b}(\mathfrak{u}_{n+\nu+1},\mathfrak{u}_{n+\nu+1})+m_{\nu}^{b}(\mathfrak{u}_{n+\nu+2},\mathfrak{u}_{n+\nu+2})+\cdots+m_{\nu}^{b}(\mathfrak{u}_{n+2\nu},\mathfrak{u}_{n+2\nu})]\\ &\leq \mathfrak{s}\left(\frac{\eta^{n-1}(1-\eta^{\nu})}{1-\eta}\right)m_{\nu}^{b}(\mathfrak{u}_{0},\mathfrak{u}_{1})-\frac{\eta^{n}(1-\eta^{\nu})}{1-\eta}m_{\nu}^{b}(\mathfrak{u}_{0},\mathfrak{u}_{1})+\mathfrak{s}^{2}(\eta^{n+\nu-1}+\eta^{n+\nu})\\ &+\cdots+\eta^{n+2\nu-2})m_{\nu}^{b}(\mathfrak{u}_{0},\mathfrak{u}_{1})+\mathfrak{s}^{2}m_{\nu}^{b}(\mathfrak{u}_{n+2\nu},\mathfrak{u}_{n+2m})\\ &-\mathfrak{s}(\eta^{n+\nu}+\eta^{n+\nu+1}+\cdots+\eta^{n+2\nu-1})m_{\nu}^{b}(\mathfrak{u}_{0},\mathfrak{u}_{1})\\ &\leq \mathfrak{s}\left(\frac{\eta^{n-1}(1-\eta^{\nu})}{1-\eta}\right)m_{\nu}^{b}(\mathfrak{u}_{0},\mathfrak{u}_{1})-\frac{\eta^{n}(1-\eta^{\nu})}{1-\eta}m_{\nu}^{b}(\mathfrak{u}_{0},\mathfrak{u}_{1})\\ &+\mathfrak{s}^{2}\left(\frac{\eta^{n+\nu-1}(1-\eta^{\nu})}{1-\eta}\right)m_{\nu}^{b}(\mathfrak{u}_{0},\mathfrak{u}_{1})-\mathfrak{s}\frac{\eta^{n+\nu}(1-\eta^{\nu})}{1-\eta}m_{\nu}^{b}(\mathfrak{u}_{0},\mathfrak{u}_{1})\\ &+\cdots+\mathfrak{s}^{\frac{2m}{\nu}}\left(\frac{\eta^{n+2m-\nu-2}(1-\eta^{\nu})}{1-\eta}\right)m_{\nu}^{b}(\mathfrak{u}_{0},\mathfrak{u}_{1})\\ &-\mathfrak{s}^{\frac{2m}{\nu}-1}\frac{\eta^{n+2m-\nu-1}(1-\eta^{\nu})}{1-\eta}m_{\nu}^{b}(\mathfrak{u}_{0},\mathfrak{u}_{1})\longrightarrow 0,\quad \mathrm{as},\quad n\longrightarrow\infty, \end{split}$$

that is,  $\lim_{n,m\to\infty} m_{\nu}^b(u_n, u_{n+2m}) = 0$ .

 $\mathrm{So}, \ \lim\nolimits_{n,m\longrightarrow\infty}(m_{\nu}^{b}(\mathfrak{u}_{n},\mathfrak{u}_{m})-m_{\nu_{\mathfrak{u}_{n},\mathfrak{u}_{m}}}^{b})=0.$ 

Let  $M_{\nu}^{b}(\mathfrak{u}_{n},\mathfrak{u}_{m})=\mathfrak{m}_{\nu}^{b}(\mathfrak{u}_{n},\mathfrak{u}_{n})$ . Now,

 $\begin{array}{l} M_{\nu}^b(\mathfrak{u}_n,\mathfrak{u}_m) - m_{\nu}^b(\mathfrak{u}_n,\mathfrak{u}_m) \leq M_{\nu}^b(\mathfrak{u}_n,\mathfrak{u}_m) = m_{\nu}^b(\mathfrak{u}_n,\mathfrak{u}_n) \leq \eta^{n-1} m_{\nu}^b(\mathfrak{u}_0,\mathfrak{u}_0) \longrightarrow \\ 0, \ \mathrm{as} \ n \longrightarrow \infty. \end{array}$ 

So,  $\lim_{n,m\longrightarrow\infty} M_{\nu}^b(\mathfrak{u}_n,\mathfrak{u}_m) - \mathfrak{m}_{\nu}^b(\mathfrak{u}_n,\mathfrak{u}_m) = 0$ .

