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Abstract. In this paper, singularly perturbed differential equations hav-
ing both small and large delay are considered. The considered problem
contains large delay parameter on the reaction term and small delay
parameter on the convection term. The solution of the problem exhibits
interior layer due to the delay parameter and strong right boundary layer
due to the small perturbation parameter ε. The resulting singularly per-
turbed problem is solved using exponential fitted operator method. The
stability and parameter uniform convergence of the proposed method are
proved. To validate the applicability of the scheme, one model problem
is considered for numerical experimentation.

1 Introduction

A differential equation is said to be a singularly perturbed delay differential
equation, if it includes at least one delay term, involving unknown functions
occurring with different arguments, and also, the highest derivative term is
multiplied by a small parameter. Such types of delayed differential equations
play a very important role in the mathematical models of science and en-
gineering, such as, the human pupil light reflex with mixed delay type [11],

2010 Mathematics Subject Classification: 11A25

Key words and phrases: arithmetical function, Möbius function
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variational problems in control theory with small state problem [6], models of
HIV infection [1], and signal transition [3].
Any system involving a feedback control usually involves time delay. The

delay occurs because a finite time is required to sense the information and then
react to it. Finding the solution of singularly perturbed delay differential equa-
tions, whose applications were mentioned above, is a challenging problem. In
response to these, in recent years, there has been a growing interest in numer-
ical methods on singularly perturbed delay differential equations. The authors
of [14], [15], [4] have developed various numerical schemes on uniform meshes
for singularly perturbed second order differential equations having small delay
on the convection term. The authors of [16],[5], [9] and [8] have have presented
second order differential equations with large delay.
In this paper, we consider a new governing problem having both small de-

lay on the convection term and large delay. Additionally, in recent years the
in-depth correlative physical analysis of the problem under consideration have
been done by the authors [10]–[18]. As far as the researchers’ knowledge nu-
merical solution of singularly perturbed boundary value problem containing
both small delay and large delay is first being considered. Thus, the purpose
of this study is to develop stable, convergent and accurate numerical methods
for solving singularly perturbed differential-difference equations having both
small and large delay.
Throughout our analysis C is a generic positive constant that is independent

of the parameter ε and the number of mesh points is 2N. We assume that

Ω̄ = [0, 2], Ω = (0, 2), Ω1 = (0, 1), Ω2 = (1, 2), Ω∗ = Ω1 ∪ Ω2, Ω
2N

is
denoted by {0, 1, 2, ..., 2N}, Ω2N1 is denoted by {1, 2, ...,N} and Ω2N2 is denoted
by {N+ 1,N+ 2, ..., 2N− 1}. K1 and K2 are the linear operators associated to
the domain Ω1 and Ω2, respectively.

2 Statement of the problem

Consider the following singularly perturbed problem

Ly(x) = −εy′′(x) + a(x)y′(x) + b(x)y(x) + c(x)y(x− 1) + d(x)y′(x− δ)

= f(x), x ∈ Ω,
(1)

y(x) = φ(x), x ∈ [−1, 0], y(2) = l, l ∈ R. (2)

where δ is small, that is δ = O(ε), 0 < ε << 1, φ(x) is sufficiently smooth
on [−1, 0]. For all x ∈ Ω, it is assumed that the sufficient smooth functions
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a(x), b(x), c(x) and d(x) satisfy a(x) ≥ a1 > a > 0, b(x) > b ≥ 0, c(x) ≤ γ <

0, d(x) ≥ ζ ≥ 0, and 2(a + ζ) + 5b + 5γ > η > 0, a(a1 − a) + 2γ > 0. The
above assumptions ensure that y ∈ X = C0(Ω̄) ∩ C1(Ω) ∩ C2(Ω∗).
The boundary value problem 1-2 exhibits strong boundary layer at x = 2 and
interior layer at x = 1.
Expand y′(x − δ) around x using the Taylor’s expansion and discard higher
order terms. Then, Eqs. (1)-(2) can be approximated by

Ky(x) = −cε,δ(x)y
′′(x) + p(x)y′(x) + b(x)y(x) + c(x)y(x− 1) = f(x), (3)

where cε = ε+ δd(x) and p(x) = a(x) + d(x),

y(x) = φ(x), x ∈ [−1, 0], y(2) = l. (4)

As we observed from Eqs. (3) and (4), the values of y(x−1) are known for the
domain Ω1 and unknown for the domain Ω2 due to the large delay at x = 1.
So, it impossible to treat the problem throughout the domain (Ω̄). Thus, we
have to treat the problem at Ω1 and Ω2 separately.
Eqs. (3)–(4) are equivalent to

Ky(x) = R(x), (5)

where

Ky(x) =

{
K1y(x) = −cεy

′′(x) + p(x)y′(x) + b(x)y(x), x ∈ Ω1,

K2y(x) = −cεy
′′(x) + p(x)y′(x) + b(x)y(x) + c(x)y(x− 1), x ∈ Ω2.

