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Abstract: This paper focuses on a new investigation of the rheological properties of 

the nanocomposites of surface charged superparamagnetic iron oxide nanoparticles with 

polyethylene glycol. Both studied nanocomposites showed the steady-state behavior at 

20 °C and 40 °C. Moreover, the increase of viscosity versus shear strain, shear rate or 

time for the nanocomposites was small at 60 °C. The effect of the coating of 

nanoparticles with the polymer was comparable for different nanocomposites. The data 

presented in this paper can provide the required information for the preparation of 

assemblies of nanocomposites with polymers. 
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1. Introduction 

Rheological investigation of nanomaterials is an important issue as these 

materials with various mechanical properties can be applied in diverse fields of 

science and engineering. Moreover, the surface functionalization of these 

materials can modify these properties such as viscosity, shear rate, etc. The 

viscous nature and solid-like behavior of these materials have made them 

important candidates at different levels with low filler loading and high 

concentration [1-3]. The rheological properties of these materials or their 

composites can determine their processing performance for their preparation. It 

is worth noting that their rheological properties can be modified according to 

their weight change when a few amount of these materials is increased. In each 

polymer composite, one or several nanomaterials are mixed with one or several 

polymers. Computer modeling and simulation are two methods for the 

investigation of the rheological properties of these materials. In these methods, 
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the mechanisms at the molecular level are explored for improving the dispersion 

of nanoparticles in matrices. In addition, the information on the effects of 

nanoparticles on the chain conformation and glass transition temperature of the 

samples is searched [4-5]. 

The rheological properties of a polymer matrix and the presence of branched 

structures in its structure are affected by its molecular weight [6-8]. These 

behaviors also depend on the values of shear rate. The stiffening of polymer 

chains and agglomeration as well as the increase in the viscosity of 

nanocomposites can happen because of the increase of the nanomaterials 

loading in the polymeric matrix at low shear rate values due to the confinement 

of the polymer chains with the embedded nanofiller [9-12]. At high shear, the 

differences between nanocomposites and corresponding matrices become less 

significant due to several phenomena such as the shear thinning behavior, the 

wall slip phenomenon and the unaffected material viscosity after changing the 

nanomaterial content in the samples. It has been explored that the 

nanocomposites with high molar mass and low melt flow index could show a 

decrease in their viscosity values in the high shear rate region. Moreover, the 

nanocomposites that contain a small amount of nanomaterials can have lower 

viscosity than that of the unfilled matrix due to the higher viscosity of the 

polymeric matrix at high shear stress. During recent years, several nanofillers 

with different chemical nature, shape and morphology have been investigated 

among which are the nanoparticles such as metals, carbon-based fillers and 

ceramics [13-18]. 

Polymer nanocomposites containing nanosized fillers having large surface 

areas are considered as better materials than other composites with microsized 

fillers. To maximize these enhancements, fillers should be well-dispersed in 

nanocomposites [19]. There are several techniques for the improvement of the 

quality of filler dispersions in these nanocomposites such as intercalation of 

polymers from solution, in situ intercalation, or melt intercalation [20-22]. The 

quality of filler dispersions can also be improved with the use of compatibilizers 

[23-25], nanofiller surface treatments [26-28] or the application of an electric 

field to clay nanocomposites [29-30]. 

The comparative analysis of the rheological properties of the 

nanocomposites of different surface charged superparamagnetic iron oxide 

nanoparticles (SPIONs) coated with polyethylene glycol (PEG) has not been 

reported, yet. The results of this article can be used for the preparation 

improvement and applications of these nanocomposites in science and 

engineering. 
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2. Materials and methods 