Consequently, the sequence  $\{\mathfrak{u}_n\}$  is  $\mathfrak{m}_{\nu}^b$ —Cauchy in  $\mathcal{M}$ . Since,  $\mathcal{M}$  is  $\mathfrak{m}_{\nu}^b$ —complete, there exists  $\mathfrak{u} \in \mathcal{U}$  so that  $\mathfrak{u}_n \longrightarrow \mathfrak{u}$ . Now, we assert that  $\mathcal{A}\mathfrak{u} = \mathfrak{u}$ .

$$\begin{split} &\lim_{n\longrightarrow\infty}(m_{\nu}^b(\mathfrak{u}_n,\mathfrak{u})-m_{\nu_{\mathfrak{u}_n,\mathfrak{u}}}^b)=0\\ &\Rightarrow\lim_{n\longrightarrow\infty}(m_{\nu}^b(\mathfrak{u}_{n+1},\mathfrak{u})-m_{\nu_{\mathfrak{u}_{n+1},\mathfrak{u}}}^b)=0\\ &\Rightarrow\lim_{n\longrightarrow\infty}(m_{\nu}^b(\mathcal{A}\mathfrak{u}_n,\mathfrak{u})-m_{\nu_{\mathcal{A}\mathfrak{u}_n,\mathfrak{u}}}^b)=0\\ &\Rightarrow m_{\nu}^b(\mathcal{A}\mathfrak{u},\mathfrak{u})-m_{\nu_{\mathcal{A}\mathfrak{u}_n}}^b=0, \quad (\mathrm{using\ Lemma\ 2}), \end{split}$$

that is,  $\mathfrak{m}_{\nu}^{b}(\mathcal{A}\mathfrak{u},\mathfrak{u}) = \min\{\mathfrak{m}_{\nu}^{b}(\mathcal{A}\mathfrak{u},\mathcal{A}\mathfrak{u}), \mathfrak{m}_{\nu}^{b}(\mathfrak{u},\mathfrak{u})\}\$   $\Rightarrow \mathfrak{m}_{\nu}^{b}(\mathcal{A}\mathfrak{u},\mathfrak{u}) = \mathfrak{m}_{\nu}^{b}(\mathcal{A}\mathfrak{u},\mathcal{A}\mathfrak{u}) \text{ or } \mathfrak{m}_{\nu}^{b}(\mathcal{A}\mathfrak{u},\mathfrak{u}) = \mathfrak{m}_{\nu}^{b}(\mathfrak{u},\mathfrak{u}).$ 

Hence, Au = u, that is, u is a fixed point of A.

To conclude the theorem, suppose  $\mathfrak u$  and  $\mathfrak w$  are two different fixed points of  $\mathcal A$ , so

 $\mathfrak{m}_{\nu}^{b}(\mathfrak{u},\mathfrak{w}) = \mathfrak{m}_{\nu}^{b}(\mathcal{A}\mathfrak{u},\mathcal{A}\mathfrak{w}) \leq \eta \mathfrak{m}_{\nu}^{b}(\mathfrak{u},\mathfrak{w}) \Rightarrow \mathfrak{m}_{\nu}^{b}(\mathfrak{u},\mathfrak{w}) = 0.$  Hence,  $\mathfrak{u} = \mathfrak{w}$ . Next, we assert that if  $\mathfrak{u}$  is a fixed point, then  $\mathfrak{m}_{\nu}^{b}(\mathfrak{u},\mathfrak{u}) = 0$ .

$$\begin{array}{l} m_{\nu}^{b}(\mathfrak{u},\mathfrak{u})=m_{\nu}^{b}(\mathcal{M}\mathfrak{u},\mathcal{M}\mathfrak{u})\leq \eta m_{\nu}^{b}(\mathfrak{u},\mathfrak{u})< m_{\nu}^{b}(\mathfrak{u},\mathfrak{u}), \ \mathrm{a\ contradiction}. \\ \mathrm{Hence},\ m_{\nu}^{b}(\mathfrak{u},\mathfrak{u})=0. \end{array}$$