(6)

R(x) =

{
f(x) − c(x)φ(x− 1), x ∈ Ω1,

f(x), x ∈ Ω2.
(7)

with boundary conditions






y(x) = φ(x), x ∈ [−1, 0],

y(1−) = y(1+), y′(1−) = y′(1+),

y(2) = l.

(8)

where y(1−) and y(1+) denote the left and right limits of y at x = 1, respec-
tively.
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3 Properties of continuous solution

Lemma 1 (Maximum Principle) Let ψ(x) be any function in X such that
ψ(0) ≥ 0,ψ(2) ≥ 0, L1ψ(x) ≥ 0,∀x ∈ Ω1, L2ψ(x) ≥ 0,∀x ∈ Ω2 and ψ′(1+) −

ψ′(1−) = [ψ′](1) ≤ 0. Then ψ(x) ≥ 0,∀x ∈ Ω̄.

Proof. For the proof, we refer to [16] □

Lemma 2 (Stability Result) The solution y(x) of the problem (3)-(4) satisfies
the bound

|y(x)| ≤ Cmax{
∣

∣y(0)
∣

∣,
∣

∣y(2)
∣

∣, sup
x∈Ω∗

∣

∣Ly(x)
∣

∣}, x ∈ Ω.

Proof. For the proof, we refer to [16] □

Lemma 3 Let y(x) be the solution of (3)-(4). Then we have the following
bounds

||y(k)(x)||Ω∗ ≤ Cc−kε , k = 1, 2, 3.

Proof. For the proof, we refer to [16] □

Lemma 4 The bound for derivative of the solution y(x) of Eqs. 1-3 when
x ∈ Ω1 is given by

|y(k)(x)| ≤ C

(

1+ c−kε exp

(

−p(1− xi)

cε

))

, 0 ≤ k ≤ 4, i = 1, 2, 3, ...,N− 1.

Proof. For the proof, we refer to [2]. □

4 Numerical scheme formulation

The linear ordinary differential equation in Eq. (1) cannot, in general, be
solved analytically because of the dependence of a(x), b(x) and c(x) on the
spatial coordinate x. We divide the interval [0, 2] into 2N equal parts with
constant mesh length h. If we consider the interval x ∈ (0, 1), the domain [0,1]
is discretized into N equal number of subintervals, each of length h. Let 0 =

x0 < x1 < x2 < ... < xN = 1 be the points such that xi = ih, i = 1, 2, 3, ...,N.
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We apply an exponentially fitted operator finite difference method (FOFDM).
From Eq. (6) and Eq. (7), we have

{
−cεy

′′(x) + p(x)y′(x) + b(x)y(x) = R(x), x ∈ Ω1,

y(0) = φ(0), y(1) = θ,
(9)

where R(x) = f(x) − c(x)φ(x− 1).
To find the numerical solution of Eq. (9), we use the theory used in the

asymptotic method for solving singularly perturbed BVPs. In the considered
case, the boundary layer is in the right side of the domain, i.e. near x = 1. From
the theory of singular perturbations given in [12] we get an approximation (up
to first order) of the asymptotic solution in the form

y(x) = y0(x) +
p(1)

p(x)
(θ− y0(1)) exp

(

−

∫ 1

x

(

p(x)

cε
−
b(x)

p(x)

)

dx

)

+O(cε),

By using the Taylor series around x = 1 for p(x) and b(x) and simplifying we
obtain

y(x) = y0(x) + (θ− y0(1)) exp

(

−
p2(1) − cεb(1)

cεp(1)
(1− x)

)

+O(cε), (10)

where y0(x) is the solution of the reduced problem (obtained by setting cε = 0)
of Eq. (9) which is given by

p(x)y′(x) + b(x)y(x) = R(x), y0 = φ(0). (11)

By considering a small enough h, the discretized form of Eq. (10) becomes

y(ih) = y0(ih) + (θ− y0(1)) exp

(

−
p2(1) − cεb(1)

p(1)
(1/cε − iρ)

)

, (12)

where ρ = h
cε
, h = 1

N . Similarly, we write

yi±1 = y0((i± 1)h) + (θ− y0(1)) exp

(

−
p2(1) − cεb(1)

p(1)
(1/cε − (i± 1)ρ)

)

.

