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Abstract. This paper discusses the oscillatory behavior of solutions to
a class of second-order nonlinear noncanonical neutral differential equa-
tions. Sufficient conditions for all solutions to be oscillatory are given.
Examples are provided to illustrate all the main results obtained.

1 Introduction

In this paper, we examine the oscillatory behavior of solutions of the second-
order nonlinear noncanonical neutral differential equation

[alt) (x(t) + p(t)x(T(t)] + q(t)x*(a(t) =0, (1)
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where t > to > 0 and « is the ratio of odd positive integers with 0 < o < 1.
In the remainder of the paper we assume that:

(i) a: [to,00) = (0,00) and q : [to,00) — [0,00) are continuous functions,
and q(t) > 0 for large t;

(ii) p: [tp,00) — R is a continuous function with 0 < p(t) < d < 1;

iii) T,0 : [tp,00) — R are continuous functions such that t(t) < t, o is
) )
nondecreasing, and limy o T(t) = limy_e0 0(t) = o0.

We let

>
I(t) = ——ds, t>t
( ) Jt a(s) S) = Ly

and assume that
I(to) < oo, (2)

i.e., the equation is in noncanonical form. By a solution of equation (1),
we mean a function x € C([ty,00),R) for some t, > to such that x(t) +
p(t)x(t(t)) € C! ([ty,0),R), a(t) (x(t) + p(t)x(t(t)))" € C' ([ty, 00),R), and
x satisfies (1) on [ty, 00). We consider only those solutions of (1) that exist on
some half-line [ty, c0) and satisfy

sup{lx(t)]: Ty <t < oo} >0 forany Ty >ty

in addition, we tacitly assume that (1) possesses such solutions. Such a solution
x(t) of (1) is said to be oscillatory if it has arbitrarily large zeros on [ty, 00),
i.e., for any t; € [ty,00) there exists t; > t; such that x(t;) = 0; otherwise it
is called nonoscillatory, i.e., if it is eventually positive or eventually negative.
Equation (1) is said to be oscillatory if all its solutions are oscillatory.
Neutral differential equations are functional differential equations in which
the highest-order derivative of the unknown function appears in the equation
with the argument t (present state) as well as one or more delay or advanced
arguments. Equations of this type arise in many areas of applied mathemat-
ics and have important applications in the natural sciences and technology.
Readers interested in the application of equations of this kind can refer to the
monograph by Hale [16] among the most cited sources. For instance, they arise
in networks containing lossless transmission lines (as in high-speed computers
where the lossless transmission lines are used to interconnect switching cir-
cuits) (see [6, 25]); in the study of vibrating masses attached to an elastic bar,
and as the Euler equation in some variational problems containing a delay (see

[16, pp. 4-T7]).
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Oscillation and asymptotic behavior of solutions of second order functional
differential equations with linear, sublinear and superlinear neutral term has
been a very active area of research in recent years and interest in the subject
can be seen from the many articles in the literature. For some typical results,
the reader can refer to the papers [2, 3, 5, 7, 8, 17, 18, 19, 20, 21, 23, 24,
26, 28, 29] for equations with linear neutral terms, the papers [1, 9, 22, 27]
for equations with sublinear neutral terms, and the papers [4, 10] for the
equations with superlinear neutral terms. Motivated by the papers mentioned
above and the results in [11], our aim here is to establish some new sufficient
conditions under which every solution of (1) is oscillatory. We note that the
results presented in this paper extend the results in [11] in some special cases
and are not covered by existing results in the literature. Since our equation
considered here is fairly simple, it would be possible to extend our results to
more general equations (e.g., to the equations in [4, 9, 21, 22, 24, 26, 27, 28, 29])
and to other types that include equation (1) as a special case. For these reasons,
it is our hope that the present paper will stimulate additional interest in
research on second and higher even-order functional differential equations with
linear, sublinear and superlinear neutral terms.

In the sequel, all functional inequalities are supposed to hold for all t large
enough. Without loss of generality, we deal only with positive solutions of (1)
since if x(t) is a solution of (1), then —x(t) is also a solution.