**Example 3** Consider  $\mathcal{M}=[0,10]$ . Let an  $M^b_{\nu}-metric\ \mathfrak{m}^b_{\nu}:\mathcal{M}\times\mathcal{M}\longrightarrow\mathbb{R}^+$  be defined as  $\mathfrak{m}^b_{\nu}(\mathfrak{u},\mathfrak{w})=(\frac{\mathfrak{u}+\mathfrak{w}}{2})^2,\ \mathfrak{s}=3,\ \mathfrak{u},\mathfrak{w}\in\mathcal{M}.$  Then,  $(\mathcal{M},\mathfrak{m}^b_{\nu})$  is a complete  $M^b_{\nu}-metric$  space. Define a self map  $\mathcal{A}$  on  $\mathcal{M}$  by  $\mathcal{A}\mathfrak{u}=\frac{2}{15}\mathfrak{u},\ \mathfrak{u}\in\mathcal{M}.$  Observe that, for all  $\mathfrak{u},\mathfrak{w}\in\mathcal{M},$  we obtain

$$m_{\nu}^{b}(\mathcal{A}\mathfrak{u},\mathcal{A}\mathfrak{w})\!=\!\left(\frac{\mathcal{A}\mathfrak{u}+\mathcal{A}\mathfrak{w}}{2}\right)^{2}\!=\!\left(\frac{\frac{2}{15}\mathfrak{u}+\frac{2}{15}\mathfrak{w}}{2}\right)^{2}\!=\!\frac{4}{225}\!\left(\frac{\mathfrak{u}+\mathfrak{v}}{2}\right)^{2}\!\leq\frac{4}{225}m_{\nu}^{b}(\mathfrak{u},\mathfrak{w}).$$

Consequently, all the postulates of Theorem 1 are verified and  $\mathcal A$  has a unique fixed point at  $0 \in \mathcal M$ . Clearly,  $\mathfrak m_{\nu}^b(0,0)=0$ .

The contractive condition used in the next result is the generalization of the Sehgal contraction [20] in  $\mathcal{M}_{\nu}^{b}$ -metric space, which uses four possible combinations of distances  $(\mathfrak{m}_{\nu}^{b}(\mathfrak{u},\mathfrak{w}); \mathfrak{m}_{\nu}^{b}(\mathcal{A}\mathfrak{u},\mathcal{A}\mathfrak{w}); \mathfrak{m}_{\nu}^{b}(\mathfrak{u},\mathcal{A}\mathfrak{w}); \mathfrak{m}_{\nu}^{b}(\mathfrak{w},\mathcal{A}\mathfrak{u}))$  in a linear way. On the other hand, Banach [4] utilized only the first two distances.

**Theorem 2** Let  $(\mathcal{M}, \mathfrak{m}^b_{\nu})$  be an  $M^b_{\nu}$ -complete metric space. Suppose a self map  $\mathcal{A}: \mathcal{M} \longrightarrow \mathcal{M}$  satisfies

$$\begin{split} m_{\nu}^{b}(\mathcal{A}\mathfrak{u},\mathcal{A}\mathfrak{w}) &\leq \eta \max\{m_{\nu}^{b}(\mathfrak{u},\mathfrak{v}),\ m_{\nu}^{b}(\mathfrak{u},\mathcal{A}\mathfrak{u}),\ m_{\nu}^{b}(\mathfrak{w},\mathcal{A}\mathfrak{w})\},\\ \eta &\in \left[0,\frac{1}{\mathfrak{s}}\right)\ \mathit{and}\ \mathfrak{u},\mathfrak{w} \in \mathcal{M}. \end{split} \tag{3}$$

Then,  $\mathcal{A}$  has a unique fixed point  $\sqcap$  such that  $\mathfrak{m}_{\nu}^{b}(\mathfrak{u},\mathfrak{u})=0$ .

**Proof.** Let the sequence  $\{\mathfrak{u}_n\}$  be defined as in the proof of Theorem 1,  $\mathfrak{u}_n \neq \mathfrak{u}_{n+1}$ ,  $\mathfrak{u}_0 \in \mathcal{M}$ ,  $n \in \mathbb{N}$ . Now,

$$\begin{split} \boldsymbol{m}_{\nu}^{b}(\boldsymbol{\mathfrak{u}}_{n},\boldsymbol{\mathfrak{u}}_{n+1}) &= \boldsymbol{m}_{\nu}^{b}(\mathcal{A}\boldsymbol{\mathfrak{u}}_{n-1},\mathcal{A}\boldsymbol{\mathfrak{u}}_{n}) \\ &\leq \eta \max\{\boldsymbol{m}_{\nu}^{b}(\boldsymbol{\mathfrak{u}}_{n-1},\boldsymbol{\mathfrak{u}}_{n}), \ \boldsymbol{m}_{\nu}^{b}(\boldsymbol{\mathfrak{u}}_{n},\boldsymbol{\mathfrak{u}}_{n+1})\}. \end{split}$$