Using Taylors series approximation for y0((i+1)h) and y0((i−1)h) up to first
order, we obtain





yi+1 = y0(ih) + (θ− y0(1)) exp

(

−
p2(1)−cεb(1)

p(1)
(1/cε − (i+ 1)ρ)

)

,

yi−1 = y0(ih) + (θ− y0(1)) exp

(

−
p2(1)−cεb(1)

p(1)
(1/cε − (i− 1)ρ)

)

.

(13)
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To handle the artificial viscosity caused by the perturbation parameter, the
term containing the perturbation parameter is multiplied by the exponentially
fitting factor σ(ρ)) as

−cεσ(ρ)y
′′(x) + p(x)y′(x) + b(x)y(x) = R(x), (14)

with boundary conditions y(0) = y0 = φ(0) and y(1) = θ, where y(1) is
evaluated by Runge-Kutta fourth order formula from the reduced solution of
Eq. (10).

Next, on a uniform mesh points Ω
N
= {xi}

N
i=0 and with h = xi+1 − xi, using

the difference approximations

{
D0y(xi) =

y(xi+1)−y(xi−1)
2h + τ1,

D+D−y(xi) =
y(xi−1)+2y(xi)+y(xi+1)

h2
+ τ2,

(15)

where τ1 =
−h2

6 y
(3)(xi) and τ2 =

−h2

12 y
(4)(xi). When we apply a central differ-

ence formula on Eq. (14), it takes the form

−cεσ(ρ)

(

D+D−y(xi)

)

+ p(xi)

(

D0y(xi)

)

+ b(xi)y(xi) = R(xi). (16)

Let Yi be an approximate solution of y(x) and Ri is an approximation of R(x)
at grid point xi, then we write the numerical scheme for Eq. (16) in difference
operator form as

KNYi = Ri, (17)

with boundary conditions Y0 = φ(0) and Y(1) = θ, where

KNYi = −cεσ(ρ)

(

Yi+1 − 2Yi + Yi−1

h2

)

+ p(xi)

(

Yi+1 − Yi−1

2h

)

+ b(xi)Yi = Ri.

(18)
The multiplication of Eq. (18) by h, then tending to zero with h and truncating
the term (Ri − b(xi)Yi)h, results in

−σ(ρ)

ρ

(

Yi+1 − 2Yi + Yi−1

)

+
p(xi)

2

(

Yi+1 − Yi−1

)

= 0. (19)

By substituting the results of Eq.(12) and Eq.(13) into Eq. (19) and simplifi-
cation, the exponential fitting factor is obtained as

σ(ρ) =
ρp(1)

2
coth

(

ρp(1)

2

)

. (20)
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Assume that Ω
2N

denotes the partition of [0,2] into 2N subintervals such that
0 = x0, x1, x2, ..., xN = 1 and xN+1, xN+2, ..., x2N = 2 with xi = ih, h = 2

2N =
1
N , i = 0, 1, 2, ..., 2N.
Case (1): Consider Eqs. (6) and (7) on the domain Ω1 which is given by

−cεy
′′(x) + p(x)y′(x) + b(x)y(x) = f(x) − c(x)φ(x− 1), (21)

Hence, the required finite difference scheme becomes
(

−cεσ(ρ)

h2
−
p(xi)

2h

)

Yi−1 +

(

2cεσ(ρ)

h2
+ b(xi)

)

Yi +

(

−cεσ(ρ)

h2
+
p(xi)

2h

)

Yi+1

= fi − ciφ(xi −N),

(22)

for i = 0, 1, 2, ...,N.
The numerical scheme in Eq. (22) can be written in three term recurrence
relation as

EiYi−1 + FiYi +GiYi+1 = Hi, i = 1, 2, ...,N, (23)

where Ei =
−cεσ(ρ)

h2
− pi

2h , Fi =
2cεσ(ρ)

h2
+ bi, Gi =

−cεσ(ρ)

h2
+ pi

2h , Hi =

fi − ciφ(xi −N).
Case (2): Consider Eqs. (6) and (7) on the domain Ω2 using exponentially
fitted finite difference method, which is given by

−cεσ(ρ)

(

Yi+1 − 2Yi + Yi−1

h2

)

+pi

(

Yi+1 − Yi−1

2h

)

+biYi+ ciY(xi− 1)+τ1 = fi.