PEG (MW= 8000) was purchased from Sigma Aldrich. SPIONs were 

synthesized as described previously [31]. For the preparation of bare SPIONs, 

an aqueous solution of ferrous chloride (5 mL, 0.045 M) and ferric chloride 

(0.0375 M) was added to diethyleneglycol (250 mL). Sodium hydroxide was 

added to the mixture, then the mixture, with the final concentration of 0.375 M, 

was heated at 170 °C during 15 minutes. After maintaining its temperature at 

the same temperature during an hour, it was cooled to 60 °C. The collection of 

SPIONs was performed using a neodymium magnet, then the nanoparticles 

were washed with a nitric acid solution (1 M) [31]. For the synthesis of 

negatively charged SPIONs, 3-(triethoxysilyl)propylsuccinic anhydride 

(TEPSA) (14.2 mL, 50 mmol) were added to nanoparticles. The solvent was 

DMF (100 mM of iron in 100 mL). After the addition of water (8.6 mL) and 

TMAOH (5 mL, 1M) at room temperature, the solution was heated at 100 °C 

during 24 hours. After the addition of acetone/ether (50/50), SPIONs were 

precipitated and collected with a magnet, washed with acetone and dispersed in 

water. Then, excess of additives was removed by filtration using a membrane 

with a cut-off of 30 kDa. [31] For the preparation of positively charged 

SPIONs, N-[3-(trimethoxysilyl)propyl] ethylenediamine (TPED) was grafted 

onto SPIONs with the addition of TPED (25 mmol, 5.4 mL) to a suspension of 

nanoparticles (100 mL, concentration of iron: 25 mM) at 50 °C. The mixture 

was stirred for 2 hours, then cooled at room temperature. For the filtration of 

suspension, a membrane with a cut-off of 30 kDa was used, then SPIONs was 

centrifuged at 16 500 g for 45 minutes [31]. 

The nanocomposites of positively charged SPIONs-PEG and negatively 

charged SPIONs-PEG were prepared as explained in the previous work [31]. 

After mixing PEG (4.8 g) with deionized water during 15 minutes at room 

temperature, four portions of the polymer mixture were prepared: there was no 

SPIONs in one portion, the three other portions were considered for the 

preparation of nanocomposites of the polymer with these nanoparticles, each of 

them having 1.2 g of the polymer, which was dissolved in water (5 mL). The 

solutions of nanocomposites (1%) were prepared by adding 12 mg of bare, 

positively charged or negatively charged SPIONs separately to each of the three 

portions of the PEG solution. The samples were separately mixed during 15 

minutes at room temperature [31]. 

The samples of each nanocomposite were prepared and analyzed in 

triplicate. An Anton Paar MCR-302 rheometer was used for the rheological 

investigation of nanocomposites. The measurements in triplicate were 

performed at 20 °C, 40 °C and 60 °C. The analysis of parameters such as mean 

values, standard deviations and statistical significance was performed with the 

QtiPlot software [32-33]. 
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3. Results and Discussion 

Fig. 1 shows the viscosity variations of the nanocomposites of positively 

charged SPIONs-PEG and negatively charged SPIONs-PEG versus shear rate. 

 

 

Figure 1: Viscosity (mPa·s) of the nanocomposites of a) positively charged SPIONs-

PEG and b) negatively charged SPIONs-PEG versus shear rate  

 

The viscosity of the nanocomposites was constant with shear rate at 20 °C 

and 40 °C, but it had a small increase at 60 °C. As expected, for all the samples 

the drop in their viscosity values was observed when the temperature increased. 

Fig. 2 shows the viscosity variations of the nanocomposites of positively 

charged SPIONs-PEG and negatively charged SPIONs-PEG versus shear strain 

at 20 °C, 40 °C and 60 °C. As shown in this figure, the similarity in the behavior 

or each type of nanocomposite with the same type of nanocomposite in Fig. 1 

was observed. In other words, both nanocomposites showed a steady-state 

behavior at 20 °C and 40 °C, but their viscosity increased a bit versus shear 

strain at 60 °C. 

Fig. 3 shows the viscosity variations of the nanocomposites of positively 

charged SPIONs-PEG and negatively charged SPIONS-PEG versus time at 20 

a) 

b) 
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°C, 40 °C and 60 °C. The small increase of viscosity versus time at 60 °C and 

the steady-state behavior of the nanocomposites was observed similar to the 

results presented in the previous figures. 

The changes of torque versus shear strain for both nanocomposites at 20 °C, 

40 °C and 60 °C are shown in Fig. 4. The torque values increased with the 

increase of the shear strain of the samples. As shown in this figure, the torque 

did not increase with the same slope at different temperatures, as it was higher 

at 20 °C, but it decreased when the temperature increased to 40 °C and 60 °C. In 

other words, less torque values were observed for both nanocomposites when 

the temperature increased. 
 

 

 

 

Figure 2: Viscosity of the nanocomposites of a) positively charged SPIONs-PEG and  

b) negatively charged SPIONs-PEG versus shear strain 

a) 

b) 
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Figure 3: Viscosity of the nanocomposites of a) positively charged SPIONs-PEG and  

b) negatively charged SPIONs-PEG versus time 

As observed in the previous figures, the data for 40 °C and 60 °C were close 

to each other. Therefore, we can conclude that the rheological properties of both 

nanocomposites changed significantly from 20 °C to 40 °C and changed a bit 

with the increase of temperature. 