We discuss two cases:

- (i) If  $m_{\nu}^{b}(\mathfrak{u}_{n-1},\mathfrak{u}_{n}) \leq m_{\nu}^{b}(\mathfrak{u}_{n},\mathfrak{u}_{n+1})$ , then  $m_{\nu}^{b}(\mathfrak{u}_{n},\mathfrak{u}_{n+1}) \leq \eta m_{\nu}^{b}(\mathfrak{u}_{n},\mathfrak{u}_{n+1}) < m_{\nu}^{b}(\mathfrak{u}_{n},\mathfrak{u}_{n+1})$ , a contradiction.
- $(ii) \ \mathrm{If} \ m_{\nu}^b(\mathfrak{u}_{n-1},\mathfrak{u}_n) \geq m_{\nu}^b(\mathfrak{u}_n,\mathfrak{u}_{n+1}), \ \mathrm{then} \ m_{\nu}^b(\mathfrak{u}_n,\mathfrak{u}_{n+1}) \leq \eta m_{\nu}^b(\mathfrak{u}_{n-1},\mathfrak{u}_n).$

Hence, the sequence  $\{\mathfrak{u}_n\}$  verifies the postulates of Theorem 1. So, following similar steps as in Theorem 2, we may conclude that  $\mathcal{A}$  has a unique fixed point  $\mathfrak{u} \in \mathcal{M}$  and  $\mathfrak{m}_{\mathfrak{v}}^{\mathfrak{b}}(\mathfrak{u},\mathfrak{u}) = 0$ .

**Example 4** Let  $\mathcal{M} = \mathbb{R}$  and an  $M_{\nu}^b-metric\ m_{\nu}^b: \mathcal{M} \times \mathcal{M} \longrightarrow \mathbb{R}^+$  be defined as:

$$\begin{array}{l} \textit{as:} \\ m_{\nu}^{b}(\mathfrak{u},\mathfrak{w}) = \max\{|\mathfrak{u}|^{2},|\mathfrak{w}|^{2}\} + |\mathfrak{u}-\mathfrak{w}|^{2}, \quad \mathfrak{u},\mathfrak{w} \in \mathcal{M}. \ (\mathcal{M},m_{\nu}^{b}) \ \textit{is an $M_{\nu}^{b}$--metric} \\ \textit{with $\mathfrak{s}=3$. Define a self map $\mathcal{A}:\mathcal{M}\times\mathcal{M}\longrightarrow\mathbb{R}$ by $\mathcal{A}\mathfrak{u}=\begin{cases} \frac{\mathfrak{u}}{9}, & \mathfrak{u}\in[-9,9]\\ \frac{3\mathfrak{u}}{5}, & \textit{otherwise} \end{cases}. \end{array}$$

Observe that, for all  $\mathfrak{u}$ ,  $\mathfrak{w} \in \mathcal{M}$ , we obtain  $\mathfrak{m}_{\nu}^{b}(\mathcal{A}\mathfrak{u},\mathcal{A}\mathfrak{w}) = \max\{|\mathcal{A}\mathfrak{u}|^{2},|\mathcal{A}\mathfrak{w}|^{2}\} + |\mathcal{A}\mathfrak{u} - \mathcal{A}\mathfrak{w}|^{2} \leq \frac{9}{25}\max\{|\mathfrak{u}|^{2},|\mathfrak{w}|^{2}\} + |\mathfrak{u} - \mathfrak{w}|^{2} = \frac{9}{25}\mathfrak{m}_{\nu}^{b}(\mathfrak{u},\mathfrak{w}).$ 

Consequently, all the postulates of Theorem 2 are verified and  $\mathcal{A}$  has a unique fixed point at  $0 \in \mathcal{M}$  and clearly,  $\mathfrak{m}_{\nu}^b(0,0) = 0$ . It is fascinating to see that a self map  $\mathcal{A}$  is not continuous.

Remark 5 Theorems 1 and 2 are generalizations and extensions of Asadi et al. [1], Asim et al. [2]-[3], Banach [4], Bakhtin [5], Branciari [6], George [8], Karahan and Isik [11], Mlaiki et al. [13], Matthews [14], Özgür [17], Sehgal [20], and so on to  $M_{\nu}^{b}$ —metric space. Noticeably, the map under consideration is not even continuous in Theorem 2 (see Example 4).