(24)
Similarly, this equation can be written as

EiYi−1 + FiYi +GiYi+1 + Ci = Hi, i = N+ 1,N+ 2, ..., 2N− 1, (25)

where Ei =
−cεσ(ρ)

h2
− pi
2h , Fi =

2cεσ(ρ)

h2
+bi, Gi =

−cεσ(ρ)

h2
+ pi
2h , Ci = ciy(xi−1)

and Hi = fi.

Therefore, on the whole domain Ω = [0, 2], the basic schemes to solve Eqs.
(1)-(3) are the schemes given in Eqs. (23) and (25) together with the local
truncation error of τ1 .

Uniform convergence analysis

The discrete scheme corresponding to the original Eqs. (6)-(7) is as follows
For i = 1, 2, 3, ...,N

KN1 Yi = fi − ciφi−N. (26)



Parametric uniform NM for SPDEs having both small and large delay 61

For i = N+ 1,N+ 2, ..., 2N− 1

KN2 Yi = fi, (27)

subject to the boundary conditions:

Yi = φi, i = −N,−N+ 1, ..., 0 (28)

Y2N = l, (29)

where
{
KN1 Yi = −cεD

+D−Yi + p(xi)D
0Yi + b(xi)Yi

KN2 Yi = −cεD
+D−Yi + p(xi)D

0Yi + b(xi)Yi + c(xi)Yi−N
(30)

Lemma 5 (Discrete Maximum Principle) Assume that the mesh function
ψ(xi) satisfies ψ(x0) ≥ 0 and ψ(x2N) ≥ 0 . Then KN1 ψ(xi) ≥ 0, ∀xi ∈ Ω

2N
1 ,

KN2 ψ(xi) ≥ 0, ∀xi ∈ Ω
2N
2 and ψ′(1+) −ψ′(1−) = [ψ′](1) ≤ 0. Then ψ(xi) ≥ 0,

∀xi ∈ Ω
2N

.

Proof. Let us define

s(xi) =

{
1
8 +

xi
2 , xi ∈ [0, 1] ∩Ω

2N

3
8 +

xi
4 , xi ∈ [1, 2] ∩Ω

2N

Note that s(xi) > 0,∀xi ∈ Ω
2N

, KNs(xi) > 0,∀xi ∈ Ω
2N
1 ∪Ω2N2 and [s′](xN) < 0.

Let use the notation µ = max

(

−ψ(xi)
s(xi)

: xi ∈ Ω
2N

)

. Then there exists xi ∈ Ω
2N

such that ψ(xk) + µs(xk) = 0 and ψ(xk) + µs(xk) ≥ 0, ∀xi ∈ Ω
2N

. Therefore,
the function ψ+µs attains its minimum at x = xk. Suppose the theorem does
not hold true, then µ > 0.
Case (i): xk = x0

0 < (ψ+ µs)(x0) = 0, it is a contradiction.

Case (ii): xk ∈ Ω
2N
1

0 < KN1 (ψ+ µs)(xk) = −cε(ψ+ µs)′′(xk) + p(xk)(ψ+ µs)′(xk)

+b(xk)(ψ+ µs)(xk) ≤ 0,

it is a contradiction.
Case (iii): xk = xN

0 < [(ψ+ µs)′](xN) = [ψ′](xN) + [s′](xN) < 0, it is a contradiction.
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Case (iv): xk ∈ Ω
2N
2

0 < KN2 (ψ+ µs)(xk) = −cε(ψ+ µs)′′(xk) + p(xk)(ψ+ µs)′(xk)

+b(xk)(ψ+ µs)(xk) + c(xk)(ψ+ µs)(xk − 1) ≤ 0,

it is a contradiction.
Case (v): xk = x2N

0 < (ψ+ µs)x2N ≤ 0, it is a contradiction. (31)

Hence, the proof of the lemma is finished.
Remark: The above problem (3) has a solution (see [16]), and further the
solution is unique due to the above maximum principle. □

Lemma 6 Let ψ(x) be any mesh function. Then, for 0 < i < 2N

|ψ(xi)| ≤ Cmax{|ψ(x0)|, |ψ(x2N)|, max
i∈Ω2N

1
∪Ω2N

2

|KNψ(xi)|}

Proof. Consider the barrier functions

θ±(xi) = CMs(x)±ψ(xi), ∀xi ∈ Ω
2N

(32)

where M = max{|ψ(x0)|, |ψ(x2N)|,maxi∈Ω2N
1

∪Ω2N
2

|LNψ(xi)|}.