2 Main results

For the reader’s convenience, we adopt the notation:

I(t(o(t)))

z(t) == x(t)+p(t)x(t(t)), and m(t):= 1—p(6(t))w

for t > t; > tp.

Note that 7(t) > 0 for t > t; > to. We first present the following three
oscillation criteria for equation (1) in the case where o is a delay argument,
i.e., for the case o(t) < t.

Theorem 1 Let (2) hold. If

JOO I(s)q(s)ds = oo (3)

to

and
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t
lim sup <I(t) J q(s)m*(s)ds

t—o0 to

(e.o]

1, ifa=1,
0, if0o<a<l,

+I7*(o(t)) J

t

Immﬂﬂmwwmmﬁ>{ (4)

then equation (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1), say x(t) > 0,
x(t(t)) > 0 and x(o(t)) > 0 for t > t; for some t; > to. Then, we see from (1)
that

(a(t)'(1))

and so, a(t)z/(t) is nonincreasing and eventually of one sign. That is, there
exists t) > t; such that, for t > t;, either

— fq(t)x“(o'(t)) < 0 fort > t1, (5)

(I) z(t) >0, Z/(t) >0, (a(t)Z(t)) <0, or

(I1) z(t) >0, Z'(t) <0, (a(t)Z(t)) <o.

We first consider case (I). From the definition of z, we see that

x(t) = z(t) — p(t)x(T(t)) = z(t) — dz(t(t)) = (1 — d)z(t). (6)
Using (6) in (1) yields

(a(t)Z(1))" + (1 —d)*q(t)z%(o(t)) <0 (7)

for t > t3 for some t3 > t,. Since z(t) > 0 and z'(t) > 0, for some ¢ > 0,
z(t) > ¢ > 0 for t > t3 and so inequality (7) takes the form

(a2 (1) +c*(1—d)%q(t) <0 for t > ts. (8)

Integrating inequality (8) twice yields

z(t) < z(t3) + Jt alts)2'(t;)

« of [ _
. a(s) ds—c*(1—-d) J J q(s)dsdu — —oo

t3 a(u) i3
as t — oo due to (2) and (3). This contradicts the fact that z(t) is positive.
Next, assume that case (II) holds. Then there exists a constant k > 0 such

that

lim z(t) = k < oo.
t—o0
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We claim that k = 0. If k > 0, then there exist t3 > t; and A > 1 with Ad < 1
such that
K < z(t) < kA 9)

for t > t3. Now,

X() = 2(t) — pU)x(T(t)) = 2(t) — dz(t(t)) > (“Qd> 2. (10)

Using (10) in (1) yields

1—Ad

(@) + (152 o) <o (1)

for t > t4 for some t4 > t3. Integrating (11) from t4 to t gives

—a(t)Z'(t) > <]_A}\d>“|<°‘Jt q(s)ds. (12)

t4

Integrating again and using (3) gives

z(ty) > <]_7f}\>(x K™ Joo 1 Ju q(s)dsdu

tq a(u) tq

— <1 _)\)\d>oC K* J: I(s)q(s)ds = oo,

which is a contradiction, and so lim; ., z(t) = 0.
It follows from case (II) that

o

z(t) > —J Mds > — (JOO 1ds) a(t)Z (t) = —I(t)a(t)Z(t),

t a(s)

and so

which implies that
<z(t)>’ W)+ 5y
a )

I(t) I2(t

i.e., z(t)/I(t) is eventually nondecreasing, say for t > ts for some ts > t4.
From this and the definition of z, we observe that

>0,

X() > 2(t) — p(D)z(x(t)) = <1 ) “ff;”) 2(t). (14)
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Using (14) in (1) gives
(a(®)Z' (1) + g (t)z%(o(t) < 0, (15)
which can be written in the equivalent form
(a(t)Z (DI(t) +z(t)" + I(t)q(t)m*(t)z%(o(t)) <O. (16)