# 4 Applications

Motivated by the fact that the theory of linear systems is the foundation of numerical linear algebra, which performs a significant role in chemistry, physics, computer science, engineering, and economics, we resolve the system of linear equations in an  $\mathfrak{m}_b^{\nu}$ -metric space using Theorem 1.

Let  $\mathcal{H}_n$  denote the set of all  $n \times n$  Hermitian matrices,  $\mathcal{P}_n$  the set of all  $n \times n$  Hermitian positive definite matrices,  $\mathcal{P}_{n_0}$  the set of all  $n \times n$  positive semidefinite matrices. In the following, the symbol  $\|.\|$  is the spectral norm of a matrix  $\mathcal{B} = [b_{ij}]_{n \times n}$ , that is,  $\|\mathcal{B}\| = \sqrt{\lambda^+(\mathcal{B}^*\mathcal{B})}$ ,  $\lambda^+(\mathcal{B}^*\mathcal{B})$  is the largest eigenvalue of  $\mathcal{B}^*\mathcal{B}$ , where  $\mathcal{B}^*$  is the conjugate transpose of  $\mathcal{B}$ . Further,  $\|.\|_{tr}$  denotes the trace norm of  $\mathcal{B}$  and  $\|\mathcal{B}\|_{tr} = \sqrt{\Sigma_{i=1}^n \Sigma_{j=1}^n |b_{ij}|^2} = \sqrt{tr(\mathcal{B}^*\mathcal{B})} = \sqrt{\Sigma_{i=1}^n \sigma_i^2(\mathcal{B})}$ ,  $\sigma_i(\mathcal{B})$ , i = 1, 2, ..., n, denotes largest singular values of  $\mathcal{B} \in \mathcal{M}_n(\mathbb{C})$ . Let  $\mathcal{M} = \mathcal{P}_n$  and  $m_{\nu}^{b} : \mathcal{M} \longrightarrow \mathcal{M}$  be defined as

$$m_{\nu}^b(\mathcal{U},\mathcal{W}) = \max\{|\text{tr}(\mathcal{U})|,|\text{tr}(\mathcal{W})|\}^2 + |\text{tr}(\mathcal{U}-\mathcal{W})|^2,\ \mathcal{U},\ \mathcal{W} \in \mathcal{M}\ \mathrm{and}\ s = 3.$$

**Theorem 3** Let a nonlinear matrix equation be

$$\mathcal{U} = \sum_{i=1}^{n} \mathcal{B}_{i}^{*} f(\mathcal{U}) \mathcal{B}_{i}, \tag{4}$$

where  $\mathcal{B}_i \in M_n(\mathbb{C})$  are the arbitrary matrix of order n. Let  $f: \mathcal{H}_n(\mathbb{C}) \longrightarrow \mathcal{H}_n(\mathbb{C})$  be a monotone self map, which maps  $\mathcal{P}_n(\mathbb{C})$  into  $\mathcal{P}_n(\mathbb{C})$ .

- (i)  $\max\{|tr(f\mathcal{U})|, |tr(f\mathcal{W})|\} \preccurlyeq \frac{1}{\sqrt{4\eta}} \max\{|tr(\mathcal{U})|, |tr(\mathcal{W})|\},$
- (ii)  $|\operatorname{tr}(f\mathcal{U}) f\mathcal{W}| \leq \frac{1}{\sqrt{4\eta}} |\operatorname{tr}(\mathcal{U} \mathcal{W})|,$
- (iii)  $tr(WV) \leq \|W\|tr(V)$ ,  $W \in M_n(\mathbb{C})$ ,
- (iv)  $\sum_{i=1}^n \mathcal{P}_i^* \mathcal{P} \leq (4\eta^2 I_n)^{\frac{1}{2}}$ , where  $I_n$  is the identity matrix of order n and  $\eta \in (0, \frac{1}{s})$ .

Then, the matrix equation (4) has one and only solution  $\mathcal{U}^* \in \mathcal{M}$ . Further, the iteration  $\mathcal{U}_n = \Sigma_{i=1}^n \mathcal{B}_i^* f(\mathcal{U}) \mathcal{B}_i$ ,  $\mathcal{U}_0 \in M_n(\mathbb{C})$  such that  $\mathcal{U}_0 \leq \Sigma_{i=1}^n \mathcal{B}_i^* f(\mathcal{U}) \mathcal{B}_i$ , converges to  $\mathcal{U}^* \in \mathcal{M}$  satisfying the nonlinear matrix equation (4).