From Eq. (32) it is clear that θ±(x0) ≥ 0 and θ±(x2N) ≥ 0

KN1 θ
±(xi) ≥ 0, ∀xi ∈ Ω

2N
1

KN2 θ
±(xi) ≥ 0, ∀xi ∈ Ω

2N
2

[θ±
′
](xN) ≤ 0

Using Lemma 4, θ±(xi) ≥ 0, ∀xi ∈ Ω
2N

. □

We proved above that the discrete operator KN satisfies the maximum princi-
ple. Next, we analyze the uniform convergence of the method.

Theorem 1 Let y(xi) and Yi be the exact solution of Eqs. (1)-(3) and nu-
merical solutions of Eq. (17) respectively. Then, for a sufficiently large N, the
following parameter uniform error estimate holds

|LN(y(xi) − Yi)| ≤
CN−2

N−1 + cε

(

1+ c−3ε exp

(

−
p(1− xi)

cε

))

. (33)
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Proof. Let us consider the local truncation error defined as

LN(y(xi) − Yi) = −cεσ(ρ)(y
′′(xi) −D

+D−y(xi)) + p(xi)(y
′(xi) −D

0y(xi)),

= −cε

[

ρp(1)

2
coth

(

ρp(1)

2

)

− 1

]

D+D−y(xi)

+ cε(y
′′(xi) −D

+D−y(xi)) + p(xi)(y
′(xi) −D

0y(xi)),

(34)

where σ(ρ) = p(1)ρ2 coth(p(1)
ρ
2 ), and ρ = N−1

cε
.

since |z coth(z) − 1| ≤ z2 holds if z ̸= 0 and also |z coth(z) − 1| ≤ z if z > 0

values, Now, for z > 0, C1 and C2 are constants, and we have |z coth(z) − 1| ≤
C1z

2, z ≤ 1. Similarly, for z −→ ∞, since lim
z−→∞

coth(z) = 1, |z coth(z)− 1| ≤

C1z is given.
In general, for all z > 0, we write

C1
z2

z+ 1
≤ z coth(z) − 1 ≤ C2

z2

z+ 1
(35)

implying that

cε[p(1)
ρ

2
coth(p(1)

ρ

2
) − 1] ≤ cε

(

(N−1/cε)
2

(N−1/cε) + 1

)

=
N−2

N−1 + cε
. (36)

Using Taylor series expansion, we can rewrite y(xi−1) and y(xi+1) in terms of
the values and derivatives of y(xi) as
{
y(xi−1) = y(xi) − hy

′(xi) +
h2

2! y
′′(xi) −

h3

3! y
(3)(xi) +

h4

4! y
(4)(xi) +O(h

5),

y(xi+1) = y(xi) + hy
′(xi) +

h2

2! y
′′(xi) +

h3

3! y
(3)(xi) +

h4

4! y
(4)(xi) +O(h

5).

We obtain the bound for the second order derivatives as
{

|D+D−y(xi)| ≤ C|y
′′(xi)|,

|y′′(xi) −D
+D−y(xi)| ≤ CN

−2|y(4)(xi)|.
(37)

Similarly, for the first derivative term

|y′(xi) −D
0y(xi)| ≤ CN

−2|y(3)(xi)|, (38)

where |y(k)(xi)| = supxi∈(x0,xN) |y
(k)(xi)|, k = 2, 3, 4.

Using the bounds in Eq.(37) and Eq.(38), we obtain

|LN(y(xi) − Yi)| ≤ C
N−2

N−1 + cε
|y′′(xi)|+ cεCN

−2|y(4)(xi)|+ CN
−2|y(3)(xi)|,

≤ C
N−2

N−1 + cε
|y′′(xi)|+ CN

−2[cε|y
(4)(xi)|+ |y(3)(xi)|].
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Now, using the bounds for the derivatives of the solution in lemma (3)and the
assumption cε ≤ N

−1, Eq. (3), we have

|LN(y(xi) − Yi)| ≤
CN−2

N−1 + cε

(

1+ c−2ε exp

(

−p(1− xj)

cε

))

+ CN−2

[

cε

(

1+ c−4ε exp

(

−p(1− xj)

cε

))

+

(

1+ c−3ε exp

(

−p(1− xj)

cε

))]

≤
CN−2

N−1 + cε

(

1+ c−2ε exp

(

−p(1− xj)

cε

))

+ CN−2

[(

cε

+ c−3ε exp

(

−p(1− xj)

cε

))

+

(

1+ c−3ε exp

(

−p(1− xj)

cε

))]

,

which simplifies to

|LN(y(xi)−Yi)| ≤
CN−2

N−1 + cε

(

1+c−3ε exp

(

−p(1− xj)

cε

))

, since c−3ε ≥ c−2ε .