Integrating (16) from t to u, letting u — oo, and using (13) yields

(e o]

a(t)z'(DI(t) +z(t) = L I(s)q(s)m*(s)z%(o(s))ds. (17)

An integration of (15) from t5 to t and multiplication by I(t) gives

—a(O)Z(VI() = 1(1) J q(s)n*(s)z%(o(s))ds. (18)

ts
It follows from (17) and (18) that

t 0

q(s)m*(s)z*(o(s))ds + Jt I(s)q(s)m*(s)z%(a(s))ds. ~ (19)

2(1) > I(t)J

ts

Since z is decreasing, we see that if s < t, we have o(s) < o(t) < t, and so
z(o(s)) > z(o(t)) > z(t) for t > t5. Thus,

L q(s)*(s)z*(o(s))ds > (L q(S)ﬂ“(SMS) z%(1). (20)

Also, for s > t, we have o(s) > o(t) and o(t) < t. Since z(t)/I(t) is nonde-
creasing and z(t) is decreasing,

Thus,

Using (20) and (21) in (19) yields
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2(6) > 1) ( Jt q(s)n“(s)ds) 25(4)

ts

1 J’ &
+ | — I(s) (s)n“(s)l“(c(s))ds) z*(t).
(mcr(t))

Now taking the limsup as t — oo of the resulting inequality, we obtain a
contradiction to (4). This completes the proof of the theorem. O

Theorem 2 Let (2) and (3) hold. If

o(t) t

q(s)m*(s)ds + J I(s)q(s)m*(s)ds

t—o0 to o(t)

lim sup <I(G(t))J
o0 1, ifa=1,

) (22)
0, if0<a<l,

H(o(0) |

t

I(s)q(s)n"‘(s)l"‘(o(s))ds) > {

then equation (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1), say x(t) > 0,
x(T(t)) > 0, and x(o(t)) > 0 for t > t; for some t; > ty. Proceeding as in the
proof of Theorem 1, we again arrive at (19), which can be written as below

t

q(s)m™(s)z%(o(s))ds + J I(s)q(s)m*(s)z™(o(s))ds

o(t)

2(o(t)) > I(G(t))J

ts

+J I(s)q(s)m*(s)z%(o(s))ds.

t

The remainder of the proof is similar to that of Theorem 1 and hence is
omitted. The proof of this theorem is complete. O

Theorem 3 Let (2) and (3) hold. If

1, ifa=1,

) (23)
0, f0<a<l,

t—oo Jo(t)

limsuth I(s)q(s)7(s)ds > {

then equation (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1) with x(t) > 0,
x(t(t)) > 0, and x(o(t)) > 0 for t > t; > to. Proceeding as in the proof of
Theorem 1, we again arrive at (13) and (16). Setting

y(t) == z(t) + I(t)a(t)Z' (1),



266 S. R. Grace, J. R. Graef, T. Li, E. Tung

we have 0 < y(t) < z(t) since z/(t) < 0 in case II. It then follows from (16)
that

Y1) + I(t)q(t) ™ (t)y*(o(t)) < 0.
Integrating this inequality from o(t) to t, we obtain

t

I(s)q(s)m*(s)y*(o(s))ds > y“(G(t))J " I(s)q(s)m*(s)ds,

*(o(t)) 2 Jg(t) I(s)q(s)m™(s)ds.

Now take the lim sup,_,,, on both sides of the above inequality. Recalling the
fact that z(t) — 0, which implies that y(t) — 0, we obtain a contradiction to
condition (23), and this proves the theorem. O

Next, we present the following two oscillation criteria for equation (1) in the
case where o0 is a advanced argument, i.e., for the case o(t) > t.