**Proof.** Let a self map  $\mathcal{A}: \mathcal{M} \longrightarrow \mathcal{M}$  be defined as

$$\mathcal{A}(\mathcal{U}) = \sum_{i=1}^{n} \mathcal{B}_{i}^{*} f(\mathcal{U}) \mathcal{B}_{i}. \tag{5}$$

Noticeably, a fixed point of A is a solution of a matrix Equation (4).

$$\begin{split} m_{\nu}^{b}(\mathcal{A}\mathcal{U},\mathcal{A}\mathcal{W}) &= \max\{|tr(\mathcal{A}\mathcal{U})|,|tr(\mathcal{A}\mathcal{W})|\}^{2} + |tr(\mathcal{A}\mathcal{U} - \mathcal{A}\mathcal{W})|^{2} \\ &= \max\{|tr(\Sigma_{i=1}^{n}\mathcal{B}_{i}^{*}f(\mathcal{U})\mathcal{B}_{i})|,\;|tr(\Sigma_{i=1}^{n}\mathcal{B}_{i}^{*}f(\mathcal{W})\mathcal{B}_{i})|\}^{2} \\ &+ |tr(\Sigma_{i=1}^{n}\mathcal{B}_{i}^{*}(f(\mathcal{U}) - f(\mathcal{W})\mathcal{B}_{i}))|^{2} \\ &= \max\{|tr(\Sigma_{i=1}^{n}\mathcal{B}_{i}^{*}\mathcal{B}_{i}f(\mathcal{U})|,\;|tr(\Sigma_{i=1}^{n}\mathcal{B}_{i}^{*}\mathcal{B}_{i}f(\mathcal{W}))|\}^{2} \\ &+ |tr(\Sigma_{i=1}^{n}\mathcal{B}_{i}^{*}\mathcal{B}_{i}f(\mathcal{U}) - f(\mathcal{W}))|^{2} \\ &\leq (\|\Sigma_{i=1}^{n}\mathcal{B}_{i}^{*}\mathcal{B}_{i}\|)^{2} \big[\max\{|tr(f(\mathcal{U}))|,\;|tr(f(\mathcal{W}))|\}^{2} + tr|f(\mathcal{U}) - f(\mathcal{W})|^{2}\big] \\ &\leq \|4\eta^{2}I\| \Big(\frac{1}{\sqrt{4\eta}}\Big)^{2} [\max\{|tr(\mathcal{U})|,\;|tr(\mathcal{W})|\}^{2} + |tr(\mathcal{U} - \mathcal{W})|^{2}\big] \\ &= \eta \big[\max\{|tr(\mathcal{U})|,\;|tr(\mathcal{W})|\}^{2} + |tr(\mathcal{U} - \mathcal{W})|^{2}\big] \\ &= \eta m_{\nu}^{b}(\mathcal{U},\mathcal{W}). \end{split}$$

We may observe that postulates of Theorem 1 are verified, and  $\mathcal{A}$  has only one fixed point  $\mathcal{U}^* \in \mathcal{M}$ , that is, matrix equation (4) has only one solution  $\mathcal{U}^* \in \mathcal{M}$ .

As an application of the main result, we solve the equation of the motion of rotation of a cable. Let I=[-1,1] and  $\mathcal{M}=C[I,\mathbb{R}]$  denote the set of all continuous functions on [0,1]. Define  $\mathfrak{m}_{\nu}^{\mathfrak{b}}:\mathcal{M}\times\mathcal{M}\longrightarrow\mathbb{R}^{+}$  by  $\mathfrak{m}_{\nu}^{\mathfrak{b}}(\mathfrak{u},\mathfrak{w})=\left(\frac{|\mathfrak{u}|+|\mathfrak{w}|}{2}\right)^{2}$ .