The changes of torque versus time at 20 °C, 40 °C and 60 °C are shown in 

Fig. 5 for both nanocomposites. The torque increased with time with a constant 

slope for each nanocomposite. A linear change of torque versus time was 

observed at each temperature. In other words, the increase of torque was 

constant with time for the nanocomposites. Therefore, no change in the torque 

increase was applied over time on each nanocomposite. So, the constant 

increase of torque versus time was expected. 

a) 

b) 
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Figure 4: Torque versus shear strain for the nanocomposites of a) positively charged 

SPIONs-PEG and b) negatively charged SPIONs-PEG 

 

a) 

b) 

a) 
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Figure 5: Torque versus time for the nanocomposites of a) positively charged  

SPIONs-PEG and b) negatively charged SPIONs-PEG 

Fig. 6 shows the shear stress values versus shear rate at 20 °C, 40 °C and 60 

°C for the nanocomposites of positively charged SPIONs-PEG and negatively 

charged SPIONs-PEG. 

As shown in Fig. 6, the changes of the shear stress applied on the samples 

were linear and the slope of the increase of shear stress with shear rate was the 

same for each nanocomposite at 40 °C and 60 °C, which indicated the same 

constant rate of shear stress at these temperatures when it changed with shear 

rate. Moreover, the slope was higher at 20 °C, which showed that the change of 

the shear stress applied on each nanocomposite of SPIONs with PEG versus 

shear rate was higher at a lower temperature. 

 

b) 

a) 
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Figure 6: Shear stress of the nanocomposites of a) positively charged SPIONs-PEG and 

b) negatively charged SPIONs-PEG versus shear rate 

 

 

Figure 7: Shear stress of the nanocomposites of a) positively charged SPIONs-PEG and 

b) negatively charged SPIONs-PEG versus shear strain 

 

Fig. 7 shows the shear stress applied on the nanocomposites of positively 

charged SPIONs-PEG and negatively charged SPIONs-PEG versus shear strain 

at 20 °C, 40 °C and 60 °C. 

For both nanocomposites non-linear changes were observed for the shear 

b) 

a) 

b) 
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stress. Moreover, the shear stress values increased with the increase of the shear 

strain. Almost the same slopes were observed for the samples for the increase of 

shear stress with shear strain at 40 °C and 60 °C, which indicated that they had 

nearly the same increase rate of the shear stress versus shear strain, but the slope 

observed in the figure was higher at 20 °C, which showed that a higher change 

of the shear stress of each nanocomposite versus shear strain at a lower 

temperature. 

In this paper, the variations of the shear stress with shear rate and shear 

strain were investigated for explaining how these parameters changed for the 

nanocomposites of positively surface charged SPIONs-PEG and negatively 

surface charged SPIONs-PEG. As observed, although shear stress increased 

with shear rate for both nanocomposites, their viscosity values versus shear rate, 

shear strain or time did not show a significant change at different temperatures.  

The molecular structure of surface charged SPIONs have been investigated 

previously with amine and carboxyl groups on the surface of positively charged 

and negatively charged SPIONs, respectively [34]. In the current research work, 

the similarity in the results obtained for the samples showed that the difference 

in their surface charge did not have a significant impact on their rheological 

properties. This rheological investigation was performed for providing the 

information required for the determination of the properties of these 

nanocomposites and their further improvement in future studies. 

Several studies have been performed on nanomaterials [35-39], biomaterials 

[40-44] and construction materials [45-46] with diverse applications in science 

and engineering. Some of these materials have shown non-Newtonian behavior 

maintainable with their preparation in polymeric matrices [47-48]. The 

optimization of the properties of these materials can provide important 

information for the improvement of their mechanical properties for further 

applications. The Technique for Order of Preference by Similarity to Ideal 

Solution (TOPSIS) is an appropriate method that has been widely applied for 

the optimization and prediction of various characteristics [49-54]. Some 

investigations on the nanocomposites of iron oxide nanoparticles with polymers 

have shown that these materials would be appropriate for the function 

improvement of electrical devices [55-56]. The present study can provide new 

insight to the investigation of their properties for the manufacture and 

optimization of these devices. 

4. Conclusion 

This paper aimed to investigate the rheological properties of surface-charged 

SPIONs that have found their diverse applications in science and engineering 

during recent years. The samples of two types of nanocomposites, positively 
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surface charged SPIONs-PEG and negatively surface charged SPIONs-PEG, 

were investigated. The results in this study showed that the rheological 

properties of the nanocomposites did not depend on their surface charge but 

depended on temperature, because they changed with the temperature increase. 

The steady-state behavior of both nanocomposites was observed at 20 °C and 

40 °C. Moreover, a small increase of viscosity versus shear strain, shear rate or 

time for the samples was observed at 60 °C. The shear stress increased with 

shear rate and shear strain in all the measurements with higher slopes at 20 °C, 

which decreased with the increase of temperature. The results of this 

investigation can be used for the preparation improvement of these 

nanocomposites as well as the correlation of their physical and mechanical 

properties. 
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