(39)
□

Lemma 7 For a fixed mesh and for cε → 0, the following holds:

lim
cε→0

max
1≤j≤N−1

exp

(

−pxj
cε

)

cmε
= 0, m = 1, 2, 3, ....

lim
cε→0

max
1≤j≤N−1

exp

(

−p(1−xj)

cε

)

cmε
= 0, m = 1, 2, 3, ....

Proof. We refer to [2] □

Theorem 2 Let y(xi) and Yi be the exact solution of Eqs. (1)-(2) and numer-
ical solutions of Eq. (17) respectively. Then, the following error bound holds

sup
0<cε<<1

|(y(xi) − Yi)|| ≤
CN−2

N−1 + cε
≤ CN−1. (40)
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Proof. By substituting the results of lemma 4 in to Theorem 4 and applying
the discrete maximum principle, we obtain the required bound. □

For the case cε > N
−1 the scheme secures second order convergence and we

expect to lose an order of convergence for cε ≤ N−1, and in fact it turns out
that the scheme guarantees second order uniformly convergent.

5 Numerical examples and results

In this section, one example is given to illustrate the numerical method dis-
cussed above. The exact solutions of the test problem is not known. Therefore,
we use the double mesh principle to estimate the error and compute the ex-
perimental rate of convergence to the computed solution. For this we put

ENε = max
0≤i≤2N

|YNi − Y2N2i |, (41)

where YNi and Y2N2i are the ith and 2ith components of the numerical solutions
on meshes of N and 2N respectively. We compute the uniform error and the
rate of convergence as

EN = max
ε
ENε , andR

N = log2

(

EN

E2N

)

. (42)

The numerical results are presented for the values of the perturbation param-
eter ε ∈ { 10−4, 10−8, ..., 10−20}.

Example 1 Consider the model singularly perturbed boundary value problem:

−εy′′(x) + 10y′(x) − y(x− 1) + y′(x− ε) = x x ∈ (0, 1) ∪ (1, 2),

subject to the boundary conditions

y(x) = 1, x ∈ [−1, 0], y(2) = 2.

6 Discussion and conclusion

This study introduces exponential fitted operator method for singularly per-
turbed differential equations having both small and large delay. The numerical
scheme is developed on uniform mesh using fitted operator in the given dif-
ferential equation. The stability of the developed numerical method is estab-
lished and its uniform convergence is proved. To validate the applicability of
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the method, one model problem is considered for numerical experimentation
for different values of the perturbation parameter and mesh points. The nu-
merical results are tabulated in terms of maximum absolute errors, numerical
rate of convergence and uniform errors (see Table 1). Further, behavior of the
numerical solution (Figure 1), point-wise absolute error (Figure 2) and the ε
-uniform convergence of the method is shown by the log-log plot (Figure 3).
The method is shown to be ε-uniformly convergent with order of convergence
O(h). The proposed method gives an accurate, stable and ε-uniform numerical
result.

Table 1: Maximum absolute errors for Example 5 at number of mesh points
2N.

ε N=32 N=64 N=128 N=256 N=512

10−4 1.9799e-04 1.0004e-04 5.0281e-05 2.5206e-05 1.2619e-05
10−8 1.9799e-04 1.0004e-04 5.0281e-05 2.5206e-05 1.2619e-05
10−12 1.9799e-04 1.0004e-04 5.0281e-05 2.5206e-05 1.2619e-05
10−16 1.9799e-04 1.0004e-04 5.0281e-05 2.5206e-05 1.2619e-05
10−20 1.9799e-04 1.0004e-04 5.0281e-05 2.5206e-05 1.2619e-05
EN 1.9799e-04 1.0004e-04 5.0281e-05 2.5206e-05 1.2619e-05
RN 0.9849 0.9925 0.9962 0.9982
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Figure 1: The behavior of the Numerical Solution for Example 5 at ε = 10−12

and N = 32.
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Figure 2: Point wise absolute error of Example 5 at ε = 10−12 with different
mesh point N.
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