**Theorem 4** The equation of motion of a rotation of cable is:

$$\frac{d}{dt}\left[\left(1-t^2\right)\frac{d\mathfrak{u}}{dt}\right]+\eta\mathfrak{u}=\mathcal{K}(t,\mathfrak{u}(t)),\ t\in[-1,1],\ \eta\in\left[0,\frac{1}{s}\right),\tag{6}$$

with finite Dirichlet boundary conditions  $\mathfrak{u}(-1)$  and  $\mathfrak{u}(1)$ , where  $\eta$  is a constant and  $\mathcal{K}: \mathcal{M} \times [-1,1] \longrightarrow \mathbb{R}$ , is a continuous function satisfying

$$|\mathcal{K}(s,\mathfrak{u}(s))|+|\mathcal{K}(s,\mathfrak{w}(s))|\leq \frac{4\eta}{\lceil ln4+1\rceil^2}\max\{m_{\nu}^b(\mathfrak{u},\mathfrak{w}),\ m_{\nu}^b(\mathfrak{u},\mathcal{A}\mathfrak{u}),\ m_{\nu}^b(\mathfrak{w},\mathcal{A}\mathfrak{w})\},$$

where  $\mathfrak{u}$ ,  $\mathfrak{w} \in \mathbb{R}$ ,  $\mathfrak{a} \in [0,1)$ .

Then, the Dirichlet boundary value problem (6) has a solution in M.

**Proof.** A Dirichlet boundary value problem (6) is identical to

$$\mathfrak{u}(t) = \int_{-1}^{1} \mathcal{G}(s, t) \mathcal{K}(s, \mathfrak{u}(s)) ds, \ t \in [-1, 1], \tag{7}$$

Here,

$$\mathcal{G}(t,s) = \begin{cases} \ln 2 - \frac{1}{2} - \frac{1}{2} \ln(1-s)(1+t) &, -1 \le t \le s \le 1 \\ \ln 2 - \frac{1}{2} - \frac{1}{2} \ln(1+s)(1-t) &, -1 \le s \le t \le 1 \end{cases}, \tag{8}$$

is a continuous Green function on [-1,1]. Let  $\mathcal{M}=(C[-1,1],\mathbb{R}^+)$  be the set of non negative real-valued continuous function. Define a map  $\mathcal{A}:\mathcal{M}\longrightarrow\mathcal{M}$  given by

$$\mathcal{A}\mathfrak{u}(t) = \int_{-1}^{1} G(s,t) \mathcal{K}(s,\mathfrak{u}(s)) ds.$$

Then,  $\mathfrak{u}$  is a solution of (7) if and only if  $\mathfrak{u}$  is a fixed point of  $\mathcal{A}$ .

Clearly,  $\mathcal{A}: \mathcal{M} \longrightarrow \mathcal{M}$  is well defined, so

$$\begin{split} m_{\nu}^b(\mathcal{A}\mathfrak{u}(t),\mathcal{A}\mathfrak{w}(t)) &= \left(\frac{|\mathcal{A}\mathfrak{u}(t)| + |\mathcal{A}\mathfrak{w}(t)|}{2}\right)^2 \\ &= \left(\frac{|\int_{-1}^1 \mathcal{G}(s,t)\mathcal{K}(s,\mathfrak{u}(s))ds| + |\int_{-1}^1 \mathcal{G}(s,t)\mathcal{K}(s,\mathfrak{w}(s))ds|}{2}\right)^2 \\ &\leq \left(\frac{\int_{-1}^1 \mathcal{G}(s,t) |\mathcal{K}(s,\mathfrak{u}(s))| ds + \int_{-1}^1 \mathcal{G}(s,t) |\mathcal{K}(s,\mathfrak{w}(s))| ds}{2}\right)^2 \\ &= \frac{1}{4} \left(\int_{-1}^1 \mathcal{G}(t,s) (|\mathcal{K}(s,\mathfrak{u}(s))| + |\mathcal{K}(s,\mathfrak{w}(s))|)^2 \left(\int_{-1}^1 \mathcal{G}(t,s) ds\right)^2 \\ &\leq \frac{1}{4} \max(|\mathcal{K}(s,\mathfrak{u}(s))| + |\mathcal{K}(s,\mathfrak{w}(s))|)^2 \left(\int_{-1}^1 \mathcal{G}(t,s) ds\right)^2 \\ &\leq \frac{1}{4} \frac{4\eta}{[\ln 4 + 1]^2} \max\{m_{\nu}^b(\mathfrak{u},\mathfrak{w}), m_{\nu}^b(\mathfrak{u},\mathcal{A}\mathfrak{u}), m_{\nu}^b(\mathfrak{w},\mathcal{A}\mathfrak{w})\} \\ &\left(\int_{-1}^1 \mathcal{G}(t,s) ds\right)^2 \\ &= \frac{\eta}{\ln 4 + 1} \max\{m_{\nu}^b(\mathfrak{u},\mathfrak{w}), m_{\nu}^b(\mathfrak{u},\mathcal{A}\mathfrak{u}), p(\mathfrak{w},\mathcal{A}\mathfrak{w}) \\ &\leq \frac{\eta}{[\ln 4 + 1]^2} \max\{m_{\nu}^b(\mathfrak{u},\mathfrak{w}), m_{\nu}^b(\mathfrak{u},\mathcal{A}\mathfrak{u}), m_{\nu}^b(\mathfrak{w},\mathcal{A}\mathfrak{w})\}. \end{split}$$

Thus, all the postulates of Theorem 2 are verified and  $\mathcal{A}$  has a fixed point, which is indeed a solution to the problem (6).