Theorem 4 Let (2) and (3) hold. If

lim sup <Ia(0(t)) r q(s)m™(s)ds

t—oo IO(—] (t) to
1
[*(t)

1, ifa=1,
0, if0<a<l,

(24)

t

Jmmmmﬂmwwmmg>{

then equation (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1), say x(t) > O,
x(t(t)) > 0, and x(o(t)) > 0, for t > t; for some t; > ty. Proceeding similarly
to the proof of Theorem 1, we again arrive at (19). Using the fact that z
is decreasing and z(t)/I(t) is nondecreasing, we see that if s < t, we have
s < o(s) < o(t) and o(t) > t, so

Now,
t o x t o & Z(X(G(t)
LS q(s)m*(s)z*(o(s))ds > (LS q(s)m (5)d3>1 (U(t))l“(c(t))



Second-order noncanonical neutral equations 267

> <J‘t Q(s)n“(s)ds> <Ia(0{t))> z%(t). (25)

t5 I(X(t)
Also, if s > t, we have o(s) > o(t), and so

Thus,

Using (25) and (26) in (19) yields
t

ooy < IX(0(V)
20 2 50

J q(s)m*(s)ds + J I(s)q(s)m*(s)I*(o(s))ds.
ts t

[*(t)

The rest of the proof is similar to that of Theorem 1 and is omitted. O

Theorem 5 Let (2) and (3) hold. If
t o(t)

q(S)?T"‘(S)dSJr11_°‘(t7(t))Jt I*(o(s))q(s)m*(s)ds

lim sup <I(G(t)) J

t—o0 to

o0

1, ifa=1,

) (27)
0, if0<a<l,

+I_°‘(G(t))J I(S)q(S)ﬂ“(S)I“(G(S))dS> >{

o(t)
then equation (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1) with x(t) > 0,
x(T(t)) > 0, and x(o(t)) > O for t > t; > to. Proceeding as in the proof of
Theorem 1, we again arrive at (19), which can be written as

o(t)
q(S)ﬂ“(S)Z“(G(S))dS+I(G(t))J q(s)m*(s)z%(o(s))ds

t

t

2(o(t) > I(G(mj

ts

+ Jm 1(s)q(s)m" (5)z%(a(s)) ds.
o(t)
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As in the proof of Theorem 1, using the fact that z is decreasing and z(t)/I(t)
is nondecreasing, we arrive at the desired conclusion. This completes the proof
of the theorem. O

Next, we us illustrate all the results obtained here on linear and nonlin-
ear second-order neutral differential equations with delay and advanced argu-
ments.

Example 1 Consider the equation

(tz <x(t) + :tTGX (;)) ) + qox (:) —0, t>1. (28)

Here we have a(t) =2, p(t) = (t+1)/(4t+6), T(t) =t/2, o(t) = t/4, x =1,
and q(t) = qo > 0 is a constant. Then

1(0) = 1, 1(o(t)) = 7, Ix(o(t))) = °, plo(t)) = ﬂ; and (t) = zifz.

Now, if we apply Theorems 1-3 to equation (28), we see that (28) is oscillatory
by Theorem 1 if qo > 1, the same equation is oscillatory by Theorem 2 if
qo > H_;T, and the same equation is oscillatory by Theorem 3 if qo > ﬁ

Example 2 Consider the equation

t3 1 /8\\\
<2 (x(t)+8x <2)>> +tx!32t) =0, t>1. (29)

Here we have a(t) = t3/2, p(t) = 1/8, 1(t) = t/2, o(t) = 2t, « = 1/3, and
q(t) =t. Then

] o Lelo(t) = 17, plo(t) =1/8, and n(t) = 1/2.

Since I(ty) =1 and

JOO I(s)q(s)ds = JOO 1ds = 00,

to 1 S

conditions (2) and (3) hold. Also, we can easily see that conditions (24) and
(27) are satisfied. Hence, By Theorem 4 and Theorem 5, equation (29) is
oscillatory.
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In conclusion, as some suggestions for future research, it would be of interest
to obtain results similar to those we obtained here, but for different ranges on
the value of the coefficient p(t). The asymptotic behavior of solutions of neutral
equations changes significantly, for example, if p takes on negative values. In
this regard we refer the reader to the paper of Graef, Grammatikopoulos, and
Spikes [12] as well as [13, 14, 15].
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