# 5 Conclusion

We utilized the  $M_{\nu}^{b}$ -metric which is an improvement and generalization of an  $M_{\nu}$ -metric to create an environment for the survival of a unique fixed point. Further, we demonstrated that the collection of open balls forms a basis on  $M_{\nu}^{b}$ -metric space. Examples and applications to solve the system of linear equations and the equation of a motion of rotation of a cable substantiate the utility of these extensions.

## References

- [1] M. Asadi, E. Karapinar, P. Salimi, New extension of p—metric spaces with some fixed-point results on m—metric spaces, *J. Inequal. Appl.* **2014**(1), (2014), 1–9.
- [2] M. Asim, A. R. Khan, M. Imdad, Rectangular M<sub>b</sub>—metric spaces and fixed point results, J. Math. Anal., 10(1), (2019), 10–18.
- [3] M. Asim, I. Uddin, M. Imdad, Fixed point results in  $M_{\nu}$ -metric spaces with an application, J. Inequal. Appl., **2019**(1), (2019), 1–19.
- [4] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux équation intégrales, Fund. Math., 3, (1922), 133–181.
- [5] I. A. Bakhtin, The contraction mapping principle in quasi-metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst. 30, (1989), 26–37.
- [6] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, *Publ. Math. Debrecen*, **57**, (2000), 31–37.
- [7] M. Fréchet, Sur quelques points du calcul fonctionnel, palemo (30 via Ruggiero), (1906).
- [8] R. George, S. Radenović, S. Shukla, Rectangular b-Metric Spaces and Contraction Principle, J. Nonlinear Sci. Appl., 8(6), (2015), 1005–1013.
- [9] F. Hausdorff, Grundzu gedermengenlehere, Leipzig, VonVeit, (1914).
- [10] M. Joshi, A. Tomar, H. A. Nabwey and R. George, On unique and nonunique fixed points and fixed circles in M<sup>b</sup><sub>ν</sub>-metric space and application to cantilever beam problem, J. Function Spaces, 2021, (2021), 15 pages. https://doi.org/10.1155/2021/6681044
- [11] I. Karahan, I. Isik, Partial  $b_{\nu}$  (s) and  $b_{\nu}$  ( $\theta$ ) metric spaces and related fixed point theorems, arXiv:1806.02663v1, (2018).
- [12] W. Kirk, N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Cham, (2014).
- [13] N. Mlaiki, A. Zarrad, N. Souayah, A. Mukheimer, T. Abdeljawed, Fixed Point Theorems in M<sub>b</sub>—metric spaces, J. Math. Anal., 7, (2016), 1–9.

- [14] S. G. Matthews, Partial metric topology, Annals of the New York Academy of Sciences, 728, (1994), 183–197.
- [15] Z. D. Mitrovic, S. Radenovic, The Banach and Reich contractions in  $b_{\nu}(s)$ —metric spaces, J. Fixed Point Theory Appl., (2017).
- [16] N. Y. Özgür, N. Taş, Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc., (2017).
- [17] N. Y. Özgür, N. Mlaki, N. Taş, N. Souayah, A new generalization of metric spaces: rectangular M-metric spaces, *Mathematical Sciences*, 12, (2018), 223–233.
- [18] B. E. Rhoades, Contractive definitions and continuity, *Contemp. Math.*, **72**, (1988), 233–245.
- [19] S. Shukla, Partial rectangular metric spaces and fixed point theorems, *Sci. World J.*, **2014**, (2014), 1–12.
- [20] V. M. Sehgal, On fixed and periodic points for a class of mappings, J. London Math. Soc. 2(5), (1972), 571–576.
- [21] S. Shukla, Partial b—Metric Spaces and Fixed Point Theorems, Mediterr. J. Math., 11, (2014), 703–711.

Received: December 22, 2020